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Abstract. We present an illative system Is of classical higher-order
logic with subtyping and basic inductive types. The system Is allows for
direct definitions of partial and general recursive functions, and provides
means for handling functions whose termination has not been proven.
We give examples of how properties of some recursive functions may be
established in our system. In a technical appendix to the paper we prove
consistency of Is. The proof is by model construction. We then use this
construction to show conservativity of Is over classical first-order logic.
Conservativity over higher-order logic is conjectured, but not proven.

1 Introduction

We present an illative λ-calculus system Is of classical higher-order logic with
subtyping and basic inductive types. Being illative means that the system is a
combination of higher-order logic with the untyped λ-calculus. It therefore allows
for unrestricted recursive definitions directly, including definitions of possibly
non-terminating partial functions. We believe that this feature of Is makes it
potentially interesting as a logic for an interactive theorem prover intended to
be used for program verification.
In order to ensure consistency, most popular proof assistants allow only total

functions, and totality must be ensured by the user, either by very precise spec-
ifications of function domains, restricting recursion in a way that guarantees
termination, explicit well-foundedness proofs, or other means. There are vari-
ous indirect ways of dealing with general recursion in popular theorem provers
based on total logics. There are also many non-standard logics allowing partial
functions directly. We briefly survey some related work in Sect. 5.
In Sect. 2 we introduce the system Is. Our approach builds on the old tradition

of illative combinatory logic [1,2,3]. This tradition dates back to early inconsis-
tent systems of Shönfinkel, Church and Curry proposed in the 1920s and the
1930s [2]. However, after the discovery of paradoxes most logicians abandoned
this approach. A notable exception was Haskell Curry and his school, but not
much progress was made in establishing consistency of illative systems strong
enough to interpret traditional logic. Only in the 1990s some first-order illative
system were shown consistent and complete for traditional first-order logic [1,4].
The system Is, in terms of the features it provides, may be considered an ex-
tension of the illative system Iω from [3]. We briefly discuss the relationship
between Is and Iω in Sect. 5.
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Because Is is based on the untyped λ-calculus, its consistency is obviously
open to doubt. In an appendix we give a proof by model construction of con-
sistency of Is. Unfortunately, the proof is too long to fit within the page limits
of a conference paper. In Sect. 3 we give a general overview of the proof. The
model construction is similar to the one from [3] for the traditional illative sys-
tem Iω . It is extended and adapted to account for additional features of Is. To
our knowlege Is is the first higher-order illative system featuring subtypes and
some form of induction, for which there is a consistency proof.
In Sect. 4 we provide examples of proofs in Is indicating possible applications

of our approach to the problem of dealing with partiality, non-termination and
general recursion in higher-order logic. We are mainly interested in partiality
arising from non-termination of non-well-founded recursive definitions.
For lack of space we omit proofs of the lemmas and theorems we state. The

proofs of non-trivial results are in technical appendices to this paper. The ap-
pendices may be found in [5].

2 The Illative System

In this section we present the system Is of illative classical higher-order logic
with subtyping and derive some of its basic properties.

Definition 1. The system Is consists of the following.
– A countably infinite set of variables Vs = {x, y, z, . . .} and a set of con-
stants Σs.
– The set of sorts S = {Type,Prop}.
– The set of basic inductive types TI is defined inductively by the rule: if
ι1,1, . . . , ι1,n1 , . . . , ιm,1, . . . , ιm,nm ∈ TI ∪ {�} then

μ(〈ι1,1, . . . , ι1,n1〉, . . . , 〈ιm,1, . . . , ιm,nm〉) ∈ TI
where m ∈ N+ and n1, . . . , nm ∈ N.
– We define the sets of constructors C, destructors D, and tests O as follows.
For each ι ∈ TI of the form

ι = μ(〈ι1,1, . . . , ι1,n1〉, . . . , 〈ιm,1, . . . , ιm,nm〉) ∈ TI
where ιi,j ∈ TI ∪{�}, the set C contains m distinct constants cι1, . . . , cιm. The
number ni is called the arity of cιi, and 〈ιi,1, . . . , ιi,ni〉 is its signature. With
each cιi ∈ C of arity ni we associate ni distinct destructors dιi,1, . . . , d

ι
i,ni

∈ D
and one test oιi ∈ O. When we use the symbols cιi, oιi and dιi,j we implicitly
assume that they denote the constructors, tests and destructors associated
with ι. When it is clear from the context which type ι is meant, we use the
notation ι∗i,j for ιi,j if ιi,j �= �, or for ι if ιi,j = �.
– The set of Is-terms T is defined by the following grammar.

T ::= Vs | Σs | S | C | D | O | TI | λVs .T | (TT) | Is | Subtype | Fun |
∀ | ∨ | ⊥ | ε | Eq | Cond

We assume application associates to the left and omit spurious brackets.
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– We identify α-equivalent terms, i.e. terms differing only in the names of
bound variables are considered identical. We use the symbol ≡ for identity
of terms up to α-equivalence. We also assume that all bound variables in a
term are distinct from the free variables, unless indicated otherwise.1

– In what follows we use the abbreviations:

t1 : t2 ≡ Is t1 t2

{x : α | ϕ} ≡ Subtypeα (λx . ϕ)

α → β ≡ Funαβ

∀x : α . ϕ ≡ ∀α (λx . ϕ)

∀x1, . . . , xn : α . ϕ ≡ ∀x1 : α . . . . ∀xn : α . ϕ

ϕ ⊃ ψ ≡ ∀x : {y : Prop | ϕ} . ψ where x, y /∈ FV (ϕ, ψ)

¬ϕ ≡ ϕ ⊃ ⊥

 ≡ ⊥ ⊃ ⊥

ϕ ∨ ψ ≡ ∨ϕψ
ϕ ∧ ψ ≡ ¬(¬ϕ ∨ ¬ψ)

∃x : α . ϕ ≡ ¬∀x : α .¬ϕ

We assume that ¬ has the highest precedence.
– The system Is is given by the following rules and axioms, where Γ is a finite
set of terms, t, ϕ, ψ, α, β, etc. are arbitrary terms. The notation Γ, ϕ is a
shorthand for Γ ∪ {ϕ}. We use Greek letters ϕ, ψ, etc. to highlight that a
term is to be intuitively interpreted as a proposition, and we use α, β, etc.
when it is to be interpreted as a type, but there is no a priori syntactic
distinction. All judgements have the form Γ � t where Γ is a set of terms
and t a term. In particular, Γ � t : α is a shorthand for Γ � Is t α.

Axioms
1: Γ, ϕ � ϕ
2: Γ � Eq t t
3: Γ � Prop : Type
4: Γ � ι : Type for ι ∈ TI
5: Γ � oιi(cιit1 . . . tni) if c

ι
i ∈ C has arity ni

6: Γ � ¬(oιi(cιjt1 . . . tnj )) if i �= j and cιj ∈ C has arity nj

7: Γ � Eq (dιi,k(c
ι
it1 . . . tni)) tk for k = 1, . . . , ni, if cιi ∈ C has arity ni

⊥t: Γ � ⊥ : Prop
c: Γ � ∀p : Prop . p ∨ ¬p
β: Γ � Eq ((λx . t1)t2) (t1[x/t2])

Rules

∀i :
Γ � α : Type Γ, x : α � ϕ x /∈ FV (Γ, α)

Γ � ∀x : α . ϕ

1 So e.g. in the axiom β the free variables of t2 do not become bound in t1[x/t2].
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∀e :
Γ � ∀x : α . ϕ Γ � t : α

Γ � ϕ[x/t]

∀t :
Γ � α : Type Γ, x : α � ϕ : Prop x /∈ FV (Γ, α)

Γ � (∀x : α . ϕ) : Prop

∃i :
Γ � α : Type Γ � t : α Γ � ϕ[x/t]

Γ � ∃x : α . ϕ

∃e :
Γ � ∃x : α . ϕ Γ, x : α, ϕ � ψ x /∈ FV (Γ, ψ, α)

Γ � ψ

∨i1 :
Γ � ϕ

Γ � ϕ ∨ ψ
∨i2 :

Γ � ψ
Γ � ϕ ∨ ψ

∨e :
Γ � ϕ1 ∨ ϕ2 Γ, ϕ1 � ψ Γ, ϕ2 � ψ

Γ � ψ

∨t :
Γ � ϕ : Prop Γ � ψ : Prop

Γ � (ϕ ∨ ψ) : Prop

∧e1 :
Γ � ϕ ∧ ψ
Γ � ϕ

∧e2 :
Γ � ϕ ∧ ψ
Γ � ψ

⊃t2:
Γ � (ϕ ⊃ ψ) : Prop

Γ � ϕ : Prop
⊥e :

Γ � ⊥
Γ � ϕ

→i:
Γ � α : Type Γ, x : α � t : β x /∈ FV (Γ, α, β)

Γ � (λx . t) : α → β

→e:
Γ � t1 : α→ β Γ � t2 : α

Γ � t1t2 : β
→t:

Γ � α : Type Γ � β : Type

Γ � (α → β) : Type

si :
Γ � {x : α | ϕ} : Type Γ � t : α Γ � (λx . ϕ)t x /∈ FV (α)

Γ � t : {x : α | ϕ}

se :
Γ � t : {x : α | ϕ}

Γ � ϕ[x/t]
set :

Γ � t : {x : α | ϕ}
Γ � t : α

st :
Γ � α : Type Γ, x : α � ϕ : Prop x /∈ FV (α)

Γ � {x : α | ϕ} : Type

εi :
Γ � ∃x : α .

Γ � (εα) : α

pi :
Γ � ϕ

Γ � ϕ : Prop

c1 :
Γ � ϕ

Γ � Eq (Condϕ t1 t2 ) t1
c2 :

Γ � ¬ϕ
Γ � Eq (Condϕ t1 t2 ) t2

c3 :
Γ, ϕ � Eq t1 t

′
1 Γ � ϕ : Prop

Γ � Eq (Condϕ t1 t2 ) (Condϕ t
′
1 t2 )

c4 :
Γ,¬ϕ � Eq t2 t

′
2 Γ � ϕ : Prop

Γ � Eq (Condϕ t1 t2 ) (Condϕ t1 t
′
2 )

c5 :
Γ � ϕ : Prop

Γ � Eq (Condϕ t t ) t
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eq :
Γ � ϕ Γ � Eqϕϕ′

Γ � ϕ′ eq-sym :
Γ � Eq t1 t2

Γ � Eq t2 t1

eq-trans :
Γ � Eq t1 t2 Γ � Eq t2 t3

Γ � Eq t1 t3

eq-cong-app :
Γ � Eq t1 t

′
1 Γ � Eq t2 t

′
2

Γ � Eq (t1t2) (t
′
1t

′
2)

eq-λ-ξ :
Γ � Eq t t′ x /∈ FV (Γ )

Γ � Eq (λx . t) (λx . t′)

iιi :

Γ, x1 : ι∗i,1, . . . , xni : ι
∗
i,ni

, txji,1 , . . . , txji,ki � t(cιix1 . . . xni)

for i = 1, . . . ,m

Γ � ∀x : ι . tx

where x, x1, . . . , xni /∈ FV (Γ, t), cι1, . . . , c
ι
m ∈ C are all constructors associ-

ated with ι ∈ TI , and ji,1, . . . , ji,ki is an increasing sequence of all indices
1 ≤ j ≤ ni such that ιi,j = �

iι,kt :
Γ � tj : ι∗k,j for j = 1, . . . , nk

Γ � (cιkt1 . . . tnk
) : ι

For an arbitrary set of terms Γ , we write Γ �Is ϕ if there exists a finite subset
Γ ′ ⊆ Γ such that Γ ′ � ϕ is derivable in the system Is. We drop the subscript
when irrelevant or obvious from the context.

Lemma 1. If Γ � ϕ then Γ, ψ � ϕ.

Lemma 2. If Γ � ϕ then Γ [x/t] � ϕ[x/t], where Γ [x/t] = {ψ[x/t] | ψ ∈ Γ}.

2.1 Representing Logic

The inference rules of Is may be intuitively justified by appealing to an infor-
mal many-valued semantics. A term t may be true, false, or something entirely
different (“undefined”, a program, a natural number, a type, . . . ). By way of an
example, we explain an informal meaning of some terms:

– t : Prop is true iff t is true or false,
– α : Type is true iff α is a type,
– t : α is true iff t has type α, assuming α is a type,
– ∀x : α.ϕ is true iff α is a type and for all t of type α, ϕ[x/t] is true,
– ∀x : α.ϕ is false iff α is a type and there exists t of type α such that ϕ[x/t]
is false,
– t1 ∨ t2 is true iff t1 is true or t2 is true,
– t1 ∨ t2 is false iff t1 is false and t2 is false,
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– t1 ⊃ t2 is true iff t1 is false or both t1 and t2 are true,
– t1 ⊃ t2 is false iff t1 is true and t2 is false,
– ¬t is true iff t is false,
– ¬t is false iff t is true.
Obviously, Γ � t is then (informally) interpreted as: for all possible substitution
instances Γ ∗, t∗ of Γ, t, 2 if all terms in Γ ∗ are true, then the term t∗ is also true.
Note that the logical connectives are “lazy”, e.g. for t1∨t2 to be true it suffices

that t1 is true, but t2 need not have a truth value at all – it may be something
else: a program, a type, “undefined”, etc. This laziness allows us to omit many
restrictions which would otherwise be needed in inference rules, and would thus
make the system less similar to ordinary logic.
The following rules may be derived in Is.

⊃i:
Γ � ϕ : Prop Γ, ϕ � ψ

Γ � ϕ ⊃ ψ
⊃e:

Γ, ϕ � ψ Γ � ϕ
Γ � ψ

⊃t:
Γ � ϕ : Prop Γ, ϕ � ψ : Prop

Γ � (ϕ ⊃ ψ) : Prop
∧i :

Γ � ϕ Γ � ψ
Γ � ϕ ∧ ψ

Note that in general the elimination rules for ∧ and the rules for ∃ cannot be
derived from the rules for ∨ and ∀, because we would not be able to prove the
premise ϕ : Prop when trying to apply the rule ⊃i. It is instructive to try to
derive these rules and see where the proof breaks down.
In Is the only non-standard restriction in the usual inference rules for logical

connectives is the additional premise Γ � ϕ : Prop in the rule ⊃i. It is cer-
tainly unavoidable, as otherwise Curry’s paradox may be derived (see e.g. [1,2]).
However, we have standard classical higher-order logic if we restrict to terms of
type Prop, in the sense that the natural deduction rules then become identical
to the rules of ordinary logic. This is made more precise in Sect. 3 where a sound
translation from a traditional system of higher-order logic into Is is described.
Note that we have the law of excluded middle only in the form ∀p : Prop . p∨¬p.

Adding Γ � ϕ ∨ ¬ϕ as an axiom for an arbitrary term ϕ gives an inconsistent
system.3

It is well-known (see e.g. [6, Chapter 11]) that in higher-order logic all logical
connectives may be defined from ∀ and ⊃. One may therefore wonder why we
take ∨ and ⊥ as primitive. The answer is that if we defined the connectives
from ∀ and ⊃, then the inference rules that could be derived for them would
need to contain additional restrictions.

2.2 Equality, Recursive Definitions and Extensionality

It is well-known (see e.g. [7, Chapters 2, 6]) that since untyped λ-terms are
available together with the axiom β and usual rules for equality, any set of
2 To be more precise, for every possible substitution of terms for the free variables
of Γ, t we perform this substitution on Γ, t, denoting the result by Γ ∗, t∗.

3 By defining (see the next subsection) ϕ = ¬ϕ one could then easily derive ⊥ using
the rule ∨e applied to ϕ ∨ ¬ϕ.
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equations of the form {zix1 . . . xm = Φi(z1, . . . , zn, x1, . . . , xm) | i = 1, . . . , n}
has a solution for z1, . . . , zn, where Φi(z1, . . . , zn, x1, . . . , xm) are arbitrary terms
with the free variables listed. In other words, there exist terms t1, . . . , tn such that
for any terms s1, . . . , sm we have � Eq (tis1 . . . sm) (Φi(t1, . . . , tn, s1, . . . , sm))
for each i = 1, . . . , n.
We will often define terms by such equations. In what follows we freely use

the notation t1 = t2 for � Eq t1 t2 , or for Γ � Eq t1 t2 when it is clear which Γ
is meant. We use t1 = t2 = . . . = tn to indicate that Eq ti ti+1 may be derived
for i = 1, . . . , n− 1. We also write a term of the form Eq t1 t2 as t1 = t2.
In Is there is no rule for typing the equality Eq. One consequence is that

� ¬(Eq t1 t2 ) cannot be derived for any terms t1, t2.4 For this reason Eq is more
like a meta-level notion of equality.

Definition 2. Leibniz equality Eql is defined as:

Eql ≡ λαλxλy.∀p : α → Prop . px ⊃ py

As with =, we often write t1 =α t2 to denote � Eqlα t1 t2 or Γ � Eqlα t1 t2 , or
write t1 =α t2 instead of Eqlα t1 t2 .

Lemma 3. If Γ � α : Type then

– Γ � ∀x, y : α . (x =α y) : Prop,
– Γ � ∀x : α . (x =α x),
– Γ � ∀x, y : α . (x =α y) ⊃ (y =α x),
– Γ � ∀x, y, z : α . (x =α y) ∧ (y =α z) ⊃ (x =α z).

The system Is, as it is stated, is intensional with respect to Leibniz equality. We
could add the rules

ef :
Γ � α : Type Γ � β : Type

∀f1, f2 : α→ β . (∀x : α . f1x =β f2x) ⊃ (f1 =α→β f2)

eb :
Γ � ϕ1 ⊃ ϕ2 Γ � ϕ2 ⊃ ϕ1

Γ � ϕ1 = ϕ2

to obtain an extensional variant eIs of Is. The system eIs is still consistent –
the model we construct for Is validates the above rules.

Lemma 4. �eIs ∀x, y : Prop . (x =Prop y) ⊃ (x = y)

2.3 Induction and Natural Numbers

The system Is incorporates basic inductive types. In accordance with the termi-
nology from [8], an inductive type is basic if its constructors have no functional
arguments. This class of inductive types includes most simple commonly used
inductive types, e.g. natural numbers, lists, finite trees.

4 We mean this in a precise sense. This follows from our model construction.
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Lemma 5. If cιi ∈ C of arity ni has signature 〈ι1, . . . , ιni〉 then �Is c
ι
i : ι∗1 →

. . .→ ι∗ni
→ ι.

Lemma 6. �Is o
ι
i : ι→ Prop and �Is ∀x : ι . oιix ⊃ (dιi,jx : ι∗i,j)

Lemma 7. If ι ∈ TI then �Is ∀x, y : ι . x =ι y ⊃ x = y.

We may define the type of natural numbers by Nat ≡ μ(〈〉, 〈�〉). We use the
abbreviations: 0 ≡ cNat

1 (zero), 0 ≡ oNat
1 (test for zero), s ≡ cNat

2 (successor) and
p ≡ λx .Cond (0x) 0 (dNat

2,1 x) (predecessor). The rules i
Nat
i and iNat,k

t become:

ni :
Γ � t0 Γ, x : Nat, tx � t(sx) x /∈ FV (Γ, t)

Γ � ∀x : Nat . tx

n1
t :

Γ � 0 : Nat
n2
t :

Γ � t : Nat
Γ � (st) : Nat

To simplify the exposition, we discuss some properties of our formulation of
inductive types using the example of natural numbers. Much of what we say
applies to other basic inductive types, with appropriate modifications.
The rule ni is an induction principle for natural numbers. An important prop-

erty of this induction principle is that it places no restrictions on t. This allows
us to prove by induction on natural numbers properties of terms about which
nothing is known beforehand. In particular, we do not need to know whether t
has a β-normal form in order to apply the rule ni to it. In contrast, an induction
principle of the form e.g.

n′
i : ∀f : Nat → Prop . ((f0 ∧ (∀x : Nat . fx ⊃ f(sx))) ⊃ ∀x : Nat . fx)

would be much less useful, because to apply it to a term t we would have to prove
t : Nat → Prop beforehand. Examples of the use of the rule ni for reasoning about
possibly nonterminating general recursive programs are given in Sect. 4.
The operations +, −, ·, < and ≤, usually used in infix notation, may be

defined by recursive equations. It is possible to derive all Peano axioms.

Lemma 8. The following terms are derivable in Is:

– ∀x, y : Nat . (x+ y) : Nat, ∀x, y : Nat . (x− y) : Nat, ∀x, y : Nat . (x · y) : Nat,
– ∀x, y : Nat . (x ≤ y) : Prop, ∀x, y : Nat . (x < y) : Prop.

The next theorem shows that any function for which there exists a measure on
its arguments, which may be shown to decrease with every recursive call in each
of a finite number of exhaustive cases, is typable in our system.

Theorem 1. Suppose Γ � ∀x1 : α1 . . . ∀xn : αn . ϕ1∨. . .∨ϕm, Γ � αj : Type for
j = 1, . . . , n, and for i = 1, . . . ,m: Γ � ∀x1 : α1 . . . ∀xn : αn . ti : β → . . . → β
where β occurs ki+1 times, Γ � ∀x1 : α1 . . . ∀xn : αn . ti,j,k : αk for j = 1, . . . , ki,
k = 1, . . . , n, x1, . . . , xn /∈ FV (f, α1, . . . , αn, β) and



Partiality and Recursion in Higher-Order Logic 185

Γ � ∀x1 : α1 . . . ∀xn : αn . ϕi ⊃ (fx1 . . . xn =

ti(fti,1,1 . . . ti,1,n) . . . (fti,ki,1 . . . ti,ki,n)).

If there is a term g such that Γ � g : α1 → . . .→ αn → Nat and for i = 1, . . . ,m

Γ � ∀x1 : α1 . . . ∀xn : αn . ϕi ⊃ (((fx1 . . . xn) : β) ∨
((gti,1,1 . . . ti,1,n) < (gx1 . . . xn) ∧ . . . ∧
(gti,ki,1 . . . ti,ki,n) < (gx1 . . . xn)))

where x1, . . . , xn /∈ FV (g), then Γ � f : α1 → . . .→ αn → β.

3 Conservativity and Consistency

In this section we show a sound embedding of ordinary classical higher-order
logic into Is, which we also conjecture to be complete. We have a completeness
proof only for a restriction of this embedding to first-order logic. We also give a
brief overview of the model construction used to establish consistency of Is.
First, let us define the system CPREDω of classical higher-order logic.

– The types of CPREDω are given by T ::= o | B | T → T where B is a
specific finite set of base types. The type o is the type of propositions.
– The set of terms of CPREDω of type τ , denoted Tτ , is defined as follows:

• Vτ , Στ ⊆ Tτ ,
• if t1 ∈ Tσ→τ and t2 ∈ Tσ then t1t2 ∈ Tτ ,
• if x ∈ Vτ1 and t ∈ Tτ2 then λx : τ1 . t ∈ Tτ1→τ2 ,
• if ϕ, ψ ∈ To then ϕ ⊃ ψ ∈ To,
• if x ∈ Vτ and ϕ ∈ To then ∀x : τ . ϕ ∈ To,
where for each τ ∈ T the set Vτ is a set of variables and Στ is a set of
constants. We assume that the sets Vτ and Σσ are all pairwise disjoint. We
write xτ for a variable xτ ∈ Vτ . Terms of type o are formulas.
– The system CPREDω is given by the following rules and axioms, where Δ
is a finite set of formulas, ϕ, ψ are formulas.

Axioms
• Δ,ϕ � ϕ
• Δ � ∀p : o . ((p ⊃ ⊥) ⊃ ⊥) ⊃ p where ⊥ ≡ ∀p : o . p
Rules

⊃P
i :

Δ,ϕ � ψ
Δ � ϕ ⊃ ψ

⊃P
e :

Δ � ϕ ⊃ ψ Δ � ϕ
Δ � ψ

∀Pi :
Δ � ϕ

Δ � ∀xτ .ϕ
xτ /∈ FV (Δ) ∀Pe :

Δ � ∀xτ .ϕ
Δ � ϕ[xτ/t]

t ∈ Tτ

convP :
Δ � ϕ ϕ =β ψ

Δ � ψ
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In CPREDω, we define Leibniz equality in type τ ∈ T by

t1 =τ t2 ≡ ∀p : τ → o . pt1 ⊃ pt2.

The system CPREDω is intensional. An extensional variant E-CPREDω may be
obtained by adding the following axioms for all τ, σ ∈ T :

ePf : ∀f1, f2 : τ → σ . (∀x : τ . f1x =σ f2x) ⊃ (f1 =τ→σ f2)

ePb : ∀ϕ1, ϕ2 : o . ((ϕ1 ⊃ ϕ2) ∧ (ϕ2 ⊃ ϕ1)) ⊃ (ϕ1 =o ϕ2)

For an arbitrary set of formulas Δ we write Δ �S ϕ if ϕ is derivable from a
subset of Δ in system S.
We now define a mapping �−� from types and terms of CPREDω to terms

of Is, and a mapping Γ (−) from sets of terms of CPREDω to sets of terms of Is.
We assume B ⊆ Σs, Στ ⊆ Σs and Vτ ⊆ Vs for τ ∈ T .

– �τ� = τ for τ ∈ B,
– �o� = Prop,
– �τ1 → τ2� = �τ1� → �τ2� for τ1, τ2 ∈ T ,
– �c� = c if c ∈ Στ for some τ ∈ T ,
– �x� = x if x ∈ Vτ for some τ ∈ T ,
– �t1t2� = �t1��t2�,
– �λx : τ . t� = λx . �t�,
– �ϕ ⊃ ψ� = �ϕ� ⊃ �ψ�,
– �∀x : τ . ϕ� = ∀x : �τ� . �ϕ�.

By �Δ� we denote the image of �−� on Δ. The set Γ (Δ) is defined to contain:

– x : �τ� for all τ ∈ T and all x ∈ FV (Δ) such that x ∈ Vτ ,
– c : �τ� for all τ ∈ T and all c ∈ Στ ,
– τ : Type for all τ ∈ B,
– y : τ for all τ ∈ B and some y ∈ Vτ such that y /∈ FV (Δ).

Theorem 2. If Δ �CPREDω ϕ then Γ (Δ,ϕ), �Δ� �Is �ϕ�. The same holds if we
change CPREDω to E-CPREDω and Is to eIs.

The above theorem shows that Is may be considered an extension of ordinary
higher-order logic, obtained by relaxing typing requirements on allowable λ-
terms. Type-checking is obviously undecidable in Is, but the purpose of types
in illative systems is not to have a decidable method for syntactic correctness
checks, but to provide general means for classifying terms into various categories.

Conjecture 1. If Γ (Δ,ϕ), �Δ� �Is �ϕ� then Δ �CPREDω ϕ. The same holds if we
change CPREDω to E-CPREDω and Is to eIs.

We prove this conjecture only for first-order logic. The system of classical first-
order logic (FOL) is obtained by restricting CPREDω in obvious ways.

Theorem 3. If I = Is or I = eIs then: Δ �FOL ϕ iff Γ (Δ,ϕ), �Δ� �I �ϕ�.
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Theorem 4. The systems Is and eIs are consistent, i.e. ��Is ⊥ and ��eIs ⊥.

We now give an informal overview of the model construction. To simplify the
exposition we pretend Is allows only function types. Other types add some
technicalities, but the general idea of the construction remains the same.
An Is-model is defined as a λ-model (see e.g. [7, Chapter 5]) with designated

elements interpreting the constants of Is, satisfying certain conditions. By �t�M

we denote the interpretation of the Is-term t in a modelM, and · is the appli-
cation operation in the model. The conditions imposed on an Is-model express
the meaning of each rule of Is according to the intuitive semantics. For instance,
we have the condition:

(∀�) for a ∈ M, if �Is�M · a · �Type�M = �
�M and for all c ∈ M such that
�Is�M · c · a = �
�M we have b · c = �
�M then �∀�M · a · b = �
�M.

We show that the semantics based on Is-models is sound for Is. Then it suffices
to construct a non-trivial Is-model to establish consistency of Is. The model
will in fact satisfy additional conditions corresponding to the rules ef and eb, so
we obtain consistency of eIs as well.
The model is constructed as the set of equivalence classes of a certain rela-

tion ∗⇔ on the set of so called semantic terms. A semantic term is a well-founded
tree whose leaves are labelled with variables or constants, and whose internal
nodes are labelled with ·, λx or Aτ . For semantic terms with the roots labelled
with · and λx we use the notation t1t2 and λx.t. A node labelled with Aτ ,
where τ is a set of constants, “represents” the statement: for all c ∈ τ , tc is
true. Such a node has one child for each c ∈ τ . The relation ∗⇔ is defined as the
equivalence relation generated by a certain reduction relation ⇒ on semantic
terms. The relation ⇒ will satisfy5: (λx.t1)t2 ⇒ t1[x/t2], ∨
t ⇒ 
, ∨⊥⊥ ⇒ ⊥,
etc. The question is how to define ⇒ for ∀t1t2 so that the resulting structure
satisfies (∀�). One could try closing⇒ under the rule: if Is t1 Type ∗⇒ 
 and for
all t such that Is t t1

∗⇒ 
 we have t2t ∗⇒ 
, then ∀t1t2 ⇒ 
. However, there is
a negative reference to ⇒ here, so the definition would not be monotone, and
we would not necessarily reach a fixpoint. This is a major problem. We need to
know the range of all quantifiers beforehand. However, the range (i.e. the set of
all semantic terms t such that t1t

∗⇒ 
) depends on the definition of ⇒, so it is
not at all clear how to achieve this.
Fortunately, it is not so difficult to analyze a priori the form of types of Is.

Informally, if t : Type is true, then t corresponds to a set in T , where T is defined
as follows, ignoring subtypes and inductive types.

– Bool ∈ T where Bool = {
,⊥}.
– If τ1, τ2 ∈ T then ττ12 ∈ T , where ττ12 is the set of all set-theoretic functions
from τ1 to τ2.

We take the elements of T and
⋃
T \Bool as fresh constants, i.e. they may occur

as constants in semantic terms. The elements of
⋃
T are canonical constants. If

5 Substitution is defined for semantic terms in an obvious way, avoiding variable
capture.
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c ∈ ττ12 and c1 ∈ τ1 then we write F(c)(c1) instead of c(c1) to avoid confusion
with the semantic term cc1. We then define a relation � satisfying:

– c � c for a canonical constant c,
– if c ∈ ττ12 and for all c1 ∈ τ1 there exists a semantic term t′ such that
tc1

∗⇒ t′ � F(c)(c1), then t � c.

Intuitively, t � c ∈ τ holds if c “simulates” t in type τ , i.e. t behaves exactly
like c in every context where a term of type τ is “expected”.
The relation⇒ is then defined by transfinite induction in a monotone way. It

will satisfy e.g.:

– if t � c ∈ τ ∈ T then Is t τ ⇒ 
,
– if t � c1 ∈ τ1 and c ∈ ττ12 then ct⇒ F(c)(c1),
– Fun τ1 τ2 ⇒ ττ12 ,
– ∀τt ⇒ t′ where the label at the root of t′ is Aτ , and for each c ∈ τ , t′ has a
child tc,
– t ⇒ 
 if the label of the root of t is Aτ , and all children of t are labelled
with 
,
– if tc

∗⇒ t′c for all c ∈ τ ∈ T , the label of the root of t is Aτ , and {tc | c ∈ τ}
is the set of children of t, then t ⇒ t′, where the label of the root of t′ is Aτ
and {t′c | c ∈ τ} is the set of children of t′.

We removed negative references to⇒, but it is not easy to show that the resulting
model satisfies the required conditions. Two key properties established in the
correctness proof are: 1.⇒ has the Church-Rosser property, and 2. if t2 � c and
t1c

∗⇒ d ∈ {
,⊥} then t1t2 ∗⇒ d. The second property shows that quantifying
over only canonical constants of type τ is in a sense equivalent to quantifying
over all terms of type τ . This is essential for establishing e.g. the condition (∀�).
Both properties have intricate proofs. Essentially, the proofs show certain com-

mutation and postponement properties for ⇒, � and other auxiliary relations.
The proofs proceed by induction on lexicographic products of various ordinals
and other parameters associated with the relations and terms involved.

4 Partiality and General Recursion

In this section we give some examples of proofs in Is of properties of functions
defined by recursion. For lack of space, we give only informal indications of how
formal proofs may be obtained, assuming certain basic properties of operations
on natural numbers. The transformation of the given informal arguments into
formal proofs in Is is not difficult. Mostly complete formal proofs may be found
in a technical appendix.

Example 1. Consider a term subp satisfying the following recursive equation:

subp = λij .Cond (i =Nat j) 0 ((subp i (j + 1)) + 1) .
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If i ≥ j then subp i j = i − j. If i < j then subp i j does not terminate. An
appropriate specification for subp is ∀i, j : Nat . (i ≥ j) ⊃ (subp x = i− j).
Let ϕ(y) = ∀i : Nat . ∀j : Nat . (i ≥ j ⊃ y =Nat i− j ⊃ subp i j = i− j). We

show by induction on y that ∀y : Nat . ϕ(y).
First note that under the assumptions y : Nat, i : Nat, j : Nat it follows

from Lemma 8 that (i ≥ j) : Prop and (y =Nat i − j) : Prop. Hence, whenever
y : Nat, to show i ≥ j ⊃ y =Nat i − j ⊃ subp i j = i − j it suffices to derive
subp i j = i− j under the assumptions i ≥ j and y =Nat i− j. By Lemma 7 the
assumption y =Nat i− j may be weakened to y = i− j.
In the base step it thus suffices to show subp i j = i−j under the assumptions

i : Nat, j : Nat, i ≥ j, i − j = 0. From i − j = 0 we obtain 0(i − j), so j ≥ i.
From i ≥ j and i ≤ j we derive i =Nat j. Then subp i j = i − j follows by
simple computation (i.e. by applying rules for Eq and appropriate rules for the
conditional).
In the inductive step we have ϕ(y) for y : Nat and we need to obtain ϕ(sy). It

suffices to show subp i j = i− j under the assumptions i : Nat, j : Nat and sy =
i− j. Because sy �=Nat 0 we have i �=Nat j, hence subp i j = s(subp i (sj)) follows
by computation. Using the inductive hypothesis we now conclude subp i (sj) =
i − (sj), and thus subp i (sj) =Nat i − (sj) by reflexivity of =Nat on natu-
ral numbers. Then it follows by properties of operations on natural numbers
that s(subp i (sj)) =Nat i− j. By Lemma 7 we obtain the thesis.
We have thus completed an inductive proof of ∀y : Nat . ϕ(y). Now we use

this formula to derive subp i j = i − j under the assumptions i : Nat, j : Nat,
i ≥ j. Then it remains to apply ⊃i and ∀i twice.
In the logic of PVS [9] one may define subp by specifying its domain precisely

using predicate subtypes and dependent types, somewhat similarly to what is
done here. However, an important distinction is that we do not require a do-
main specification to be a part of the definition. Because of this, we may easily
derive ϕ ≡ ∀i, j : Nat . ((subp i j = i− j) ∨ (subp j i = j − i)). This is not pos-
sible in PVS because the formula ϕ translated to PVS generates false proof
obligations [9].

Example 2. The next example is a well-known “challenge” posed by McCarthy:

f(n) = Cond (n > 100) (n− 10) (f(f(n+ 11)))

For n ≤ 101we have f(n) = 91, which fact may be proven by induction on 101−n.
This function is interesting because of its use of nested recursion. Termination
behavior of a nested recursive function may depend on its functional behavior,
which makes reasoning about termination and function value interdependent.
Below we give an indication of how a formal proof of ∀n : Nat . n ≤ 101 ⊃
f(n) = 91 may be derived in Is. Lemma 8 is used implicitly with implication
introduction.
Let ϕ(y) ≡ ∀n : Nat . n ≤ 101 ⊃ 101 − n ≤ y ⊃ f(n) = 91. We prove ∀y :

Nat . ϕ(y) by induction on y. In the base step we need to prove f(n) = 91 under
the assumptions n : Nat, n ≤ 101 and 101 − n ≤ y = 0. We have n =Nat 101,
hence n = 101, and the thesis follows by simple computation.
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In the inductive step we distinguish three cases: 1. n+11 > 101 and n < 101,
2. n + 11 > 101 and n ≥ 101, 3. n + 11 ≤ 101. We need to prove f(n) = 91
under the assumptions of the inductive hypothesis y : Nat, ∀m : Nat .m ≤ 101 ⊃
101−m ≤ y ⊃ f(m) = 91, and of n : Nat, n ≤ 101 and 101− n ≤ (sy).
We treat only the third case, other cases being similar. From 101− n ≤ s(y)

we infer 101 − (n + 11) ≤ y. Since n + 11 ≤ 101 we conclude by the inductive
hypothesis that f(n + 11) = 91. Because n + 11 ≤ 101, so n ≤ 100, and by
definition we infer f(n) = f(f(n+11)) = f(91). Now we simply compute f(91) =
f(f(102)) = f(92) = f(f(103)) = . . . = f(100) = f(f(111)) = f(101) = 91 (i.e.
we apply rules for Eq and Cond an appropriate number of times).
This concludes the inductive proof of ∀y : Nat . ∀n : Nat . n ≤ 101 ⊃ 101−n ≤

y ⊃ f(n) = 91. Having this it is easy to show ∀n : Nat . n ≤ 101 ⊃ f(n) = 91.
Note that the computation of f(91) in the inductive step relies on the fact that

in our logic values of functions may always be computed for specific arguments,
regardless of what we know about the function.

5 Related Work

In this section we discuss the relationship between Is and the traditional illative
system Iω . We also briefly survey some approaches to dealing with partiality
and general recursion in proof assistants. A general overview of the literature
relevant to this problem may be found in [10].

5.1 Relationship with Systems of Illative Combinatory Logic

In terms of the features provided, the system Is may be considered an extension
of Iω from [3], which is a direct extension of IΞ from [1] to higher-order logic.
The ideas behind Iω date back to [11], or even earlier as far as the general form
of inference rules is concerned.
However, there are some technical differences between Is and traditional illa-

tive systems. For one thing, traditional systems strive to use as few constants and
rules as possible. For instance, Iω has only two primitive constants, disregarding
constants representing base types. Because of this in Iω e.g. Is = λxy . yx and
Prop = λx .Type(λy.x), using the notation of the present paper. Moreover, the
names of the constants and the notations employed are not in common use to-
day. We will not explain these technicalities in any more detail. The reader may
consult [2,1,3] for more information on illative combinatory logic.
Below we briefly describe a system I ′

ω which is a variant of Iω adapted to
our notation. It differs somewhat from Iω , mostly by taking more constants as
primitive. The terms of I ′

ω are those of Is, except that we do not allow subtypes,
inductive types, Eq, Cond, ∨, ⊥ and ε. There are also additional constants: ω
(the type of all terms), ε (the empty type) and ⊃. The axioms are: Γ, ϕ � ϕ,
Γ � Prop : Type, Γ � ε : Type, Γ � ω : Type, Γ � t : ω. The rules are: ∀i, ∀e,
∀t, ⊃i, ⊃e, ⊃t, →i, →e, →t, pi, and the rules:
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conv :
Γ � ϕ ϕ =β ψ

Γ � ψ
ε⊥ :

Γ � t : ε
Γ � ⊥

→p:
Γ � α : Type Γ, x : α � ((tx) : β) : Prop x /∈ FV (Γ, t)

Γ � (t : α→ β) : Prop

5.2 Partiality and Recursion in Proof Assistants

Perhaps the most common way of dealing with recursion in interactive theorem
provers is to impose certain syntactic restrictions on the form of recursive def-
initions so as to guarantee well-foundedness. Well-foundedness of definitions is
then checked by a built-in automatic syntactic termination checker. Some sys-
tems, e.g. ACL2 or PVS, pass the task of proving termination to the user. Such
systems require that a well-founded relation or a measure be given with each
recursive function definition. Then the system generates so called proof obliga-
tions, to be shown by the user, which state that the recursive calls are made on
smaller arguments.
The method of restricting possible forms of recursive definitions obviously

works only for total functions. If a function does not in fact terminate on some
elements of its specified domain, then it cannot be introduced by a well-founded
definition. One solution is to use a rich type system, e.g. dependent types com-
bined with predicate subtyping, to precisely specify function domains so as to
rule out the arguments on which the function does not terminate. This approach
is adopted by PVS [9].
A different approach to dealing with partiality and general recursion is to

use a special logic which allows partial functions directly. Systems adopting this
approach are often based on variants of the logic of partial terms of Beeson [12,13].
For instance, the IMPS interactive theorem prover [14] uses Farmer’s logic PF of
partial functions [15], which is essentially a variant of the logic of partial terms
adapted to higher-order logic.
The above gives only a very brief overview. There are many approaches to

the problem of partiality and general recursion in proof assistants, most of which
we didn’t mention. We do not attempt here to provide a detailed comparison
with a multitude of existing approaches or give in-depth arguments in favor of
our system. For such arguments to be entirely convincing, they would need to be
backed up by extensive experimentation in proving properties of sizable programs
using our logic. No such experimentation has been undertaken. In contrast, our
interest is theoretical.

6 Conclusion

We have presented a system Is of classical higher-order illative λ-calculus with
subtyping and basic inductive types. A distinguishing characteristic of Is is that
it is based on the untyped λ-calculus. Therefore, it allows recursive definitions
of potentially non-terminating functions directly. The inference rules of Is are
formulated in a way that makes it possible to apply them even when some of
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the terms used in the premises have not been proven to belong to any type.
Additionally, our system may be considered an extension of ordinary higher-
order logic, obtained by relaxing the typing restrictions on allowable λ-terms.
We believe these facts alone make it relevant to the problem of partiality and
recursion in proof assistants, and the system at least deserves some attention.
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