
Specification and Deployment of Distributed

Monitoring and Adaptation Infrastructures

Christian Inzinger, Benjamin Satzger, Waldemar Hummer,
and Schahram Dustdar

Distributed Systems Group, Vienna University of Technology
Argentinierstrasse 8/184-1, A-1040 Vienna, Austria

{lastname}@dsg.tuwien.ac.at
http://dsg.tuwien.ac.at

Abstract. This paper presents a new domain-specific language that al-
lows to define integrated monitoring and adaptation functionality for
controlling heterogeneous systems. We propose a mechanism for optimal
deployment of the defined control operators onto available resources.
Deployment is based on solving a quadratic programming problem, and
helps to achieve minimized reaction times, low overhead, as well as scal-
able monitoring and adaptation.

Keywords: Monitoring, Adaptation, Complex Systems, Domain-Specific
Language, Deployment, Operator Placement.

1 Introduction

Efficient monitoring and adapation of large-scale heterogeneous systems, inte-
grating a multitude of components, possibly from different vendors, is challeng-
ing. Huge amounts of monitoring data and sophisticated adaptation mechanisms
in complex systems render centralized processing of control logic impractical. In
highly distributed systems it is desirable to keep relevant monitoring and adap-
tation functionality as local as possible, to reduce traffic and to allow for timely
reaction to changes.

In this paper we introduce a domain-specific language (DSL) to easily and suc-
cinctly specify system components and their monitoring and adaptation relevant
behavior. It allows to define integrated monitoring and adaptation functionality
to realize applications based on top of heterogeneous, distributed components.
Using the introduced DSL we then outline the process of deploying the inte-
gration infrastructure, focusing on the efficient placement of monitoring and
adaptation functionality onto available resources.

The remainder of this paper is structured as follows: In Section 2 we outline a
motivating scenario that is used throughout the discussion of our contribution.
Section 3 introduces a DSL for concise definition of complex service-oriented sys-
tems along with their monitoring and adaptation goals, followed by a discussion
of the necessary deployment procedure in Section 4. Relevant previous research
is presented in Section 5. We conclude the paper in Section 6 and provide an
outlook for future research directions.

A. Ghose et al. (Eds.): ICSOC 2012, LNCS 7759, pp. 167–178, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://dsg.tuwien.ac.at

168 C. Inzinger et al.

2 Scenario

In this section we introduce a motivating scenario based on the Indenica1 FP7
EU project. The project aims at providing methods for describing, deploying
and managing disparate platforms based on a virtual service platform (VSP),
which integrates and unifies their services. As the focus of this paper is on the
deployment and runtime aspects of the developed approach, the reader is referred
to the project website for further information.

• • •
Service

Platform 1
Service

Platform 2
Service

Platform m

Client Application

component interaction

VSP
Control Interface

Messaging Infrastructure

MQ 1 MQ 2 MQ 3 MQ n• • •

Service
Platform 3

Unified Service Interface

Deployment &
IntegrationMonitoring: CEP

Engines
Adaptation: Rule

Engines

Fig. 1. INDENICA Runtime Architecture

The Indenica runtime architecture is presented in Fig. 1. The VSP provides
a unified view on the functionality of the integrated service platforms, which
are connected by control interfaces. Monitoring and adaptation are performed
by complex event processing (CEP) engines and production rule engines, re-
spectively. The former allows to implement monitoring by aggregating events
emitted by service platforms, and the latter supports the definition of complex
rules based on the gathered knowledge, which is stored as facts in a knowledge
base. The execution of monitoring and adaptation on top of multiple engines
allows for scalable control using distributed resources. Communication within
the VSP is based on a distributed messaging infrastructure.

In this paper we introduce a novel DSL called MONINA, which allows the user
to specify service platform capabilities, monitoring queries, and adaptation rules.
In addition to that, we propose an algorithm to deploy the specified functionality
onto available resources. Deployment aims at optimal usage of available resources
considering locality, minimizing network overhead and taking load distribution
into account.

1 http://indenica.eu

http://indenica.eu

Specification and Deployment of Distributed Control Infrastructures 169

3 MONINA Language

In this section we introduce MONINA2 (Monitoring, Integration, Adaptation), a
DSL allowing for concise and reusable specification of platforms integrated into
a VSP, along with monitoring and adaptation rules governing their behavior.

event RequestFin ished {
request id : I n t e g e r
processing time ms : I n t e g e r

}

event AverageProcessingTime {
processing time ms : I n t e g e r

}

ac t ion DecreaseQual i ty {
amount : Double

}

component App l i ca t i onServer {
emit RequestFin ished
ac t ion DecreaseQual i ty
host vm1
cost 32

}

query AggregateResponseTimes {
from App l i ca t i onServer

event RequestFin ished as e
emit AverageProcessingTime (

avg (e . processing time ms))
window 5 minutes

}

f a c t {
from AverageProcessingTime

}

r u l e DecreaseQualityWhenSlow {
from AverageProcessingTime

as f
when f . processing time ms >

2000
execute App l i ca t i onServer .

DecreaseQual i ty (5)
}

host vm1 { capac i ty 128 }
host vm2 { capac i ty 384 }

Listing 1. Sample system definition

Listing 1 shows a simple definition for a service platform to be integrated
into a VSP. The ‘ApplicationServer’ component emits ‘RequestFinished’ events
after processing requests and supports a ‘DecreaseQuality’ action, which can
be triggered by adaptation rules. Emitted events are processed by the ‘Aggre-
gateResponseTimes’ query, which aggregates them over five minutes, creating an
‘AverageProcessingTime’ event. This event is converted to a fact, which might
trigger ‘DecreaseQualityWhenSlow’ adaptation rule. The physical infrastructure
consists of hosts ‘vm1’ and ‘vm2’. Runtime elements without defined costs are
assigned default values, which are refined at runtime. In the following we will
discuss the most important language constructs of MONINA in more detail.

3.1 Event

Indenica follows an event-based approach. Events are emitted by components to
signal important information. Furthermore, events can be emitted by monitor-

2 Eclipse plugin available at http://dsgvienna.bitbucket.org/indenica

http://dsgvienna.bitbucket.org/indenica

170 C. Inzinger et al.

ing queries as a result of the aggregation or enrichment of one or more source
events. Event declarations start with the event keyword and an event type iden-
tifier. As shown in the figure, an event can contain multiple attributes, defined
by specifying name and type separated by a colon. Currently, supported event
types are a variety of Java types such as String, Integer, and Decimal, and
Map<?,?>.

Since listing all available event types for every application would be a tedious
and error-prone task, we automatically gather emitted event types from known
components to improve reusability and ease of use. This procedure is described
in more detail in Section 3.4.

More formally, we assume that E is the set of all event types, T is the set of
all data types, and each event type E′ ∈ E is composed of event attribute types
E′ = (α1, . . . , αk), αi ∈ T ∀i ∈ {1, . . . , k}. IE denotes the set of monitoring event
instances (or simply events), and each event e ∈ IE has an event type, denoted
t(e) ∈ E. The attribute values contained in event e are represented as a tuple
e = (πα1 (e), . . . , παk

(e)), where παx(e) is the projection operator (from relational
algebra), which extracts the value of some attribute αx from the tuple e.

3.2 Action

Complementary to monitoring events described above, adaptation actions are
another basic language element of MONINA. Adaptation actions are invoked by
adaptation rules and executed by corresponding components to modify their be-
havior. Action declarations start with the action keyword followed by the action
type identifier. Furthermore, actions can take parameters, modeled analogously
to event attributes.

Similar to events, adaptation actions offered by known components do not
need to be specified manually, but are automatically gathered from component
specifications, which is further discussed in Section 3.4.

The symbol A denotes the set of all types of adaptation actions, and each
type A′ ∈ A contains attribute types: A′ = (α1, . . . , αk), αi ∈ T ∀i ∈ {1, . . . , k}.
The set IA stores all action instances (or simply actions) that are issued in
the system. The values of an action a ∈ IA are evaluated using the projection
operator (analogously to event attributes): a = (πα1 (a), . . . , παk

(a)).

3.3 Fact

Facts constitute the knowledge base for adaptation rules and are derived from
monitoring events. A fact incorporates all attributes of the specified source event
for use by adaptation rules. Fact declarations start with the fact keyword and
an optional fact name. A fact must specify a source event type that is used to
derive the fact from. Furthermore, an optional partition key can be supplied. If
the fact name is omitted, the fact will be named after its source event.

Specification and Deployment of Distributed Control Infrastructures 171

The partition key construct is used to enable the creation of facts depend-
ing on certain event attributes, allowing for the concise declaration of multiple
similar facts for different system aspects. For instance, a fact declaration for
the event type ProcessingTimeEvent that is partitioned by the component id

attribute will create appropriate facts for all encountered components, such
as ProcessingTime(Component1), . . . , ProcessingTime(ComponentN). In con-
trast, a fact declaration for the MeanProcessingTimeEvent without partition
key will result in the creation of a single fact representing the system state
according to the attribute values of incoming events.

Formally, a fact f ∈ F is represented as a tuple f = (κ, e), for event e ∈ IE
and partition key κ. The optional partition key κ allows for the simplified cre-
ation of facts concerning specified attributes, to model facts relating to single
system components, using πκ(e), the projection of attribute κ from event e. Al-
ternatively, the type of event e itself acts as the partition key, aggregating all
events of the same type to a single fact.

3.4 Component

A component declaration incorporates all information necessary to integrate
third-party platforms into the Indenica infrastructure. Component declarations
start with the component keyword and a component identifier. A component
specifies all monitoring events it will emit with an optional occurrence frequency,
supported adaptation actions, as well as a reference to the host the component
is deployed to.

As mentioned before, it is usually not necessary to manually specify compo-
nent, action, and event declarations. The Indenica infrastructure provides for
means to automatically gather relevant information from known components
through the control interface shown in Fig. 1.

Formally, components c ∈ C are represented with the signature function3

sig : C → P(A)×P({(ej, νj)|ej ∈ E, νj ∈ R
+
0 })×R

+
0 ×H and the signature for

a component ci is sig(ci) �→ (IAi , Ω
E
i , ψi, hi). The signature function sig extracts

relevant information from the according language construct for later use by the
deployment infrastructure. Monitoring events emitted by the component are
represented by ΩEi , and for each emitted event type ej an according frequency
of occurrence νj is supplied. Adaptation actions supported by the component
are denoted by IAi , its processing cost is represented by ψi, and hi identifies the
host the component is deployed to.

3.5 Monitoring Query

Monitoring queries allow for the analysis, processing, aggregation and enrichment
of monitoring events using CEP techniques. In the context of the Indenica project
we provide a simple query language tailored to the needs of the specific solution.

3 For clarity, we use the same symbol sig for signatures of components (Section 3.4),
monitoring queries (Section 3.5), adaptation rules (3.6), and hosts (Section 3.7).

172 C. Inzinger et al.

A query declaration starts with the query keyword and a query identifier.
Afterwards, an arbitrary number of event sources for the query is specified using
the from and event keywords to specify source components and event types. A
query then specifies any number of event emission declarations, denoted by the
emit keyword followed by the event type and a list of expressions evaluating
the attribute assignments of the event to be emitted. For brevity we omit the
specification of 〈cond-expression〉 clause that represents a SQL-style conditional
expression. Queries can be furthermore designed to operate on event stream win-
dows using the window keyword, specifying either a number of events to create a
batch window or a time span to create a time window. Conditions expressed us-
ing the where keyword are used to limit the query processing to events satisfying
certain conditions, using the conditional expression construct mentioned above.
Finally, queries can optionally indicate the rate of incoming vs. emitted events,
as well as an indication of required processing power. These values are user-
defined estimations in the initial setup, and are adjusted continuously during
runtime to accommodate changes in the environment. In addition to the query
construct presented above, the language infrastructure allows for the integration
of other CEP query languages, such as EQL4 if necessary.

The set of queries qi ∈ Q is represented using the signature sig : Q→ P(E)×
P(E)× R

+
0 × R

+
0 and the signature for a query qi is sig(qi) �→ (IEi , O

E
i , ρi, ψi).

Input and output event stream types are denoted by IEi and OEi respectively,
while ρi represents the ratio of input events processed to output events emitted,
and ψi represents the processing cost of the query.

3.6 Adaptation Rule

Adaptation rules employ a knowledge base consisting of facts to reason on the
current state of the system and modify its behavior when necessary using a
production rule system. A rule declaration starts with the rule keyword and
a rule identifier. After importing all necessary facts using the from keyword,
a rule contains a number of when-statements where the condition evaluates a
〈cond-expression〉 as described above, referencing imported facts, and the then
block specifies a number of adaptation action invocations including any necessary
parameter assignments. Optionally, a rule can indicate processing requirements,
which will be adjusted at runtime.

As with monitoring queries, the adaptation rule module is tailored to the re-
quirements of the Indenica infrastructure but also allows for the usage of different
production rule languages, such as the Drools5 rule language, if more complex
language constructs are required.

Formally, the set of rules ri ∈ R is represented with the signature function
sig : R → P(F) × P(A) × R

+
0 and the signature for a rule ri is sig(ri) �→

(IFi , O
A
i , ψi). The set of facts from the knowledge base used by the adaptation

rule are denoted by IFi , while O
A
i representes the adaptation actions performed,

and ψi represents the processing cost of the rule.

4 http://esper.codehaus.org
5 http://jboss.org/drools

http://esper.codehaus.org
http://jboss.org/drools

Specification and Deployment of Distributed Control Infrastructures 173

3.7 Host

Hosts represent the physical infrastructure available for deployment of runtime
elements, i.e., components, queries, and rules. A host declaration starts with the
host keyword and a host name. An address in the form of a fully qualified domain
name (FQDN) or an IP address can be supplied. If no address is given, the host
name will be used instead. Furthermore, a capacity indicator is provided that
will be used for deployment decisions.

The set of hosts hi ∈ H is represented with the signature function sig : H �→
R

+
0 and the signature for a host hi is sig(hi) �→ (ψi) with the capacity of a host

represented by ψi.

4 Deployment of Monitoring Queries and Adaptation
Rules

In this section, we propose a methodology for efficiently deploying runtime el-
ements for monitoring and adaptation, in line with the definitions provided in
Section 3. Deployment is based on a MONINA definition. The deployment strat-
egy attempts to find an optimal placement with regard to locality of information
producers and consumers, resource usage, network load, and minimum reaction
times. Our deployment procedure consists of three main stages. First, an infras-
tructure graph is generated from the host declarations in the MONINA definition
to create a model of the physical infrastructure. Then, a dependency graph is
derived from component, query, fact, and rule definitions. Finally, a mathemat-
ical optimization problem is formulated based on both graphs, which finds an
optimal deployment scheme.

4.1 Infrastructure Graph

The infrastructure graph GI = (VI , EI) is a directed graph which models the
available infrastructure. Its nodes (VI) represent execution environments. We
will refer to execution environments as hosts, even though they might not only
represent single machines, but more complex execution platforms. The graph’s
edges (EI ⊆ VI × VI) represent the network connection between hosts. The
node capacity function cI : VI → R

+
0 assigns each host its capacity for hosting

runtime elements, e.g., monitoring queries or adaptation rules. A capacity of zero
prohibits any runtime elements on the host. Edge weight function wI : EI →
R

+
0 models the delay between two hosts. Values close to zero represent good

connection. For the sake of convenience we assume that each vertex has a zero
weighted edge to itself. Figure 2a shows an exemplary infrastructure graph.

The infrastructure graph is generated based on a MONINA description, i.e.,
its node set VI is taken from the description file, which also contains the hosts’
physical addresses. The next step is the exploration of the edges based on the
traceroute utility, which is available for all major operating systems. It allows,
amongst others, measuring transit delays. Furthermore, node capacities can be

174 C. Inzinger et al.

49

0

12

85.89

1
.2

.4
9

2.1

0 0

00

1.633.
99

(a) Infrastructure Graph

C1

C2

C3

C4

C5

Q1

Q2

Q3

Q4

F1

F2

F3

F4

R1

R2

(b) Dependency Graph

Fig. 2. Graphs generated from a MONINA description

read by operating system tools to complement missing MONINA values. In Unix-
based operating systems, for instance, the /proc pseudo-filesystem folder pro-
vides information about hardware and its utilization.

4.2 Dependency Graph

Dependency graphs model the dependencies between components, monitoring
queries, facts, and adaptation rules. A dependency graph GD = (VD, ED) is a
directed, weighted graph, whose node set VD = C ∪ Q ∪ F ∪ R is composed of
pairwise disjoint sets C, Q, F , and R. These represent components, queries, facts,
and rules, respectively. Edges represent dependencies between these entities (i.e.,
exchange of events), and weight function wD : ED → R

+
0 quantifies the event

transfer rate along an edge. Another function eD : ED → E maps edges to events
they are based on, where E is the set of event types. Components are event
emitters, which may be consumed by queries or may be converted into a fact
in a knowledge base. Queries consume events from components or other queries
producing new events. Knowledge bases convert certain events into facts. Rule
engines work upon knowledge bases, and trigger rules if respective conditions
become true. Edges link event emitters (components or queries) to respective
event consumers (queries or knowledge bases). They also connect knowledge
bases to rules relying on facts they are managing. Finally, rules are linked to the
components they are adapting, i.e., components in which they trigger adaptation
actions. Thus, the edge set is limited to the following subset ED ⊆ (C × Q) ∪
(C×F)∪ (Q×Q)∪ (Q×F)∪ (F ×R)∪ (R×C). Figure 2b shows an exemplary
dependency graph. Event types and edges weights are omitted for readability.

The generation of a dependency graph is based on a MONINA description.
Initially, the dependency graph GD = (VD, ED) is created as a graph without
any edges, i.e., VD = C ∪ Q ∪ F ∪ R and ED = ∅, where C, Q, F , R are taken

Specification and Deployment of Distributed Control Infrastructures 175

from the MONINA description. Then, edges are added according to the following
edge production rules.

Component → Query. An edge c
ψ−→ q is added to ED for every component

c ∈ C, query q ∈ Q, and event e ∈ (OE ∩ IE), where sig(c) = ((OE , •), •, ψ)
and sig(q) = (IEi , •, •, •). In case an edge c

ψ2−−→ q is supposed to be added

to ED, but ED already contains c
ψ1−−→ q, then the latter is replaced by

c
ψ1+ψ2−−−−→ q. For all following edge production rules we assume that edges

that already exist are merged by adding weights, like here.

Component → Fact. An edge c
ψ−→ f is added to ED for every component

c ∈ C, fact f ∈ F , and event e ∈ OE , where sig(c) = ((OE , •), •, ψ) and
f = (•, e).

Query → Query. An edge q1
ρ−→ q2 is added to ED for all queries q1, q2 ∈ Q

and event e ∈ (OE ∩ IE), where q1 �= q2, sig(q1) = (•, OE , ρ, •) and sig(q) =
(IEi , •, •, •).

Monitoring Query → Fact. An edge q
ρ−→ f is added to ED for every query

q ∈ Q, fact f ∈ F , and event e ∈ OE , where sig(q) = (•, OE , ρ, •) and
f = (•, e).

Fact → Adaptation Rule. An edge f → r is added to ED for every fact
f ∈ F and adaptation rule r ∈ R, where f ∈ IF and sig(r) = (IF , •, •).

Adaptation Rule → Component. An edge r → c is added to ED for every
adaptation rule r ∈ R and component c ∈ C, where a ∈ (OA ∩ IA), sig(r) =
(•, OA, •) and sig(c) = (IA, •, •).

4.3 Quadratic Programming Problem Formulation

Quadratic programming [2] is a mathematical optimization approach, which al-
lows to minimize/maximize a quadratic function subject to constraints. Assume
that x,b, c,d ∈ R

n are column vectors, and Q ∈ R
n×n is a symmetric matrix.

Then, a quadratic programming problem can be defined as follows.

min
x

f(x) = 1
2x

TQx+ cTx

Subject to

Ex = d (Equality constraint)

Ax ≤ b (Inequality constraint)

We want to achieve an optimal mapping of the dependency graph onto the in-
frastructure graph. Runtime entities described in the dependency graph that
depend on each other should be as close as possible, in the best case running on
the same host. This results in fast reactions, timely adaptations, and low network
overhead. On the other hand, hosts have capacity restrictions, which have to be
considered. Adding more hosts (scaling out) is often the only possibility to cope
with growing load. Our mapping approach is able to find the optimal tradeoff

176 C. Inzinger et al.

between the suboptimal strategies (1) putting everything on the same host and
(2) evenly/randomly distribute runtime elements among the available hosts.

Since we want to get a mapping from the optimization process, we introduce
placement variables pvI ,vD for each host vI ∈ VI in the infrastructure graph and
each runtime element vD ∈ VD in the dependency graph. Each of these variables
has a binary domain, i.e., pvI ,vD ∈ {0, 1}. The assignment pvI ,vD = 1 decodes
that runtime element vD is hosted on vI , pvI ,vD = 0 stands for vD is not running
on host vI . This results in |VI | · |VD| binary variables, whose aggregation can be
represented as a single vector p ∈ {0, 1}|VI|·|VD |.

To find out the optimal mapping of the dependency graph onto the infras-
tructure, we solve the following optimization problem, which can be classified as
binary integer quadratic programming problem, based on the form of variable p
and the function to minimize.

min
p

∑

eI∈EI

wI(eI) ·
∑

eD∈ED

wD(eD) · pv1I ,v1D · pv2I ,v2D (1)

Subject to

∀c ∈ C : ph(c),c = 1 (2)

∀vD ∈ VD :
∑

vI∈VI

pvI ,vD = 1 (3)

∀vI ∈ VI :
∑

vD∈VD

pvI ,vD · cD(vD) ≤ cI(vI) (4)

The function to minimize (1) calculates for each edge eI = (v1I , v
2
I) in the in-

frastructure graph and each edge eD = (v1D, v
2
D) the weight that incurs if this

particular dependency edge is mapped to this particular infrastructure edge. If
both runtime elements (v1D and v2D) are mapped to the same node no weight is
added to the function, because all self-links have weight zero. The first equal-
ity constraint (2) fixes the mapping for every component c ∈ C ⊆ VD to the
hosts they are statically assigned to, as defined in MONINA and represented
by h(c), where sig(c) = (•, •, •, h). We assume that components are bound to
hosts. If there exist components that can be deployed on any host and do not
have an assignment in MONINA, then this can be handled by simply omitting
the respective contraint for this component. The second equality constraint (3)
defines that each node from the dependency graph is mapped to exactly one
node in the infrastructure graph. Finally, the inequality constraint (4) requires
that for all hosts the summarized costs of all elements they are hosting is less
than the respective capacity. The function cD : VD → R

+
0 represents the costs

of executing a runtime element vD, as defined in the MONINA description.
We use Gurobi [5] for solving the optimization problem as described above.

Due to space restrictions we cannot give results of runtime analyses in this paper.
For problem sizes typically considered in INDENICA (5-15 hosts, 5-50 runtime
elements) the optimization process usually takes less than 10 seconds on a regular
laptop computer.

Specification and Deployment of Distributed Control Infrastructures 177

5 Related Work

The query operator placement problem in the context of complex event process-
ing has received considerable attention in the past. To the best of our knowledge,
none of these approaches explicitly consider adaptation and the according effi-
cient placement of derived facts and adaptation rules. Also, operator networks
usually are either trees or acyclic graphs, in contrast to our dependency graphs.

Some of the previous research is discussed in the following. An approach for
minimizing network usage and managing resource consumption in sensor net-
works by moving query operators is presented in [14]. The work in [1] discusses
algorithms for distributed placement of operator trees in wide area networks
based on a distributed hash table structure. Another distributed operator place-
ment for wide area networks using an overlay network is presented in [10], fo-
cussing on continuous cost optimization by migrating operators. The approach
in [13] utilizes a decentralized algorithm based on negotiation between nodes for
operator placement in heterogeneous CEP at runtime, minimizing the number
of migrations. In [6], dynamic migration of processing elements is used as the
basis for optimized multi-query execution in stream processing platforms.

Previous work in monitoring and adaptation of distributed heterogeneous
systems deals with various aspects, such as establishing and monitoring SLAs
(e.g., [4]), efficient rule generation (e.g., [9]), and adaptations based on QoS-
requirements (e.g., [3]). However, there are no approaches that consider the ef-
ficient placement of monitoring and adaptation rules themselves, but rely on
manual initial placement or human intervention.

Machine learning approaches can be used to automatically generate or im-
prove adaptation rules based on the feedback the system is providing following
their execution [8,7]. Adaptation rules based on the condition-action scheme are
a popular technique used to control systems. However, for some complex sys-
tems the enumeration of all conditions, e.g., all possible types of failures, is often
impracticable. Also, the actions to recover the system can become too tedious
to be specified manually. Automated planning allows to automatically compute
plans on top of a knowledge base following predefined objectives, and helps to
enable goal-driven management of computer systems [12,11].

6 Conclusion

In this paper we introduce a domain-specific language that allows to integrate
functionality provided by different components and to define monitoring and
adaptation functionality. We assume that monitoring is carried out by complex-
event processing queries, while adaptation is performed by condition action rules
performed on top of a distributed knowledge base. However, our approach can
be applied to other forms of control mechanisms with dependencies among func-
tionality blocks. In future work we will present experiments in order to quantify
the deployment performance relative to the size of infrastructure and elements to
deploy. We also plan to integrate the capability to migrate elements at runtime
to adapt according to more precise knowledge and changing environments.

178 C. Inzinger et al.

Acknowledgement. The research leading to these results has received funding
from the European Commission’s Seventh Framework Programme [FP7/2007-
2013] under grant agreement 257483 (Indenica).

References

1. Ahmad, Y., Çetintemel, U.: Network-aware query processing for stream-based ap-
plications. In: International Conference on Very Large Data Bases (VLDB 2004),
pp. 456–467 (2004)

2. Bazaraa, M.S., Sherali, H.D., Shetty, C.M.: Nonlinear Programming: Theory and
Algorithms, 2nd edn. Wiley (2006)

3. Cardellini, V., Casalicchio, E., Grassi, V., Lo Presti, F., Mirandola, R.: Qos-driven
runtime adaptation of service oriented architectures. In: European Software Engi-
neering Conference (ESEC 2009). ACM (2009)

4. Comuzzi, M., Kotsokalis, C., Spanoudakis, G., Yahyapour, R.: Establishing and
Monitoring SLAs in Complex Service Based Systems. In: International Conference
on Web Services (ICWS 2009), pp. 783–790. IEEE (2009)

5. Gurobi Optimization, Inc.: Gurobi optimizer reference manual (2012),
http://www.gurobi.com

6. Hummer, W., Leitner, P., Satzger, B., Dustdar, S.: Dynamic Migration of Process-
ing Elements for Optimized Query Execution in Event-Based Systems. In: Meers-
man, R., Dillon, T., Herrero, P., Kumar, A., Reichert, M., Qing, L., Ooi, B.-C.,
Damiani, E., Schmidt, D.C., White, J., Hauswirth, M., Hitzler, P., Mohania, M.
(eds.) OTM 2011, Part II. LNCS, vol. 7045, pp. 451–468. Springer, Heidelberg
(2011)

7. Inzinger, C., Hummer, W., Satzger, B., Leitner, P., Dustdar, S.: Towards Identify-
ing Root Causes of Faults in Service Orchestrations. In: International Symposium
on Reliable Distributed Systems (SRDS 2012). IEEE (2012)

8. Inzinger, C., Satzger, B., Hummer, W., Leitner, P., Dustdar, S.: Non-Intrusive
Policy Optimization for Dependable and Adaptive Service-Oriented Systems. In:
Symposium on Applied Computing (SAC 2012), pp. 504–510. ACM (2012)

9. Jung, G., Joshi, K.R., Hiltunen, M.A., Schlichting, R.D., Pu, C.: Generating Adap-
tation Policies for Multi-tier Applications in Consolidated Server Environments. In:
International Conference on Autonomic Computing (ICAC 2008), pp. 23–32 (2008)

10. Pietzuch, P., Ledlie, J., Shneidman, J., Roussopoulos, M., Welsh, M., Seltzer, M.:
Network-Aware Operator Placement for Stream-Processing Systems. In: Interna-
tional Conference on Data Engineering (ICDE 2006), p. 49. IEEE (2006)

11. Satzger, B., Kramer, O.: Goal distance estimation for automated planning using
neural networks and support vector machines. Natural Computing (2012)

12. Satzger, B., Pietzowski, A., Trumler, W., Ungerer, T.: Using Automated Planning
for Trusted Self-organising Organic Computing Systems. In: Rong, C., Jaatun,
M.G., Sandnes, F.E., Yang, L.T., Ma, J. (eds.) ATC 2008. LNCS, vol. 5060, pp.
60–72. Springer, Heidelberg (2008)

13. Schilling, B., Koldehofe, B., Rothermel, K.: Efficient and Distributed Rule Place-
ment in Heavy Constraint-Driven Event Systems. In: International Conference on
High Performance Computing and Communications (HPCC 2011), pp. 355–364
(2011)

14. Srivastava, U., Munagala, K., Widom, J.: Operator placement for in-network
stream query processing. In: Symposium on Principles of Database Systems (PODS
2005), pp. 250–258 (2005)

http://www.gurobi.com

	Specification and Deployment of Distributed Monitoring and Adaptation Infrastructures
	Introduction
	Scenario
	MONINA Language
	Event
	Action
	Fact
	Component
	Monitoring Query
	Adaptation Rule
	Host

	Deployment of Monitoring Queries and Adaptation Rules
	Infrastructure Graph
	Dependency Graph
	Quadratic Programming Problem Formulation

	Related Work
	Conclusion
	References

