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Abstract. In hypergraph theory, determining a good characterization
of d, the degree sequence of an h-uniform hypergraphH, and deciding the
complexity status of the reconstruction of H from d, are two challenging
open problems. They can be formulated in the context of discrete to-
mography: asks whether there is a matrix A with nonnegative projection
vectors H = (h, h, . . . , h) and V = (d1, d2, . . . , dn) with distinct rows.

In this paper we consider the subcase where the vectors H and V
are both homogeneous vectors, and we solve the related consistency and
reconstruction problems in polynomial time. To reach our goal, we use
the concepts of Lyndon words and necklaces of fixed density, and we
apply some already known algorithms for their efficient generation.

Keywords: Discrete Tomography, Reconstruction problem, Lyndon word,
Necklace, hypergraph degree sequence.

1 Introduction

The degree sequence, also called graphic sequence, of a simple graph (a graph
without loop or parallel edges) is the list of vertex degrees, usually written in
nonincreasing order, as d = (d1, d2, . . . , dn), d1 ≥ d2 ≥ · · · ≥ dn. The problem of
characterizing the graphic sequences of graphs was solved by Erdös and Gallai
(see [4]):

Theorem 1. (Erdös, Gallai) A sequence d = (d1, d2, . . . , dn) where d1 ≥ d2 ≥
· · · ≥ dn is graphic if and only if Σn

i=1di is even and

Σk
i=1di ≤ k(k − 1) +Σn

i=k+1 min{k, di}, 1 ≤ k ≤ n.

An hypergraph H = (V, E) is defined as follows (see [5]): V ert = {v1, . . . , vn} is
a ground set of vertices and E ⊂ 2|V ert| \ ∅ is the set of hyperedges such that
e �⊂ e′ for any pair e, e′ of E . The degree of a vertex v ∈ V ert is the number of
hyperedges e ∈ E such that v ∈ e. An hypergraph H = (V ert, E) is h-uniform
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if |e| = h for all hyperedge e ∈ E . Moreover H = (V ert, E) has no parallel
hyperedges,i.e., e �= e′ for any pair e, e′ of hyperedges. Thus a simple graph
(loopless and without parallel edges) is a 2-uniform hypergraph.

The problem of the characterization of the degree sequences of h-uniform
hypergraphs is one of the most relevant among the unsolved problems in the
theory of hypergraphs [5] even for the case of 3-uniform hypergraphs. Also its
complexity status is still open.

This problem has been related to a class of problems that are of great relevance
in the field of discrete tomography.More precisely the aim of discrete tomography
is the retrieval of geometrical information about a physical structure, regarded as
a finite set of points in the integer lattice, from measurements, generically known
as projections, of the number of atoms in the structure that lie on lines with fixed
scopes. A common simplification is to represent a finite physical structure as a
binary matrix, where an entry is 1 or 0 according to the presence or absence of
an atom in the structure at the corresponding point of the lattice. One of the
challenging problems in the field is then to reconstruct the structure, or, at least,
to detect some of its geometrical properties from a small number of projections.
One can refer to the books of G.T. Herman and A. Kuba [14,15] for further
information on the theory, algorithms and applications of this classical problem
in discrete tomography.

Here we recall the seminal result in the field of the discrete tomography
due to Ryser [19]. Let H = (h1, . . . , hm), h1 ≥ h2 ≥ · · · ≥ hm, and V =
(v1, . . . , vn), v1 ≥ v2 ≥ · · · ≥ vn, be two nonnegative integral vectors, and
U(H,V ) be the class of binary matrices A = (aij) satisfying

Σn
j=1aij = hi 1 ≤ i ≤ m (1)

Σm
i=1aij = vj 1 ≤ j ≤ n (2)

In this context H and V are called the row, respectively column, projection of
A, as depicted in Fig. 1. Denoting by V̄ = (v̄1, v̄2, . . .) the conjugate sequence,
also called the Ferrer sequence, of V where v̄i = |{vj : vj ∈ V, vj ≥ i}|. Ryser
gave the following [19]:

Theorem 2. (Ryser) U(H,V ) is nonempty if and only if

Σm
i=1hi = Σn

i=1vi (3)

Σi
j=1hj ≥ Σi

j=1v̄j ∀i ∈ {1, . . . ,m} (4)

Moreover this characterization, and the reconstruction of A from its two pro-
jections H and V , can be done in polynomial time (see [14]). Some applica-
tions in discrete tomography requiring additional constraints can be found in
[1,7,2,11,16,17,18,23].

As shown in [4] this problem is equivalent to the reconstruction of a bipartite
graph G = (H,V,E) from its degree sequences H = (h1, . . . , hm) and V =
(v1, . . . , vn). Numerous papers give some generalizations of this problem for the
graphs with colored edges (see [3,6,9,10,13]).
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So, in this context, the problem of the characterization of the degree se-
quence (d1, d2, . . . , dn) of an h-uniform hypergraph H (without parallel edges)
asks whether there is a binary matrix A ∈ U(H,V ) with nonnegative projection
vectors H = (h, h, . . . , h) and V = (d1, d2, . . . , dn) with distinct rows, i.e., A is
the incidence matrix of H where rows and columns correspond to hyperedges
and vertices, respectively. To our knowledge the problem of the reconstruction
of a binary matrix with distinct rows has not be studied in discrete tomography.

In this paper, we carry on our analysis in the special case where the h-uniform
hypergraph to reconstruct is also d-regular, i.e., each vertex v has the same
degree d, in other words the vector of the vertical projection is homogeneous,
i.e. V = (d, . . . , d).

The studies in this paper focuses both on the decision problem, and on the
related reconstruction problem, i.e. the problem of determining an element of
U(H,V ) consistent with H and V . To accomplish this task we will design an
algorithm that runs in polynomial time with respect to m and n the dimensions
of the matrix to reconstruct. This algorithm uses the concepts of Lyndon words
and necklaces of fixed density, also we apply some already known algorithms for
their efficient generation.

2 Definitions and Introduction of the Problems

Let A be a binary matrix having m rows and n columns, and let us consider the
two integer vectors H = (h1, . . . , hm) and V = (v1, . . . , vn) of its horizontal and
vertical projections, respectively, as defined in Section 1 (see Fig. 1).
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Fig. 1. A binary matrix, used in discrete tomography to represent finite discrete sets,
and its vectors H and V of horizontal and vertical projections, respectively

These few notions are enough to state the general version of the problems
we will consider in this paper (in fact, we consider more specialized versions, as
defined further below):
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Consistency (H,V, C)
Input: two integer vectors H and V , and a class of discrete sets C.
Question: does there exist an element of C whose horizontal and vertical pro-

jections are H and V , respectively?

Reconstruction (H,V, C)
Input: two integer vectors H and V , and a class of discrete sets.
Task: reconstruct a matrix A ∈ C whose horizontal and vertical projections

are H and V , respectively, if it exists, otherwise give failure.

In the sequel we are going to consider the class of binary matrices having no
equal rows and homogeneous horizontal projections, denoted E , due to its con-
nections, as mentioned in the Introduction, with the characterization of the
degree sequences of h-uniform hypergraphs.

In [20], Ryser gave a characterization of the instances of Consistency(H,V, C),
with C being the class of the binary matrices, that admit a positive answer, after
noticing that the following conditions are necessary for the existence of a matrix
consistent with two generic vectors H and V of projections:

Condition 1: for each 1 ≤ i ≤ m and 1 ≤ j ≤ n, it holds hi ≤ n and vj ≤ m;
Condition 2: Σm

i=1hi = Σn
j=1vj ,

and then he added a further condition in order to obtain the characterization of
the instances that admit a solution, as recalled in the Introduction.

The authors of [8], pointed out that these two conditions turn out to be
sufficient in case of homogeneous horizontal and vertical projections, by showing
their maximality w.r.t. the cardinality of the related sets of solutions.

Ryser defined a well known greedy algorithm to solve Reconstruction(H,V, C)
that does not compare the obtained rows, and does not admit an easy general-
ization to perform this further task.

So, since we want to restrict ourself to deal with matrices having different
rows, and homogeneous horizontal projections, we approach the two problems
in a different way, considering each row as a binary word, and grouping them into
equivalence classes according to their cyclic shifts, as defined in the next section.
Now, we state a third necessary condition for answering to Consistency(H,V, E):

Condition 3: Consistency(H,V, E) has a negative answer if the dimension of
the vector H is greater than

(
n
h

)
.

In other words, there does not exist a matrix having H and V as homoge-
neous projections, and more than

(
n
h

)
different rows; this result can be eas-

ily deduced using a cardinality argument. From our analysis, we will prove
that the three conditions are also sufficient to solve in linear time the problem
Consistency(H,V, E) with homogeneous H and V .
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3 The Problem Consistency(H, V, E)
Let us face the consistency problem for the class E on the homogeneous instance
H and V from a different perspective, by observing that each row of a binary
solution matrix can be regarded as a binary finite word u = u1 u2 . . . un, whose
length n is the number of columns of the matrix, and whose number h of 1-
elements is the common horizontal projection.

We note that applying a cyclic shift to the word u, denoted by s(u), we obtain
a different word s(u) = u2 u3 . . . un u1, unless the cases u = (1)n or u = (0)n, of
the same length, and having the same number of elements 1 inside, so it can be
considered as a possible row different from u of a solution matrix. Iterating the
shift of a word u, one can think to easily obtain a sequence of words that row
wise arranged inside a matrix, lead to a solution of Consistency(H,V, E). We
indicate with sk(u), where k ≥ 0, the application of k times the shift operator
to the word u. Unfortunately, two problems may occur: the words repeat after
at most n shifts, and the vertical projections may not reach the desired value v,
i.e. the arranged shifts form a submatrix of a solution matrix (see Fig. 2). The
following trivial property holds:

Property 1. Let u be a binary word of length n having h ≤ n 1-elements inside.
Let us consider the n×n matrix A obtained by row wise arranging all the cyclic
shifts of u. Then, A has all horizontal and vertical projections equal to h.

One can easily notice that the rows of the matrix A may not all be different.
Throughout the paper we will denote by M(u) the matrix obtained by row
wise arranging all the different cyclic shifts of a word u. To establish how many
different rows can be obtained by shifting a given binary word, we need to recall
the definitions and main properties of necklaces and Lyndon words.

Following the notation in [21], a binary necklace (briefly necklace) is an equiv-
alence class of binary words under cyclic shift. We identify a necklace with the
lexicographically least representative u in its equivalence class, denoted by [u].

The set of all (the words representative of) the necklaces with length n is
denoted N(n). For example,

N(4) = {0000, 0001, 0011, 0101, 0111, 1111} .

An important class of necklaces are those that are aperiodic. An aperiodic (i.e.
period ≥ n) necklace is called a Lyndon word. Let L(n) denote the set of all
Lyndon words with length n. For example, L(4) = {0001, 0011, 0111}.

We denote fixed-density necklaces, Lyndon words in a similar manner by
adding the additional parameter d to represent the number of 1s in the words.
We refer to the number d as the density of the word. Thus the set of necklaces
with density d is represented by N(n, d), and the set of Lyndon words with
density d is represented by L(n, d). For example, N(4, 2) = {0011, 0101}, and
L(4, 2) = {0011}.
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It is known from Gilbert and Riordan [12] that the number of fixed density
necklaces and Lyndon words is

N(n, d) =
1

n

∑

j\ gcd(n,d)

φ(j)

(
n/j

d/j

)
, L(n, d) =

1

n

∑

j\ gcd(n,d)

μ(j)

(
n/j

d/j

)

respectively, where the symbols φ and μ refer to the Euler and Möbius functions.

Now we enlighten the connection between these objects and our problem, refining
Property 1.

Proposition 1. If u is a word of length n and density h ≤ n, then the cardinality
of [u] (i.e. the number of rows of M(u)) is a divisor of n.

As a consequence, we have the following refinements:

Proposition 2. If u is a Lyndon word of length n and density h, then the
cardinality of [u] (i.e. the number of rows of M(u)) is equal to n, and the vertical
projections of M(u) are all equal to h.

Figure 2 shows the 12 different cyclic shifts of the Lyndon word u = (0)6(1)6

arranged in the first 12 rows of the matrix. All the rows of M(u) have horizontal
and vertical projections equal to the density of u, i.e. 6.

M (000000111111)

1 0 1 0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0 1 0 1 0

000 1110 1 0 1 0 1
1 1 1 1 1 10 0 0 0 0 0

000 111
0 0 1 1 0 0 1 1 0 0 1 1

0 1 0 1 0 1

01 1 1 1 0 0 0
000011111 0

1 01 1 1 1 1 0 0 0 0 0
0
0 0

1
1 1

010 0 0 1 1 1
111000 1 1 0 0

0001110 0 0 1 1 1
0
0 0

1
1 1

111000 0 0 0 1 1 1

0 0 11
1 11000

1 1110000 10
0 0 0 0 1 1 11

0 0 1 10 0 0 0 1 1 11
1
1
1
1 1

1
1

1
1 1

0
0
0
0

0
0 0

00 0

M (010101010101)

M (001100110011)

0

Fig. 2. A solution to Reconstruction(H,V, C) when the horizontal projections have
constant value 6, and the vertical projections 9. The submatrices M(u) obtained by row
wise arranging the elements of three necklaces are highlighted. Note that M((0011)3)
and M((01)6) are the only two possible necklaces of length 12 and density 6 having 4
and 2 rows, respectively.
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Proposition 3. If u = vk (i.e. u = v . . . v, k times), with k = gcd{n, h}, is a
necklace of length n and density h, and v a Lyndon word, then the cardinality of
[u] is equal to n/k, and the vertical projections of M(u) are all equal to h/k.

Figure 2 shows the 12/3 = 4 different cyclic shifts of the word u = (0011)3

arranged from row 13 to row 16 of the matrix, and the 12/6 = 2 different cyclic
shifts of the word v = (01)6 in rows 17 and 18. All the rows of M(u) have
horizontal projections equal to 6 and vertical projections equal to 6/3 = 2, while
the rows of M(v) have horizontal projections equal to 6 and vertical projections
equal to 6/6 = 1.

In the following we will prove that a pair H and V of projections satisfy
Conditions 1, 2, and 3 if and only if they are consistent with a matrix in E ,
solving Consistency(H,V, E).

Let d0 = 1, d1, d2, . . . , dt be the increasing sequence of the common divisors
of n and h. The following equation holds:

(
n

h

)
=

∑

i=0...,t

n

di
L

(
n

di
,
h

di

)
.

This equation is an immediate consequence of the fact that each word of length
n and density h belongs to exactly one necklace.

Theorem 3. Let H and V be two homogeneous vectors of projections of dimen-
sion m and n, and elements h and v, respectively, satisfying Conditions 1, 2,
and 3, i.e. being a valid instance of Consistency(H,V, E). Then, there exists a
Lyndon word L(n/di, h/di) such that n/di ≤ m.

Proof. Let us proceed by contradiction assuming that there does not exist a
Lyndon word whose length is n/d < m, for each d ∈ d1, . . . , dt. Since H and
V are homogeneous, and satisfy Conditions 1 and 2, then there exists a matrix
A having H and V as projections (a consequence of Ryser’s characterization of
solvable instances, as stated in [8], Theorem 3).

Let us assume that d = dt = gcd{n, h}, h′ = h/d, and n′ = n/d; by Condition
1, it holds

h′m = vn′ (5)

with n′ and h′ coprime, so v = h′(m/n′), and n′ divides m. The hypothesis
n′ > m leads to a contradiction. 	

Theorem 3 can be rephrased saying that if H and V are homogeneous consistent
vectors of projections, then there exists a solution that contains all the elements
of a necklace [u]. The solution in linear time of Consistency(H,V, E) is a neat
consequence:

Corollary 1. Let H and V be two homogeneous vectors satisfying Conditions
1, 2, and 3. There always exists a matrix having different rows, and H and V
as projections.
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The result of Theorem 3, together with the following proposition that point out
a property of the necklace whose representant is u = (0)n−h(1)h, will be used in
the next section to solve Reconstruction(H,V, E).
Proposition 4. Let u′ be an element of the class [u], with u = (0)n−h(1)h. The
elements u′, sh(u′), s2h(u′), . . . , s(k−1)h(u′), with k = n/ gcd{n, h}, forms a
subclass of [u], and they can be arranged in a matrix A′ such that

1. the vertical projections of A′ are homogeneous and equal to h/ gcd{n, h};
2. A′ is minimal with respect to the number of rows among the matrices having

H as horizontal projections, and homogeneous vertical projections.

The proof directly follows from the properties of the greatest common divisor. Let
us denote with M(u)1, . . . ,M(u)gcd{n,h} the matrices defined in Proposition 4.

4 An Algorithm to Solve Reconstruction(H, V, E)
We start recalling that in [22] a constant amortized time (CAT) algorithm Fast-
FixedContent for the exhaustive generation of necklaces of fixed length and
density N(n, h) is presented. The author then shows that a slight modification
of his algorithm can also be applied for the CAT generation of Lyndon words
L(n, h) of fixed length and density. In particular, his algorithm –here denoted
GenLyndon(n, h)– constructs a generating tree of the words, and since the
tree has height h, the computational cost of generating k words of L(n, h) is
O(k · h · n).

Our reconstruction algorithm works as follows:

Rec(H,V, E)
Input : Two homogeneous vectors: H = (h, . . . , h) of length m, and V =

(v, . . . , v) of length n, satisfying Conditions 1, 2, and 3.
Output : An element of the class E having H and V as horizontal and vertical

projections, respectively.
Step 1: Let compute the sequence d0 = 1 < d1 < d2 < · · · < dt of the common

divisors of n and h, and initialize the matrix A−1 = ∅.
Step 2: For i = 0 to t do:

Step 2.1: By applying GenLyndon(n, h), generate the sequence of q =
min {�v/h�, L(n, h)} Lyndon words, denoted u1, . . . , uq. If q �= L(n, h),
then do not include in the sequence the Lyndon word (0)n−h(1)h.

Step 2.2: Create the matrix Ai, obtained by row wise arranging the matri-
ces M((uj)

di), for j = 1, . . . , q.
Update v = v − q · h.
If v = 0 then output Ai,
else if q �= L(n, h), create the matrix A obtained by row wise arranging
the matrix Ai with the column wise arranging of di times the matrices
M(u)j , with u = (0)n−h(1)h, j = 1, . . . , q′, and q′ = v · gcd{n, h}/h,
else update n = n/di+1, and h = h/di+1.
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To better understand the reconstruction algorithm, we give a first simple
example with the instance H = (2, . . . , 2) of length m = 15, and V = (5, . . . , 5)
of length n = 6. In Step 1 the values d0 = 1, and d1 = 2 are set.

In Step 2, GenLyndon(6, 2) generates q = 2 Lyndon words, i.e. the words
000011, and 000101; since L(6, 2) = 2, then the word 000011 is included in the
sequence. Now the matrix A0, depicted in Fig. 3, on the left, is created. Finally,
the values v = 5− 2 · 2 = 1, n = 6/2 = 3, and h = 2/2 = 1 are updated.

The second run of Step 2 starts, and GenLyndon(3, 1) generates the Lyndon
word 001. The matrix A1 is created by row wise arranging A0 with the matrix
M((001)2) as shown in Fig. 3, on the right.

1

10 0 0 0

0 0 0 01 1
1 0 0 1 0 0

0
0

0 0
0

0
0 0

0 0

0

0
0
00

1

1
1

0 0 1100

1

1

00

1
1

0 10

1
0

11

0
1

0 10

1
1

0 0

1

1

0 0 1 100

1
1

1

0 0
0

0

0

00

00
0

0
00

0
0

0
0

0 0
0

0
0 0

0 0

0

0
0
00

1

1
1

0 0 11 00

1

1

0 0

1
1

0 1 0

1
0

1 0
0

0 0
0

0
0 0

0 0

0

0
0
00

1

1
1

0 0 11 00

1

1

0 0

1
1

0 1 0

1
0

1

Fig. 3. The solution of dimension 15× 6 obtained by applying Rec(H,V, E) when the
horizontal projections have constant value 2, and the vertical projections 5

A second example concerns the use of the word (0)n−h(1)h that in certain
cases is set aside from the sequence of Lyndon words generated in Step 2: the
instance we consider is H = (3, . . . , 3) of length m = 15, and V = (5, . . . , 5) of
length n = 9. In Step 1 the values d0 = 1, and d1 = 3 are set.

In Step 2, GenLyndon(9, 3) generates q = min{�5/3�, L(9, 3)} = 1 Lyndon
words, i.e. the word 000001011; since q �= L(9, 3), then the word 000000111 is
not included in the sequence. Now the matrix A0, depicted in Fig. 4, on the left,
is created. The value v = 5− 3 · 1 = 2 is set.

Now, since q �= L(9, 3), q′ = 2(= 2 ·gcd{9, 3}/3) submatrices of M(000000111)
are computed, as defined in Proposition 4, and row wise arranged with A0,
obtaining the matrix in Fig. 4, on the right.

Note that without the use of the Lyndon word 000000111, the procedure is
not able to reach the solution since in the second run of Step 2,GenLyndon(3, 1)
generates only one Lyndon word, i.e. 001, whose matrix M((001)3) has
homogeneous vertical projections equal to 1, not enough to reach the desired
value 2.
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Fig. 4. The solution of dimension 15× 9 obtained by applying Rec(H,V, E) when the
horizontal projections have constant value 3, and the vertical projections 5

The validity of Rec(H,V, E) is a simple consequence of Theorem 3. Clearly,
the obtained matrix has homogeneous horizontal and vertical projections, equal
to h and v, respectively, and, by construction, all the rows are distinct. Moreover,
the algorithm always terminates since at each iteration, we add as many rows
as possible to the final solution. Concerning the complexity analysis, we need to
generate O(m) different Lyndon words and shift each of them O(n) times. So,
since the algorithm GenLyndon(n, h) requires O(k · h · n) steps to generate k
words of L(n, h), the whole process takes polynomial time.

We conclude the paper by observing that our strategy could be suitably ex-
tended to a larger class of binary matrices with different rows, homogeneous
horizontal projections, where the vertical projections are “quasi-homogeneous”,
in the sense that their differences are bounded by a constant value.
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