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Abstract. We propose an Euclidean medial axis filtering method which
generates subsets of Euclidean medial axis were filtering rate is con-
trolled by one parameter. The method is inspired by Miklos’, Giesen’s
and Pauly’s scale axis method which preserves important features of an
input object from shape understanding point of view even if they are at
different scales. Our method overcomes the most important drawback of
scale axis: scale axis is not, in general, a subset of Euclidean medial axis.
It is even not necessarily a subset of the original shape. The method and
its properties are presented in 2D space but it can be easily extended
to any dimension. Experimental verification and comparison with a few
previously introduced methods are also included.
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1 Introduction

The notion of medial axis has been introduced by Blum in the 60s [4]. The medial
axis of an object X is composed by the centers of the balls which are included
in X but which are not fully included in any other ball included in X. This set
of points is, by nature, centered in the object with respect to the distance which
is used to define the notion of ball.

In the literature, different methods have been proposed to compute the medial
axis approximately or exactly, for instance methods relying on discrete geome-
try [5,15,16,7], digital topology [13,25], mathematical morphology [22], compu-
tational geometry [3,20], partial differential equations [24], or level-sets [17]. In
this work we focus on the discrete medial axis based on the Euclidean metric.

The medial axis is a very useful representation of the object and plays a major
role in shape analysis in numerous applications, for example object recognition,
registration or compression. From the medial axis points and associated ball
radii, one can exactly reconstruct the original shape. However it can be hard
or even impossible to use this tool effectively without first dealing with some
problems, especially in discrete spaces and with noisy objects.
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Firstly, the medial axis in discrete spaces has not, in general, the same topol-
ogy as the original object. Solutions to this problem have been proposed by
several authors, for instance [13,25,11]. They use discrete homotopic transfor-
mations guided and constrained by the medial axis, to obtain homotopic skeleton
which contains the medial axis (see, Fig. 1). We do not consider these topological
problems in the rest of the paper, and rely on this solution.

The second problem is sensitivity of the Euclidean medial axis to small con-
tour perturbations (see, for example, Fig. 1). In other words, the medial axis
is not stable under small perturbations of a shape: modifying a shape slightly
(for example in terms of Hausdorff distance) can result in substantially different
medial axes. This is a major difficulty when the medial axis is used in practical
applications (e.g. shape recognition). A recent survey which summarises selected
relevant studies dealing with this topic is presented in [2]. This fact, among oth-
ers, explains why it is usually necessary to add a filtering step (or pruning step)
to any method that aims at computing the medial axis and when a nonreversible
but simplified description of binary objects is of interest.

(a) (b) (c)

Fig. 1. (a): a shape (in gray) and its Euclidean medial axis (in black); (b) the homotopic
skeleton of the shape constrained by its Euclidean medial axis; (c) the same shape, but
with small amount of noise added on the contour. The medial axis of the shape (c) is
much more complicated than the medial axis of the shape (a).

The simplest strategy to filter the medial axis is to keep only points which are
centers of maximal balls of at least a given diameter. Different criteria can be
used to locally threshold and discard spurious medial axis points or branches:
see [1,12], for methods based on the angle formed by the vectors to the closest
points on the shape boundary, or the circumradius of these closest points [8,15].

In these methods, a local information (that is, geometric information extracted
from a single medial ball) is compared to a global parameter value to determine
the importance of the corresponding medial axis point. However, it is well known
that this local filtering can lead to remove small branches which might be impor-
tant for the shape understanding (see Fig. 2) especially for shapes with features
at different scales [2].
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(a) (b) (c)

Fig. 2. (a): a shape X (in gray); (b): The filtered medial axis of X (in black) calculated
by using algorithm [7]. The medial axis is not sufficiently filtered in the middle of the
shape. However, we already start to loose the tail; (c) A more filtered medial axis of X.
Now, the middle of the shape is well filtered. However, we lost all information about
the tail.

A more complex criterion was proposed by [9]: they utilize information about
ball importance in the shape with respect to all other balls by counting the
number of object points inside a ball which are not covered by other balls. The
medial axis point will be removed if the uncovered area of corresponding ball is
too small.

In [19], the authors address this issue and propose an approach that put in
relation local information and regional information, that is, the status of a ball
is only influenced by the one of neighboring balls. Their method is based on
the theory of the scale axis transform [14], and defines a whole family of medial
representations at different levels of abstraction, called scale axis representations
(see Fig. 3). For objects or scenes that include parts showing different scales, this
method gives good results in many cases.

Fig. 3. Different scale axes of the same object (contoured), using different values of the
scale parameter. In pink, the part of the object reconstructed from the filtered axis.

However, the scale axis representation is not free of drawbacks. The most
important one is that the scale axis is not necessarily a subset of the Euclidean
medial axis (see Fig. 4), it is even not necessarily a subset of the original shape.

In this paper we propose a new method for the Euclidean medial axis filtering
(see section 4). Our proposition is inspired by the scale axis method (see section
3). However, as result we obtain a filtered Euclidean medial axis instead of
a set of points that is not necessarily a subset of the latter. Furthermore, our
method produces axes that preserve important features for shape understanding,
even if they are at different scales. Therefore, our algorithm overcomes the most
important drawbacks noticed in previously presented methods following a similar
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approach. Moreover, the new method works in arbitrary dimensions. We evaluate
experimentally its properties, and compare it with the previously introduced
methods [9,12] (see section 5).

2 Basic Notions

In this section, we recall some basic geometrical and topological notions for
binary images [6,18].

We denote by Z the set of integers, by N the set of nonnegative integers, and
by N+ the set of strictly positive integers. We denote by E the discrete space
Z
d. A point x in E is defined by (x1, . . . , xd) with xi in Z. Let x, y ∈ E, we

denote by d(x, y) the Euclidean distance between x and y, that is, d(x, y) =
((x1 − y1)2 + . . .+ (xd − yd)2)1/2. In practice, the squared Euclidean distance is
used in order to avoid floating numbers. Let Y ⊂ E, we denote by d(x, Y ) the
Euclidean distance between x and the set Y , that is, d(x, Y ) = miny∈Y {d(x, y)}.
Let X ⊂ E (the ”object”), we denote by DX the map from E to R+∪{0} which
associates, to each point x of E, the value DX(x) = d(x,X), where X denotes the
complementary of X (the ”background”). The map DX is called the (Euclidean)
distance map of X . Let x ∈ E, r ∈ R+, we denote by Br(x) the ball of radius
r centered on x, defined by Br(x) = {y ∈ E, d(x, y) < r}. Notice that, for any
point x in X , the value DX(x) is precisely the radius of a ball centered on x
and included in X , which is not included in any other ball centered on x and
included in X .

Now, let us recall the notion of medial axis (see also [21,25]). Let X ⊆ E.
A ball Br(x) ⊆ X , with x ∈ X and r ∈ N+, is maximal for X if it is not
strictly included in any other ball included in X . The medial axis of X , denoted
by MA(X), is the set of the all couples (x, r) such that Br(x) is a maximal ball
for X .

Let X ⊂ E, Y ⊂ X , we denote by REDTX(Y ) the reverse Euclidean distance
transform [9], defined by

REDTX(Y ) =
⋃

y∈Y

BDX (y)(y).

For exact and unfiltered MA(X) we have X = REDTX(MA(X)).

3 Discrete Scale Axis

In this section, we adapt the notion of scale axis (see [19,14]), originally intro-
duced in the continuous space and implemented in a framework of unions of
balls, to the case of discrete grids. We denote by R+ the set of strictly positive
reals. Let X ⊆ E, x ∈ X , r ∈ N+ and s ∈ R+. The parameter s is called
the scale factor. We denote by Xs the multiplicatively s-scaled shape, defined by
Xs =

⋃
(x,r)∈MA(X)Brs(x). For s � 1, we denote by SATs(X) the s-scale axis

transform of X , defined by

SATs(X) = {(x, r/s) | (x, r) ∈ MA(Xs)}.
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The original algorithm to compute discrete scale axis, given by [19] in the frame-
work of union of balls (UoBs), can be straightforwardly adapted to the case of
Z
d as follows. First, calculate the Euclidean medial axis of X. To do so, we use

an efficient algorithm presented in [9]. Then multiply radius of each medial ball
by the chosen scaling factor s.

In consequence small medial balls are covered completely by larger nearby
balls since they are not important. On the other hand, small balls without larger
balls in their neighborhood are not covered and will be preserved.

Next step is to reconstruct object Xs based on scaled radius values. Recon-
struction can be made efficiently by reverse Euclidean distance transform (see
section 2). Computing the medial axis of Xs achieves the simplification and
MA(Xs) will be free of all covered balls, since these do not touch the boundary
anymore and are thus no longer maximal. For s = 1, the scale axis is identical
to unfiltered Euclidean medial axis. With increasing s, the scale axis gradually
ignores less important features of X leading to successive simplifications of Xs

and the scale axis structure.
The final step of the algorithm consists of rescaling the medial balls of MA(Xs)

by a factor 1/s to obtain the scale axis of X . Finally, discrete scale axis algorithm
can be presented in the following pseudocode:

Algorithm 1. DiscreteScaleAxis(Input X ,s Output SATs(X))

01. Compute MA(X)
02. Reconstruct Xs

03. Compute MA(Xs)
04. Compute SATs(X)

All four steps of DiscreteScaleAxis algorithm can be calculated in linear time
in relation to #X , #Xs, #Xs and #MA(Xs) respectively, where #X stands
for cardinality of X . Therefore, computational complexity of the algorithm is
O(#Xs).

4 The Scale Filtered Medial Axis

The crucial part of the method presented in the previous section, which is a
source of problems (MA(Xs) � MA(X)), is the reconstruction part after medial
balls scaling and the need for generating a new medial axis from the scaled object
(see Fig. 4). On the other hand, at first sight, this is the most important part of
the algorithm since the medial axis simplification occurs in this part.

To filter MA(X) by removing centers of unimportant medial balls one must
avoid reconstruction part and hold simplification property at the same time.
Therefore, to solve this problem we assume that to make efficient filtration we
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(a) (b) (c)

s = 1 s = 1.1 s = 1.3

Fig. 4. (a): a shape X (in gray) and its Euclidean medial axis MA(X) (in black); (b):
the multiplicatively 1.1-scaled shape of X and its 1.1-scaled axis; (c): the multiplica-
tively 1.3-scaled shape of X and its 1.3-scaled axis. In (b, c) we can see that scale axes
are not subsets of MA(X). In both cases, an additional branch even appears.

just need to decide which MA(X) points are not important and should be re-
moved. Therefore, we do not generate a new object Xs and its MA(Xs). In this
way we obtain filtered Euclidean medial axis of X which is a subset of MA(X).

This informal discussion motivates the following definition of the Scale Fil-
tered Euclidean Medial Axis (SFEMA).

Let x ∈ X, r ∈ N+. We denote by BX
r (x) the intersection of Br(x) with X ,

that is, BX
r (x) = {y ∈ X | d(x, y) < r}.

Definition 1. Let X ⊆ E, and s ∈ R, s � 1. We denote by SFEMAs(X) the
Scale Filtered Euclidean Medial Axis of X defined by

SFEMAs(X) = {(x, r) ∈ MA(X) | BX
rs(x) �

⋃

(y,t)∈MA(X),t>r

BX
ts (y)}.

Below, we give an algorithm to compute SFEMAs(X) of a given object X ⊆ E.
The algorithm in line 02 performs sorting of medial axis elements, linearly in

time using a counting sort [10]. In the following lines the algorithm performs
two loops. The first one starts in line 04 and does #X iterations. The next,
nested loop, starts in line 06 and in worst case performs #MA(X) iterations.
Summarizing, computational complexity of SFEMA is O(#X#MA(X)).

Examples of SFEMAs(X) for different scale factors si, are shown in Fig. 5.
Let us analyze properties and the major differences between the Miklos’s [19]

s-scale axis and our s-scale filtered Euclidean medial axis. The most important
property is that SFEMAs(X) consists of MA(X) points only, that is, for all
s � 1: SFEMAs(X) ⊆ MA(X). This property (inclusion property, for short)
is essential in many applications of the medial axis. In Fig.4 we have shown
an example of the Miklos’s scale axis where an additional branch even appears
after filtering. Fig.6 shows another problem. The scale axis is too much simplified,
looses important features of the object and is not included in the object. However,
s-scale filtered medial axis holds inclusion property and permits to reconstruct
the most of the original object.

The second interesting property relies on the notion of s-scale ball. If we want
to simplify the object, using Miklos’s scale axis, for example, by removing a
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Algorithm 2. SFEMA(Input X ,s Output H)

01. H ← ∅
02. MA(X)← EuclideanMedialAxis(X)
03. Let (x1, r1), . . . , (xn, rn) denote the elements of MA(X)

sorted in decreasing order of radii, that is, r1 � . . . � rn
04. foreach p ∈ X do
05. i← 1
06. while i � n and d(xi, p) > sri do i← i+ 1 end
07. If i � n then
08. H ← H ∪ {(xi, ri)}
09. end
10. end
11. return H

(a) (b)

(c) (d)

Fig. 5. (a): a shape X (in gray) and its Euclidean medial axis (in black); (b, c, d): the
same shape and its SFEMA1.1(X), SFEMA1.4(X), SFEMA1.6(X), respectively. In
all cases the elephant’s tail, trunk, tusks and legs were considered as important and
were not removed.

medial ball Br(x), x ∈ X , the scale factor should be big enough that ball Brs(x)
is included in one of other medial balls, that is, Brs(x) ⊂ Brs(y), y ∈ X (see
Fig.7c), or in a union of such balls. In our algorithm, since we use notion of
s-scaled ball, we only test inclusion inside X (see Fig.7b). This allows us to use
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(a) (b) (c)

original shape s = 1.3 s = 1.3

Fig. 6. (a): a set X (in green) and its MA(X) (in black); (b): the 1.3-scale axis of X;
(c): the 1.3-scale filtered medial axis of X

(a) (b) (c)

original object s = 1.1 s = 1.3

Fig. 7. (a): a set X (in green) and its MA(X) (red dots); (b): multiplicatively scaled
medial balls. The smaller ball is not fully covered by the bigger one after scaling. In
scale axis representation both balls will be preserved. However, the bigger ball includes
the smaller one inside set X. Therefore, the smaller ball will not exist in SFEMAs(X);
(c): multiplicatively scaled medial balls. The smaller ball is included in the bigger one.
Therefore, it is neither in the scale axis nor in SFEMAs(X).

smaller scale factor. Therefore, we have better ability to control resulting s-scale
filtered Euclidean medial axis.

5 Experiment Methodology and Results

In this section, we compare qualitatively and quantitatively properties of three
medial axis filtering algorithms: discrete λ-medial axis (DLMA) [7], Euclidean
medial axis filtered with the use of bisector function (BisEMA) [12] and SFEMA.
In our experiments we use shapes from Kimia’s database [23].
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We first introduce some notions which help us to compare the algorithms. As
it was stated in sec. 2, considering the exact and unfiltered MA(X), the reverse
Euclidean distance transform of MA(X) is equal to X . However, this property is
no longer true if we consider filtered medial axes e.g. DLMA, BisEMA, SFEMA.
Therefore, it is interesting to measure how much information about the original
object is lost when we perform filtering. Considering a subset Y of MA(X), we
define:

RX(Y ) =
|X \REDTX(Y )|

|X | .

We call RX(Y ) the (normalised) residuals of Y . Residuals give us a numerical
evaluation of reconstruction error. Now we can set Y to different filtered medial
axes, e.g. by using different methods or filtering parameters, and then evaluate
which filtration is better in respect of ability to reconstruct the original object.
The result RX(Y ) is a real value between 0 (perfect reconstruction) and 1 (bad
reconstruction).

The normalised residuals factor is not enough to assess the quality of a fil-
tered medial axis. It is difficult to compare different algorithms because filtering
parameters of the algorithms have different meanings, therefore we introduce the
normalised medial axis size NS.

Let denote by NSX(Y ) normalised medial axis size defined as a ratio of the
number of the medial axis points to the number of object points: NSX(Y ) =
#Y/#X .

Fig. 8.Medial axes in black superimpose to input object in grey color. Consecutive rows
(from left to the right) contain results for DLMA, BisEMA and SFEMA respectively.
Columns contain results for different values of normalised residuals: 0.01, 0.03, 0.05,
0.1 respectively.
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Now we can compare normalised residuals obtained using different methods
for the same NS. In other words, we replace the parameters of the different
medial axis filtering algorithms by only one parameter (NS), which ensures a
fair comparison.

Figure 8 presents DLMA, BisMA and SFEMA of an exemplary shape, ex-
tracted for several values of normalised residuals. The figure shows that SFEMA
of smaller size than DLMA results in the same value of R. Moreover, in contrast
to DLMA, SFEMA represents the most important fragments of an input object
in different scales (see the tail in the last column of Fig. 8). SFEMA algorithm
filters better than BisEMA some unimportant points close to the border of the
sea devil main body.

Table 1. Average normalised residuals calculated for 18 representative shapes from
Kimia’s database [23]. Lowest values are highlighted in gray.

.

2D

NS 2% 3% 5%

DLMA 0.2566 0.1717 0.0996

BisEMA 0.3268 0.1183 0.0775

SFEMA 0.0991 0.0562 0.0112
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Fig. 9. Residuals as a function of normalised medial axis size for DLMA(curve with
circles), BisEMA(curve with triangles) and SFEMA(curve with squares). Results gen-
erated for sea devil image (see Fig 8). Each marker (triangle, circle and square) repre-
sents parameters of one filtered medial axis. Lines has been added only to emphasise
the trend of measurements.
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The next important property of SFEMA can be concluded from Fig. 9 which
shows accuracy of the object representation by filtered medial axis for different
NSs. One can see that SFEMA obtains the smallest residuals value for most
NSs. In other words SFEMA results with filtered medial axes which the most
accurately represent the input object in different scales. Moreover Fig. 9 shows
that SFEMA algorithm generates many more different filtered medial axes than
DLMA algorithm does. This property is important when we are interested in
multiscale representation of an input object. In this case, the number of different
filtered medial axes generated with DLMA algorithm might be not enough. The
above conclusions confirm results presented in Table 1. SFEMA has obtained
the lowest mean normalised residuals for all NSs.

6 Conclusions

The article presents a new method for Euclidean medial axis filtering which
possesses the following properties:

– generates subsets of Euclidean medial axis,
– filtering is based on only one parameter,
– generates filtered medial axes which preserve important parts of an input

object in different scales,
– obtains smaller normalised residuals than other compared medial axis filter-

ing algorithms,
– computation complexity of the algorithm is O(#X#MA(X)).

Future works will include the design of a more formalised framework for quanti-
tative comparison of filtered medial axes at different scales. Using this framework
the authors plan to perform more tests for 2D and 3D objects.
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