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Abstract. 3D representation of real objects surfaces can be used in ap-
plications of computer graphics, medicine, geoinformatics, etc. We con-
sider a problem of measure introducing for comparing of point clouds
acquired by different scanning acts and types of scanners and designing
of computationally efficient algorithms for their computing. The solu-
tion supposes estimation of disparity measure for the fixed position and
search of such position that the measure is minimal by solving optimiza-
tion problem of surface matching. The algorithm for efficient localization
of mesh nodes in a Delaunay triangulation is proposed. As the applica-
tions several problems of 3D face model analysis were considered.

Keywords: Discrete surface model, Delaunay triangulation, Euclidean
minimum spanning tree, computational geometry, 3D face image.

1 Introduction

Information obtained from a 3D scanner after scanning of an objects’s surface is
usually presented as a discrete set of nodes with three-dimensional coordinates
and represents a discrete model of a surface. The concepts of connectivity, topol-
ogy, or continuous surface are not specified explicitly for such set. On basis of
this set one can receive triangulated polygonal surface model [1], which will be
a continuous model of a surface.

A literature review of existing techniques for single-valued surface modelling
showed that there are two basic approaches to represent such surfaces: definition
at the nodes of the regular or irregular meshes. A two-dimensional (plane) mesh
is a set of mutually connected geometric elements (nodes, edges, and cells). The
mesh nodes represent a finite set of points on the plane. Both approaches have
their advantages and disadvantages. Method using an irregular mesh allows to
adapt to the required accuracy of the surface description and does not contribute
redundancy, which increases computing resources, to the source data.

Often during comparison of two surfaces it is assumed that for each node
of one surface point there is the corresponding node of the second surface. This
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assumption implies definition of surfaces at the same discrete set of nodes. Initial
surface objects acquired by three-dimensional scanning, have irregular structure.
During the transforming stage from the original irregular data to regular mesh
one face the challenge of choosing the optimal size for size of mesh cell, which
leads to inefficiency of the approach.

The majority of the existing measures for comparing surfaces can be calculated
directly if both surfaces are defined at the nodes of some common mesh. However,
such measures do not allow extension to the case of surfaces defined on different
meshes without the stage of transition to regular meshes. There are measures
that can easily be generalized to the case of two different meshes, but their
calculation in this case has a quadratic complexity.

The existing methods for mapping the surfaces can be divided into two classes:
a. Surface adjustment based on calculation of distances between points in the

three-dimensional space, which has a large computer complexity.
b. Recalculation of the original data in a regular two-dimensional mesh, which

leads to description redundancy and also to significant increase in computational
complexity.

It follows that the problem of developing of new computationally efficient
algorithms for comparison of surfaces represented as point clouds, preserving
the original irregular meshes remains actual at present.

The paper is organized as follows. A literature review of the problem for com-
parison of point clouds is given in section 2. The proposed approach for surface
comparison is given in section 3. The proposed method of mesh localization in
Delaunay triangulation presented in Section 4. Section 5 presents some applied
problems for 3D face image analysis considered by the author. Conclusion is
given in section 6.

2 Related Work

As it was stated above, many existing approaches for point cloud comparison use
the transformation of initial irregular meshes to the common regular mesh [2], [3],
[4] (see Fig. 1). After such transformation the approaches of surface comparison
and matching for regular sets of nodes [5] can be applied.

During the transformation we face the problem of choosing the optimal step
for a regular mesh, which leads to a significant amount of calculations to achieve
an acceptable accuracy of the approximation surface and inefficiency. In this
paper we propose a method for comparing surfaces with preservation of the
original irregularity of meshes.

The most of existing methods is assumed that for each single node of the first
surface there is the corresponding node on the second surface [6], [7]. There are
methods based on a comparison of feature descriptions [8].

One of the basic algorithms for surface matching is the algorithm of iterative
closest points — ICP, proposed in [6], [9], [7]. The algorithm uses an iterative
procedure to minimize the average distance between two point clouds. This re-
quires an initial rough estimate of converting one cloud to another, which is
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Fig. 1. Transformation of the irregular mesh to the regular one (adoption of illustration
from [4])

gradually refined in the process of minimization. For two given point clouds S1

and S2 the algorithm finds the transformation from S1 into S2.
The ICP algorithm can be used to align the images of the same object ob-

tained from different angles, which has common areas — regions of overlap. This
assumes that there are pairs of closest points such that distances between them
are less than a threshold in the regions of overlap. If some ”wrong” pairs which
do not belong to the region of overlap are included in a list of pairs of closest
point, it will negatively affect to the results of the algorithm.

Let {(s1i , s2i )}Ni=1 be a set of pairs of closest points for S1 and S2. During the
algorithm procedure the average distance between the point clouds S1 and S2 is
minimized:

E =
1

N

N∑

i=1

d(s1i , s
2
i ) → min, (1)

where d(·, ·) is the Euclidean distance between two points.
To calculate the distance between the point s1 ∈ S1 and the cloud of points S2

in the original version of the algorithm [6] the ”point-to-point” distance was used:

ρ(s1, S2) = min
s2∈S2

d(s2, s1). (2)

Metric (2) uses discrete surface models.
In [9] ”point-to-plane” distance was proposed, the use of which implies that

at each point of S1 and S2 normal to the surfaces specified by point clouds S1

and S2, respectively, is known. Such information may be given initially, or cal-
culated by averaging the normals of the adjacent triangles using triangulates
polygonal approximation of the surface. In this case it the sum of squared dis-
tances between s1i and plane P 2

i , perpendicular to S2 at s2i over all pairs of
nearest points (s1i , s

2
i ) will be minimized:

E =

N∑

i=1

H2(s1i , P
2
i ) → min, (3)

where H(s, P ) — Euclidean distance between s and plane P .
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General iterative scheme of the algorithm is the following:

1. Search of pairs of points (s1i , s
2
i ), i = 1, N for the current mutual position

of S1 and S2.
2. Search of the transformation (parameters of translations and rotations) of

point cloud S1, reduces error E (1) and (3) using the least squares method.
If the change of the error E is below a certain threshold, the algorithm
terminates.

3. Application of the transformation found at the previous step to convert point
cloud S1. Transition to Stage 1.

Stages 1 — 3 are repeated while the reduction of the error exceeds a certain
threshold value. The result is the final position of point cloud S1.

Influence of ”wrong” pairs of closest points is smaller for ”point-to-plane”
distance. But the disadvantage of the ”point-to-plane” distance is that it is
highly dependent on the initial relative position of S1 and S2 [10].

The main advantage of the ICP algorithm is its simple implementation, the
disadvantage is a strong dependence on the initial approximation of objects, the
computational complexity associated with search of all pairs of closest points
of {(s1i , s2i )}Ni=1.

Let N1, N2 be the numbers of points in initial point cloud S1, S2, respectively.
Then using a simple implementation the estimation of computational complexity
of such search is O(N1N2), i.e. is quadratic if N1 ≈ N2. Using more complex
data structures — for example, k-d trees [11] — the search can be carried out
in a time O(N1 logN2) . Thus, the total number of operations required to find
pairs of closest points in m iterations is O(mN1 logN2).

Large number of papers is devoted to various improvements of the algorithm:
— Modification of methods for selecting the region of overlap and pairs of

closest points (for example, by introducing limitations to the class of motions
that take one point to another [12], using the theory of random quantities [13],
k-d trees [11], [7], genetic algorithms [14]);

— Introducing weights for pairs of closest points [15];
— Modification of the equation for the distance between two points [16], [17];
— Modification of the equation for the error to be minimized [18] and mini-

mization procedure [17].
The drawback of the such improvements is their complexity, tuning to a spe-

cific experimental data, which reduces the robustness of the algorithms.
In [19] the problem of comparison of the surfaces for one and the same object,

defined on different sets of points was considered. The distance from a point of
one surface to the other surface was calculated along the normal to the second
surface splines. Such measure is interesting because it does not require a reduc-
tion of the source data to common mesh. But the complexity of this approach
is quadratic.

Such measures as, e.g., the average distance between the heights that can
be directly calculated by recalculation of two surfaces at the nodes of common
mesh, do not allow extensions to the case of their definition at two different
meshes without the stage of transformation to regular meshes.
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In [20] a surface matching algorithm based on minimizing the similarity mea-
sure between them was proposed. The compared surface S1 and S2 are con-
sidered as objects of linear space, and the similarity measure ρ(S1, S2) is the
norm ‖S1 − S2‖ in this space. Let surface X be represented by triangulated
piecewise linear model of N triangles, ci — centroid of i-th triangle, ni” — nor-
mal vector to i - th triangle, the length of which is equal to the area of the
triangle. The norm of surface X is introduced as

‖X‖ =
N∑

i=1

N∑

j=1

(ni, nj)e
−|ci−cj|2/σ2

. (4)

Let the initial surfaces S1, S2 be represented by triangulated piecewise linear
model of N1, N2 triangles, respectively; c1i (c

2
i ) — centroid of i-th triangle of

surface S1(S2), n
1
i (n

2
i ) — normal vector to i-th triangle of surface S1(S2), whose

length is equal to the area of the triangle. The similarity measure proposed
in [20], is defined as follows:

ρ(S1, S2) =

N1∑

i=1

N1∑

j=1

(n1
i , n

1
j)e

−|c1i−c1j |2/σ2

+

N2∑

i=1

N2∑

j=1

(n2
i , n

2
j)e

−|c2i−c2j |2/σ2−

− 2

N1∑

i=1

N2∑

j=1

(n1
i , n

2
j)e

−|c1i−c2j |2/σ2

= ‖S1 − S2‖.
(5)

Further, the value of the measure (5) is minimized by quickest descent method.
The disadvantage of this approach is the quadratic complexity of similarity mea-
sure calculating.

3 Approach to Comparison of Point Clouds

The general formulation of the problem is the following: there exist two surfaces
determined by the height functions at two finite sets of points; it is necessary to
calculate some measure of similarity (or difference) between them.

Let T1, T2, and T be the Delaunay triangulations [21] constructed on the
sets of nodes of the meshes g1 and g2 and the common mesh g = g1 ∪ g2,
respectively. Then T is a common, or united, Delaunay triangulation. Let us
denote by Conv(g) the convex hull of mesh g. It is assumed that the initial
meshes consist of non-intersecting sets of nodes.

3.1 Proposed Measures

A measure for comparing surfaces determined by single-valued functions at the
nodes of different non-regular triangulation meshes was proposed in [22]. The
sum of volumes of the difference between the functions over all triangles of T
was calculated in order to determine the measure. In this case, the values of
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the initial functions f1 and f2 represented the surfaces were interpolated at the
points of the opposite mesh using the localization of the triangulations T1 and
T2 in each other. As a result of interpolation, we obtain the continuous functions
f̂1 and f̂2 determined on the set Conv(g) for which f̂1 = f1, f̂2 = f2 at the nodes
of g1, g2, respectively. Let μ(x, y) ≥ 0 be the function determining the weight
of the difference of the surfaces at the point (x, y). It is assumed that μ(x, y) is
defined and finite at all points of Conv(g) and is equal to zero beyond Conv(g).

Let us introduce the weighted volume of the difference between the surfaces
in the triangular region,

Vμ(A,B,C, f1, f2) =

∫∫

�ABC

∣∣f̂1(x, y)− f̂2(x, y)
∣∣μ(x, y) dxdy. (6)

For μ = 1, the volume Vμ is the metric L1 for the interpolated initial functions
f1 and f2 on � ABC. Let us denote by SConv(g) the area of the convex hull of
set g, which is equal to the sum of areas of all triangles of the triangulation of
set g. The following measure was proposed for comparison of surfaces:

ρVµ(f1, f2) =
∑

�ABC∈T

Vμ(A,B,C, f1, f2)/SConv(g), (7)

Summing in (7) takes place over all triangles in T .
The proposed measure can be adapted for each particular application by in-

troducing the function μ.
In [23] special measure ρdV for case when two initial surface models have

different level of detalization was proposed.

3.2 Surface Comparison Algorithm

An approach proposed for surface comparison and calculating measured is as
follows: Delaunay triangulations are constructed on both meshes, then each of
the functions is interpolated with respect to the other mesh, which is followed
by the construction of the common triangulation for the two meshes. Then at
each point of the merged meshes the values of the two functions are known,
and operations can be performed on individual faces (triangles) of the common
triangulation analyzing the mutual arrangement of the spatial triangles defined
by the functions. Therefore, the developed algorithm is based on the idea of
supplementing the values of each function in the nodes of the other mesh by
constructing the Delaunay triangulation and their localization in each other.

Let us present main stages of the algorithm Aρ for calculating measure ρ:

1. Construction of Delaunay triangulations T1, T2;
2. Construction of minimal spanning trees of Delaunay triangulations;
3. Localization of each of meshes g1, g2 in the triangulation constructed on the

other mesh;
4. Interpolation of each of two functions f1, f2 on the mesh that the other

function defined on;
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5. Construction of the common triangulation T (see the linear merging method
proposed in [24]);

6. Comparison of the functions on the separate cells of triangulation T (calcu-
lating measure ρ).

3.3 Computational Complexity

The numerical complexity of algorithm Aρ is O(n logn), where n is the total
number of points of mesh g. It was proved that in case of Delaunay triangula-
tions T1 and T2 are constructed at the preprocessing stage, the expected time to
compute measure ρVµ is O(n). At the same time in the mentioned conditions the
numerical complexity of calculating measure ρdV is O(n) in the worst case (see
the proof in [23]). The key stage of the algorithm that influenced on running
time is the stage of mesh localization. The problem of computational complexity
of stage 3 will be considered in Section 4.

3.4 Surface Matching

The numerical complexity of one calculation of the measure is important be-
cause in applications it is required to calculate the measure several times during
iteration process of surface matching. Influence of non-efficient calculation of the
measure will increase on each iteration step.

The matching problem, or the problem of spatial alignment of surfaces, con-
sists in transition of several images of the considered object to one global coor-
dinate system (see Fig. 2). Such transition consists in transformation of images
using translations along and rotations about the coordinate axes. If we consider
transformation parameters that do not derive Delaunay triangulations of the
initial meshes from the class of triangulations, the proposed approach allows to
implement surface matching in time O(mn) using m iterations. In this case we
need O(n log n) time for preprocessing stage to construct Delaunay triangula-
tions.

4 Mesh Localization in Delaunay Triangulation

The well-known geometric search problem of point location in a Delaunay tri-
angulation is formulated as follows: given a point Q and a Delaunay triangula-
tion T , it is required to declare the triangle of T containing Q. One of the most
fast methods to solve this problem (in general case) has O(logN) computational
complexity and O(N) memory usage, where N is the number of nodes in T [25].

Let g be a plane mesh of N1 nodes and T2 be a Delaunay triangulation con-
structed on N2 nodes. In the problem of mesh nodes localization in a Delau-
nay triangulation it is required to solve point location problem for each node
of g. Then the unstructured mass query of N1 nodes can be processed by
time O(N1 logN2).



54 N. Dyshkant

Fig. 2. Matching of facial models

We show how the Delaunay triangulation constructed on the nodes of g can be
used for acquisition of more efficient solution. The proposed method is based on
Euclidean minimum spanning trees (MST) of given Delaunay triangulation [21]
which can be constructed in linear time. There is approach for point location
problem that uses ”walk along a line” strategy [26]. The idea of the approach
consists in gradual transition from some initial point M of known location to
source point Q along the straight line (MQ). During each transition step chang-
ing on adjacent (neighboring by edge) triangle is implemented. After such stage
is finished, a location path consisting of adjacent triangulation triangles is con-
structed. Case of belonging of a certain node of T2 to segment [MQ] is a case of
a special interest.

In the proposed method for mesh localization, locations paths pass along the
edges of the MST. As a spanning tree does not contain cycles and passes through
all points of the mesh g, the algorithm will work correctly: it does not loop and
performs location of all mesh nodes.

In this work we prove that in case of uniform distribution for nodes of tri-
angulation T2 and mesh g the average case complexity of the method is linear
bymax(N1, N2). Using the results of Kostuk for average edge length in Delaunay
triangulation [27] and of Bose and Devroye for average number of intersections
between MST and line segment [28], we show that

Lemma 1. Suppose g1, g2 are plane meshes with the numbers of nodes N1, N2,
respectively, N1/N2 ≤ c = const, and the sets of nodes of the both meshes
uniformly distributed uniformly in a rectangular area. Then, the average number
of intersections between the MST for nodes of g1 and edges of the Delaunay
triangulation constructed on g2 is linear by N2.

Theorem 1. Under the conditions of lemma 1, the algorithm for localization of
mesh g1 in the Delaunay triangulation constructed on the set of nodes of g2, on
basis of the MST of g1 has the average case complexity O

(
max(N1, N2)

)
.

The proof of lemma 1 and theorem 1 is omitted.
The assumption of uniform distribution of mesh nodes is appropriate for the

majority of practical applications.
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In the worst case the mesh localization is not linear. We consider method for
construction of simulated example shows that the worst case complexity of the
proposed method is quadratic.

In [24] the problem of merging of unseparated Delaunay triangulations were
studied: given two Delaunay triangulations T1 and T2 constructed on sets g1
and g2, respectively, with intersected convex hulls, it is required to construct the
united Delaunay triangulation T . We say that a triangle of T is an interface
triangle if it joins nodes from the both sets g1, g2.

By N denote the total number of nodes in the sets g1, g2. We consider the
problem of identifying of all interface triangles of T . Using the idea proposed
by Mestetskiy and Tsarik for merging of overlapping Delaunay triangulations
in [24], we propose the solution of this problem and show that

Theorem 2. All interface triangles of T can be extracted in linear time by N .

The theorem 2 allows to receive the following result:

Theorem 3. Localization of nodes from g1 in a Delaunay triangulation con-
structed on g2 on basis of the list of all interface triangles can be performed
in O(N) in the worst case.

The theorems 1 and 3 were theoretically proved and experimentally verified. Ex-
periments for estimation of computational complexity were performed on model
(see Fig. 3) and real data.

Fig. 3. Graph N/t — N , where N ≈ N1 ≈ N2 — the number of nodes in initial meshes,
t — time for mutual localization of nodes of two Delaunay triangulations

5 Applied Problems of 3D Face Image Analysis

As the applications of the proposed methods several problems of 3D face analysis
were considered:
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– quantitative estimation of facial asymmetry based on comparison of the facial
model and the reflected one [29];

– 3D model segmentation on static and dynamic regions by 3D model video
sequence on example of chewing process [31]. The idea of estimating the mo-
tion parameters of the lower jaw consists in the conditional subdivision of
each model of the video sequence into the upper (static) and lower (dynamic)
parts and construction for each of the parts of special local coordinate sys-
tems of its own.The transformation of the lower system of coordinates into
the upper one for every frame of the video sequence describes the dynamics of
the lower jaw motion. The formal description of the motion is represented in
the form of matrices of the lower coordinates transformation into the upper
ones;

– construction of combined spatial model of face and jaws for orthodontics
using reference object, i.e. object that allows to define geometric relationship
of other objects connected with it [32];

– accuracy estimation of 3D model reconstruction methods [33];
– comparison of facial models acquired by scanners of different accuracy [23];
– quantitative estimation of facial skin condition for research in cosmetol-

ogy [30].

The initial data for mentioned applications were acquired by 3D scanner Broad-
way designed by Artec Group Company (see [34]). Each face model was nor-
malized in the coordinate system in a special way (transition to a standard
coordinate system of a model). Facial models were considered as single-valued
surfaces.

The experiments performed on facial model database confirmed the correct-
ness and computational efficiency of the proposed methods.

6 Conclusions

Measures for comparing discrete models of surfaces determined at the nodes of
different triangulation meshes and the approach for their calculation have been
proposed. Several problems of face model analysis were considered as applica-
tions of the proposed methods. The proposed approach was theoretically justified
and confirmed by multiple computational experiments on 3D face data.

References

1. Grise, G., Meyer-Hermann, M.: Surface reconstruction using Delaunay triangula-
tion for applications in life sciences. Computer Physics Communications 182(4),
967–977 (2011)

2. Szymczak, A., Rossignac, J., King, D.: Piecewise regular meshes: Construction and
compression. Graphical Models 64(3-4), 183–198 (2002)

3. Gu, X., Gortler, S.J., Hoppe, H.: Geometry images. In: SIGGRAPH Conference
Proceedings, pp. 355–361 (2002)



Comparison of Point Clouds Acquired by 3D Scanner 57

4. Alliez, P., Ucelli, G., Gotsman, C., Attene, M.: Recent Advances in Remeshing of
Surfaces. In: Shape Analysis and Structuring: Mathematics and Visualization, pp.
53–82 (2008)

5. Cignoni, P., Roccini, C., Scopigno, R.: Metro: measuring error on simplified sur-
faces. Computer Graphics Forum 17(2), 167–174 (1998)

6. Besl, P., McKay, H.: A method for registration of 3-d shapes. IEEE Transactions
on Pattern Analysis and Machine Intelligence 14(2), 239–256 (1992)

7. Zhang, Z.: Iterative point matching for registration of freeform curves and surfaces.
International Journal of Computer Vision 13(2), 119–152 (1994)

8. Fan, T., Medioni, G., Nevatia, R.: Recognizing 3D objects using surface descrip-
tions. IEEE PAMI 11(11), 1140–1157 (1989)

9. Chen, Y., Medioni, G.: Object modelling by registration of multiple range images.
Image and Vision Computing 10(3), 145–155 (1992)

10. Gelfand, N., Ikemoto, L., Rusinkiewicz, S., Levoy, M.: Geometrically Stable Sam-
pling for the ICP Algorithm. In: Fourth International Conference on 3D Digital
Imaging and Modeling, pp. 260–267 (2003)

11. Friedman, J.H., Bentley, J.L., Finkel, R.A.: An Algorithm for Finding Best Matches
in Logarithmic Expected Time. ACM Transactions on Mathematical Software 3(3),
209–226 (1977)

12. Liu, Y., Rodrigues, M.A.: Geometrical analysis of two sets of 3D correspondence
data patterns for the registration of free-form shapes. J. Int. and Rob. Systems 33,
409–436 (2002)

13. Clarkson, K.: A randomized algorithm for closest point queries. SIAM J. Comput-
ing 17, 830–847 (1998)

14. Brunnstrom, K., Stoddart, A.J.: Genetic algorithms for free-form surface matching.
In: Proc. ICPR, pp. 689–693 (1996)

15. Godin, G., Rioux, M., Baribeau, R.: Three-dimensional registration using range
and intensity information. In: Proceedings of the SPIE, vol. 2350, pp. 279–290
(1994)

16. Feldmar, J., Ayache, N., Betting, F.: D-2D projective registration of free-form
curves and surfaces. CVIU 65, 403–424 (1997)

17. Turk, G., Levoy, M.: Zippered polygon meshes from range images. In: Proc. SIG-
GRAPH, pp. 311–318 (1994)

18. Eggert, D.W., Larusso, A., Fisher, R.B.: Estimating 3-D rigid body transforma-
tions: a comparison of four major algorithms. Machine Vision and Applications 9(5-
6), 272–290 (1997)

19. Schenk, T.: Digital Photogrammetry, 428 p. Terra-Science, Laurelville (1999)
20. Vaillant, M., Glaunès, J.: Surface Matching via Currents. In: Christensen, G.E.,

Sonka, M. (eds.) IPMI 2005. LNCS, vol. 3565, pp. 381–392. Springer, Heidelberg
(2005)

21. Preparata, F., Shamos, M.: Computational geometry. An introduction, 390 p.
Springer-Verlag GmbH (1985)

22. Dyshkant, N.: Measures for comparing discrete models of single-valued surfaces.
Moscow University Computational Mathematics and Cybernetics 35(4), 193–200
(2011)

23. Dyshkant, N.: Measures for Surface Comparison on Unstructured Grids with Dif-
ferent Density. In: Debled-Rennesson, I., Domenjoud, E., Kerautret, B., Even, P.
(eds.) DGCI 2011. LNCS, vol. 6607, pp. 501–512. Springer, Heidelberg (2011)

24. Mestetskiy, L., Tsarik, E.: Delaunay triangulation: recursion without spatial sepa-
ration. In: GrafiCon 2004: Proc. 14th Int. Conf., CMC MSU, Moscow, pp. 267–270
(2004) (in Russian)



58 N. Dyshkant

25. Kirkpatrik, D.G.: Optimal search in planar subdivisions. SIAM J. Comput. 12(1),
28–35 (1983)

26. Devillers, O., Pion, S., Teillaud, M.: Walking in a triangulation. Internat. J. Found.
Comput. Sci. 13, 181–199 (2002)

27. Kostuk, Y.L.: Graphic search with the use of triangulation and cellular partition.
Vestnik of Tomsk State University (275), 147–152 (2002) (in Russian)

28. Bose, P., Devroye, L.: Intersections with Random Geometric Objects. Computa-
tional Geometry: Theory and Applications 10(3), 139–154 (1998)

29. Dyshkant, N., Mestetskiy, L.: Estimation of Asymmetry in 3D Face Models. In:
International Conference on Computer Vision Theory and Applications (VISAPP
2009), pp. 402–405. INSTICC Press, Lisbon (2009)

30. Artuchin, S.: Quantitative Estimation of Skin Condition Based on 3D Face Scan-
ning. In: 18th International Student, Postgraduate and Young Scientist Conference
”Lomonosov-2011”. Maks Press (2011) (in Russian)

31. Gordeev, D., Dyshkant, N.: Construction of Jaw Movement Model During Chewing
Process by 3D image sequence. In: GrafiCon 2009, Proc. 19th Int. Conf. Mosk. Gos.
Univ., Moscow, pp. 348–352 (2009) (in Russian)

32. Dzaraev, C., Persin, L., Porochin, A.: Using of 3D Scanners for Diagnostics of Den-
toalveolar Anomalies. In: Theoretical and Practical Forum Dental-Review, Moscow
(2010) (in Russian)

33. Mestetskiy, L., Dyshkant, N., Gordeev, D., Kumari Sharmila, M., Shekar, B.H.:
Surface measures for accuracy evaluation in 3D face reconstruction. Pattern Recog-
nition 45(10), 3583–3589 (2012)

34. Artec Group Inc. 3D Scanning Technologies, http://www.artec3d.com

http://www.artec3d.com

	Comparison of Point Clouds Acquired by 3D Scanner
	Introduction
	Related Work
	Approach to Comparison of Point Clouds
	Proposed Measures
	Surface Comparison Algorithm
	Computational Complexity
	Surface Matching

	Mesh Localization in Delaunay Triangulation
	Applied Problems of 3D Face Image Analysis
	Conclusions
	References





