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Abstract. Binary tomography deals with the problem of reconstruct-
ing a binary image from its projections. Depending on properties of the
unkown original image, the constraint that the image is binary enables
accurate reconstructions from a relatively small number of projection an-
gles. Even in cases when insufficient information is available to compute
an accurate reconstruction of the complete image, it may still be possible
to determine certain features of it, such as straight boundaries, or ho-
mogeneous regions. In this paper, we present a computational technique
for discovering the possible presence of such features in the unknown
original image. We present numerical experiments, showing that it is of-
ten possible to accurately identify the presence of certain features, even
without a full reconstruction.

1 Introduction

Binary tomography deals with the problem of reconstructing a binary image
from its projections. While accurate image reconstruction requires availability
of a large number of projections for general grey scale images, knowledge about
the fact the the unknown original image is binary can drastically reduce the
number of projection angles needed for a detailed reconstruction in some cases.

A range of algorithms have been proposed for binary tomography [1–4]. Al-
though each of these methods has demonstrated the ability to compute accurate
reconstructions from a small number of projections in certain cases, none of these
methods offer a guarantee that the reconstructed image is identical, or even sim-
ilar to the unknown original image. In fact, one can state that giving such a
guarantee will be impossible in general, as the reconstruction problem in binary
tomography is known to be inherently unstable: a small change in the projection
data can lead to a dramatic change in the (unique) reconstruction [5–7]. More-
over, several constructions are known for so-called switching components : binary
images in which a selected set of zeros and ones can be interchanged, leading to
a different image having the same projections [8, 9].

Even in cases when insufficient information is available to compute an ac-
curate reconstruction of the complete image, it may still be possible to answer
certain questions about the original image, or to determine certain features of it.
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In [10], it was shown that connectivity and convexity properties can be derived
– to some extent – directly from the projection data. It can also be desirable to
know whether a certain boundary or homogeneous region can possibly exist in
the unkown image, or not.

Even though finding a binary solution of the reconstruction problem is typi-
cally hard, it is often easier to prove that a solution cannot exist. For example,
if the projections do not satisfy certain consistency conditions, a solution will
certainly not exist. General consistency conditions for the Radon transform are
presented in [11], while a detailed analysis of consistency conditions for the grid
model in discrete tomography can be found in [12]. A particular condition for
the existence of binary solutions is given in [13], which will be used and extended
throughout the present paper.

In this article, we extend the general idea of consistency to the detection
whether or not certain substructures can exist in the original image. We present a
computational technique for discovering the possible presence of certain features
(e.g., blobs, edges). For each feature, a probe structure is defined, which can
detect that particular feature. Based on an analysis of the existence of binary
solutions of the reconstruction problem, our technique can prove, in certain cases,
if the probed feature cannot exist in a given region of the original image. Our
approach is independent of a particular reconstructed image or reconstruction
method.

This paper is structured as follows. In Section 2, the basic model and notation
are introduced. In Section 3, the basic idea of a probe image is presented and
formally defined. Section 4 covers various algorithms that can be used to prove
– in certain cases – that a given probe image cannot be present in the unknown
original image. Section 5 presents a series of simulation experiments that was
performed to obtain a first assessment of the capabilities of the proposed method.
Conclusions are drawn in Section 6.

2 Basic Notation and Model

Throughout the discrete tomography literature, several imaging models have
been considered: the grid model, the strip model, the line model, etc. [14, section
7.4.1]. In this paper we focus on the strip model, but our approach can be used
for other projection models as well.

In the strip model, a projection is computed by considering a set of parallel
strips in a given direction and for each strip computing the weighted sum of all
the pixels which intersect that strip with a weight equal to the intersection area
of the strip and the pixel (see Fig. 1).

We now define some general notation. An image is represented by a vector
x = (xi) ∈ R

n. We refer to the entries of x as pixels, which correspond to unit
squares in the strip model. Throughout this paper we assume that all images
are square, consisting of c rows and c columns, where n = c2. A binary image
corresponds with a vector x̄ ∈ {0, 1}n.
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Fig. 1. The strip
model

For a given set of k projection directions, the projection
map maps an image x to a vector p ∈ R

m of projection
data, where m denotes the total number of line measure-
ments. As the projection map is a linear transformation, it
can be represented by a matrixW = (wij) ∈ R

m×n, called
the projection matrix. Entry wij represents the weight
of the contribution of xj to projected line i. Note that
for the strip model its entries are real values in [0, 1].
From this point on, we assume that the projection matrix
has the property that

∑m
i=1 wij = k for all j = 1, . . . , n.

This property is satisfied for the strip projection model,
as the total pixel weight for each projection angle is equal to the area of a pixel,
which is 1.

The general reconstruction problem consists of finding a solution of the system
Wx = p for given projection data p, i.e., to find an image that has the given
projections. In binary tomography, one seeks a binary solution of the system.
For a given projection matrix W and given projection data p, let SW (p) =
{x ∈ R

n : Wx = p}, the set of all real-valued solutions corresponding with the
projection data, and let S̄W (p) = SW (p)∩{0, 1}n, the set of binary solutions of
the system. As the main goal of incorporating prior knowledge of the binary grey
levels in the reconstruction is to reduce the number of required projections, we
focus on the case where m is small with respect to n, such that the real-valued
reconstruction problem is severely underdetermined.

3 Probe Structure

We now introduce the concept of a probe image. A probe image is represented
by a vector v = (vi) ∈ {0, 1, ?}n. We say that a binary image x̄ satisfies the
probe image v iff x̄i = vi whenever vi ∈ {0, 1}. This relation is denoted by the
predicate F (v, x̄). In other words, the zeros and ones in the probe image prescribe
the values of the corresponding pixels in x̄, while a pixel value of ’?’ in the probe
image allow any pixel value in the corresponding pixel of x̄. We denote the set
of all images satisfying a probe image v by F(v) = {x̄ ∈ {0, 1}n : F (v, x̄)}. For
any probe image v, define s(v) = #{1 ≤ i ≤ n : vi �=′?′}, the total number of
0’s and 1’s in the probe image.

Suppose that we want to know if the unknown original image may contain a
certain homogeneous region of 1’s (i.e., white pixels). We then define a probe
image v̄ that has such a homogeneous region, and contains the ’?’ symbol in
all pixels that are not in this region (see Fig. 2a). The question whether there
exists a binary solution of the tomography problem that has such a region can
then be rephrased as a check whether the set S̄W (p) ∩ F(v) is empty or not.
Similarly, one can define an edge detection probe image such as shown in Fig.
2b. Any image that has a horizontal edge at the indicated position, consisting
of a black strip of background pixels and a white strip of foreground pixels (i.e.,
an edge at the bottom of a white region), will be part of the set F(v) for this
probe image v. This brings us to the central problem considered in this paper:
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Fig. 2. Two probe images. The pixels are colored as follows: black (0), grey (?), white
(1). Left: homogeneous white region; right: horizontal edge at the bottom of a white
region.

Problem 1. (Probe problem). Let W ∈ R
m×n be a given projection matrix and

let v ∈ {0, 1, ?}n be a given probe image. Determine if S̄W (p) ∩ F(v) = ∅.

If the intersection between the solution set of the tomography problem and the
set of images that satisfy the probe image is not empty, we cannot conclude if the
unknown original image satisfies the probe image. However, if the intersection
between both sets is empty, we can conclude that no binary solution exists that
has the probed feature. As we will see in the next sections, one can often prove
that the answer to Problem 1 is “yes”, even without enumerating the set S̄W (p)
of binary solutions of the reconstruction problem.

Now consider the system of equations

⎛

⎝
| |

w1 · · · wn

| |

⎞

⎠

⎛

⎜
⎝

x1

...
xn

⎞
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where wi denotes the ith column vector of W . We now define the operation
of fixing a pixel xi at value vi ∈ R. It transforms the system (1) into the new
system
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= p− viwi. (2)

The new system has the same number of equations as the original system,
whereas the number of variables is decreased by one. The fixing operation can
be performed for more than one pixel at time.

Proposition 1. Let W ∈ R
m×n be a given projection matrix and let v ∈

{0, 1, ?}n be a given probe image. Let Ry = q be the linear system that is
obtained by fixing all pixels xi to value vi whenever vi ∈ {0, 1}. Then solving
Problem 1 is equivalent to checking whether S̄R(q) = ∅.
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We call the linear system formed in Prop. 1 the reduced linear system corre-
sponding to the probe image v.

4 Partially Solving the Probe Problem

As noted in the previous section, the probe problem can be rephrased as the
question whether or not the reduced linear system has a binary solution. In [13],
the authors present a sufficient condition for the existence of binary solutions of
a given linear system Wx = p which satisfies

∑m
i=1 wij = k for all j = 1, . . . , n.

In summary, it is proved that all binary solutions of this linear system lie on
a hypersphere centered in the minimum norm solution x∗ and having radius

R(p, x∗) =
√∑m

i=1 pi

k − ‖x∗‖22. If the binary vector closest to x∗ is outside this
hypersphere then the given linear system contains no binary solutions:

Theorem 1. Let x∗ = W †p, where W † denotes the Moore-Penrose inverse of
W [15]. For α ∈ R, let ρ(α) = min(|α|, |1−α|) and put T (x∗) =

√∑n
i=1 ρ

2(x∗
i ).

If R(p, x∗) < T (x∗), then S̄W (p) = ∅.

Proof. See [13].

In the remainder of this section we present two related techniques for proving
that the unknown original image does not satisfy a given probe image v. Both
methods use variants of Theorem 1.

4.1 Probing by Analyzing the Binary Solutions of the Reduced
Linear System

Let v be a given probe image. We now analyze the reduced linear systemRy = q
corresponding to v, in terms of the existence of binary solutions, following the
idea of Theorem 1.

Let y∗ = R†q and ρ(α) = min(|α|, |1 − α|). Put T (y∗) =
√∑n

i=1 ρ
2(y∗i ) and

define T (y∗) = {r̄ ∈ {0, 1}n−s(v) : ‖r̄ − y∗‖2 = T (y∗)}. Also, let r̄ ∈ T (y∗),
i.e., r̄ is among the binary vectors that are nearest to y∗ in the Euclidean sense.
Vector r̄ can be easily computed by rounding the entries of y∗ to their nearest
value in the set {0, 1}. Despite r̄ may not be unique, any choice of r̄ yields the
same results in this context.

Rewriting Theorem 1 in the framework of identifying the existence of binary
images satisfying a given probe image v, we have:

Theorem 2. Let y∗ = R†q and r̄ ∈ T (y∗). If ‖r̄ − y∗‖2 >

√∑
m
i=1 qi
k − ‖y∗‖22

then the original system Wx = p does not have a binary solution which satisfies
v.

Proof. From Theorem 1, we know that if ‖r̄ − y∗‖2 >

√∑
m
i=1 qi
k − ‖y∗‖22 then

there is no binary vector satisfying Ry = p. Hence, there is no x̄ ∈ S̄W (p) that
satisfies v.
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4.2 Probing by Analyzing the Binary Solutions of the Original
Linear System

Using an idea similar to what was used in the previous subsection, we now ana-
lyze the consistency of the original linear system with respect to binary solutions.
However, instead of using r̄, the binary vector closest to the minimum norm so-
lution x∗, we define r̃ as the binary vector, satisfyig the probe image v, which
is closest to x∗.

Theorem 3. Let x∗ = W †p and r̄ ∈ T (x∗). For i = 1, . . . , n, define r̃i = v̄i if

vi �=′?′ and r̃i = r̄i otherwise. If ‖r̃ − x∗‖2 >

√∑m
i=1 pi

k − ‖x∗‖22, then v is not

satisfied by any x̄ ∈ S̄W (p).

Proof. The vector r̃ is the binary image which contains the structure of the
probe image that is closest to x∗. If r̃ is out of the hypersphere containing all
binary solutions of Wx = p (see [13]), then there is no binary image satisfying
the probe image v that is on this hypersphere. Therefore v is not satisfied by
any binary solution of Wx = p.

5 Numerical Experiments

Although the two techniques from Section 4 can detect sufficient conditions for
the non-existence of binary solutions of the reconstruction problem that satisfy
the given probe image, an empirical study is needed to determine the usefulness
of the proposed methods for actual tomography data. A series of experiments
was performed to investigate the presented method, for three different phantom
images using a variable number of projections. The experiments are all based
on simulated projection data obtained by computing the projections of the test
images (so-called phantoms) in Fig. 3:

For the experiments, we have used probe images that only consider 0’s and
1’s inside a square sub-image of size 8×8 pixels. This subregion is then moved
across the full image region, scanning the possible presence of the probe structure
throughout the image of size 64×64 pixels.

(a) Phantom 1, 64× 64 (b) Phantom 2, 64× 64 (c) Phantom 3, 64× 64

Fig. 3. Original phantom images used for the experiments
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For each experiment, both techniques from Section 4 were used, checking
whether any of these two methods can prove that the probe structure cannot
occur in a particular region of the unknown original image.

To compute the shortest least-squares solutions of the linear systems involved
in the methods of Section 4, the CGLS algorithm was used. We refer to [13] for
details.

In the following subsections, we consider experiments for two different probe
structures, for detecting homogeneous regions and horizontal edges, respectively.

5.1 Homogeneous Regions

In this section, we focus on the identification of square homogeneous regions in
the unknown original image. Two types of probe images were defined: a square
8×8 region of 1’s (white pixels) surrounded by ’?’ pixels, and a square 8×8
region of black pixels, also surrounded by ’?’ pixels. These square regions were
then moved across the full 64×64 image region to determine at each location
whether such a homogeneous black or white square can possibly occur in the
binary solution set of the tomography problem.

For each probe image we are able to define a status based on the results
obtained by applying the presented methods with the two different types of probe
images. We define the status forbidden for a probe image which, according to
the methods, have no binary solution satisfying it. We also define the status
allowed for a probe image in which the methods could not determine whether
there exists a binary solution satisfying this probe image.

The results for a given phantom image leads to a new 2D greyscale image,
which represents – for each position of the probe region – the outcome for both
probe types, as follows:

– If the black region is allowed and the white region is forbidden then asso-
ciate a black color;

– If the black region is forbidden and the white region is allowed then asso-
ciate a white color;

– If the black region is allowed and the white region is allowed then associate
a light grey color;

– If the black region is forbidden and the white region is forbidden then
associate a dark grey color;

The resulting greyscale images are shown in Fig. 4 for Phantoms 1 and 2, de-
picting results for an increasing number of projection angles. It can be observed
that as the number of angles grows, the results of the probe experiments provide
an increasingly accurate view of the true presence of homogeneous regions in the
phantom image.

5.2 Horizontal Edges

The goal of this section is to identify straight horizontal edges which could
be present in the original image. We use the term horizontal edges to indicate
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(a) Phantom 1. Number of projection angles: 2, 4, 8 and 12

(b) Phantom 1. Number of projection angles: 16, 20, 24, and 28

(c) Phantom 2. Number of projection angles: 2, 4, 8 and 12

(d) Phantom 2. Number of projection angles: 16, 20, 24, and 28

Fig. 4. Homogeneous region status for the phantom images of dimension 64× 64

horizontally adjacent pixels with intensity 1 (white) which are vertically adjacent
to the same number of horizontally adjacent pixels with intensity 0 (black color).
So, we define a square probe structure of size 8×8 such that the pixels in the
upper half of the square are set to 0 and the pixels in the lower half of the square
are set to 1. The vertically mirrored version of this probe structure was also used
to detect edges at the bottom of an object.
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Similar to the previous section, the results for this probe structure give rise to a
new greyscale image, defined as follows. Starting from a completely black image,
if at a certain position for the probe structure no unsatisfiability is detected, the
“white” part of the edge (corresponding to the interior of the object) is colored
white in the output image if it is also white in the original image and dark grey if
it is black in the original image. The “black” part of the edge (corresponding to
the outside of the object) is colored black in the output image if it is also black

(a) Phantom 2. Number of projection angles: 2, 4, 8 and 12

(b) Phantom 2. Number of projection angles: 16, 20, 24, and 28

(c) Phantom 3. Number of projection angles: 2, 4, 8 and 12

(d) Phantom 3. Number of projection angles: 16, 20, 24, and 28

Fig. 5. Possible edges for the phantom images of dimension 64× 64
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in the original image and light grey if it is white in the original image. Also, if
at a certain position for the probe structure the unsatisfiability is detected but
there are white pixels in this region in the original image, then those pixels are
colored as light grey. The results of this procedure are shown in Fig. 5, which
identifies the regions that could be edges according to our results, for a varying
number of projection angles. Again, we see that as the number of projections
increases, the results of the probe experiments provide an increasingly accurate
view of the true presence of horizontal edges in the phantom image.

6 Outlook and Conclusion

In this article we have proposed a novel approach for obtaining information about
an object from a small number of its projections. By using necessary conditions
for the existence of binary solutions of the tomography problem, and combining
these with probe images for particular substructures of the image, it can be
determined whether such a substructure can possibly occur, or whether it can
certainly not occur in the unknown original image.

The experimental results for a limited set of simulation experiments show
that this approach can indeed lead to the recovery of substantial information
about the original image, without resorting to a particular, possibly non-unique
reconstruction.

More research in this direction will be necessary to determine what the lim-
itations are of the proposed method, and how it compares to image analysis
algorithms that try to find the structure directly in a reconstructed image.
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