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Abstract. In some applications, the tomographic reconstruction is not
an end in itself. When the goal is rather to gather information about the
object being studied, the question is if it is more interesting to directly
extract these information from the projections without the reconstruct-
ing step. We would then know if less projections are needed to directly
get the information than to reconstruct the object. In this paper, we
address the problem of extracting quantitative information about an ob-
ject namely an estimation of its area, an upper and a lower bound to the
perimeter given its projections from point sources.

1 Introduction

Tomographic reconstruction aims to reconstruct the image of an object given
its projections. In some applications, this is done in the purpose of gathering
information about this object. This information can be of a qualitative type: the
topology (connexity, Euler number, tree of connected components), the geometry
(convexity, shape). The information sought can also be of a quantitative type:
perimeter, surface area, curvature,etc.

Many researches were lead to know how many projections are needed for
the tomographic reconstruction and how this reconstruction is possible in an
optimal way. For example, in [6] it is proven that we need three point sources
to reconstruct a convex set. The aim of our study is to answer the following
question: do we need less projections to directly get the information without
reconstructing the image of the object? In this case, it would be more interesting
to skip the reconstruction step

In literature, some papers worked on this idea. For example in [5] the small-
est possible boundary length of the projected set is estimated from horizontal
and vertical projections, in [3] the perimeter of convex sets is estimated from
horizontal and vertical projections. In [2], decision trees are used to classify hv-
convex sets only from their projections. The cited works consider projections
from parallel X-rays, while we address here the problem for projections from
point sources. This context is more realistic and general than the parallel X-rays
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since the latter is obtained via an approximation supposing that the point source
is at an infinite distance from the object being studied.

This paper is organized as follows. In Section 2 we define the basic tools that
will be used in this work. Section 3 is dedicated to the estimation of the surface
area from point source projections while in Section 4 an upper and a lower bound
to the perimeter are presented.

2 Definition and Notation

In this section we introduce the notation and define the tools that will be useful
in the paper. When a statement is true as well in R

2 and in Z
2, we use the

notation S
2.

All topological notion used in this paper is considered relatively to the usual
topology (Euclidean topology).

With no loss of generality, we consider that the point sources are collinear on
the x-axis.

We start by defining the notion of line segment in the continuous and the
discrete space:

Definition 1. Let a, b ∈ S
2. We define the continuous line segment as [a, b] =

{λa+ (1− λ)b | 0 ≤ λ ≤ 1}.
When a, b ∈ Z

2, we define the discrete line segment as �a, b� = [a, b] ∩ Z
2.

Let E be a subset of R2 and a and b be two distinct points of R2. We use the
following notation:

– If E is a finite set, then |E| is the cardinality of E indicating the number of
elements of E.

– δE is the boundary of E.
– E̊ is the topological interior of E.
– (ab) is the straight line joining a and b.
– P(E) is the powerset of E (P(E) = {F |F ⊆ E}).
– A ray or a half-line Rθ from a point S = (x0, y0) in the direction −→u θ =

(u1, u2) where ||−→u θ|| = 1, and cos θ = u1 and sin θ = u2 can be defined in
different ways:

Rθ =
{
(x, y) ∈ R

2 | u2(x− x0)− u1(y − y0) = 0 and x ≥ x0

}
;

= {(x0, y0) + λ−→u θ | λ ≥ 0} ;
=

{
M ∈ R

2 | P̂ SM = θ
}
;

where P̂ SM denotes the angle between (SP ) and (SM) with P = S+(1, 0)

(see Figure 1.). In what follows, the angle P̂ SM is denoted θM .
– For a point S ∈ R

2, we define the set K(S, S2) formed by all the angles of
all the rays issuing from S and passing through points of S2 with respect to
the horizontal line passing through P = S + (1, 0):
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Fig. 1. The ray RθM is defined by the source point S and the angle θM

K(S, S2) =
{
θM ∈ [0, 2π[ | M ∈ S

2
}
.

– L(E) and A(E) are respectively the perimeter and the surface area of E.

Definition 2. Consider a set E ⊂ R
2, r > 0.

We denote by rZ2 the discrete grid having a resolution that is equal to p = 1/r
called r-grid.

We define the discretization operator Λr: P(R2) 
→ P(rZ2) such that Λr(E) =
Er = E ∩ rZ2.

We now introduce the notions of projections from a point source.
The continuous projection (or R-projection) of E ⊂ R

2 from the point source
S ∈ R

2 \ E denoted XR(E, S, .): [0, 2π[ 
→ R is:

XR(E, S, θ) =

∫ +∞

0

χE(S + t−→u θ)dt.

Where −→u θ = (cos θ, sin θ) and

χE(x) =

⎧
⎪⎨

⎪⎩

1 if x ∈ E

0 otherwise.

Then, XR(E, S, θ) = μ(E ∩Rθ) where μ is the usual Lebesgue’s measure on R.
Let r > 0, we define the notion of discrete projection from a point source on

the r-grid. Let S ∈ R
2 and a finite subset D ⊂ rZ2 such that S /∈ D.

D being a finite set, we have a finite number of rays issuing from S and passing
through points of D and each of these rays passes through a finite number of
points of D. The rZ−projection of D from the point source S is the function
XrZ(D,S, .): [0, 2π[ 
→ N such that:

XrZ(D,S, θ) = |Rθ ∩D| .

Finally, we define the support of the projection for a point source and the pro-
jected set [1].
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Fig. 2. Continuous(left) and discrete(right) point X-rays

Definition 3. Let S ∈ S
2 and E ⊂ S

2 such that S /∈ E. The support of
S−projections of E for the point source S is the set:

SuppS(E, S) =
{
θ ∈ K(S, S2) | XS(E, S, θ) �= 0

}
.

3 Surface Area Estimation from Point X-Rays

In this section, we aim to find an estimation of the surface area of a set given
its projections.

Consider a set E ⊂ R
2, r > 0 and Er = Λr(E).

We suppose in this subsection that we have the exact rZ-projections of Er

for any r. The sum of the projections of Er is the cardinality of Er and then is
the same for any point source. Let nr be the number of the rays from S passing
through all the points of Er. Given the projections from each of these rays, the
number of the points of Er is given by:

|Er| =
nr∑

j=1

srj .

where srj is the number of points of rZ2 lying on the jth ray corresponding to
an angle of SupprZ(Er, S).

In all the following, we suppose that we have the boundary δE = Γ1∪Γ2 such
that Γ1 and Γ2 respectively the graphs of continuous functions f1, f2 : [a, b] 
→ R

with a, b ∈ R (see Figure 3 for illustration).
For each point P = (p1, p2) of rZ2, we consider the pixel centered at P :

W (P ) = {(x, y) ∈ R
2 | |x− p1| ≤ r/2; |y− p2| ≤ r/2}. The area of W (P ) is then

equal to r2. This will be used to estimate the area of Er as follows:

A(Er) = r2 ∗
nr∑

j=1

srj ;

We present in the following proposition a new estimator of the area of E:

Proposition 1. Given a set E ∈ R
2 with δE = Γ1 ∪ Γ2 such that Γ1 and Γ2

respectively the graphs of continuous functions and Er = Λr(E) with r > 0. We
have:

lim
r→0

A(Er) → A(E)
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Γ1

Γ2

a b

Fig. 3. δE = Γ1 ∪ Γ2 such that Γ1 and Γ2 are the graphs of continuous functions

Proof. This proof is based on the Riemann Integral theory. Indeed, consider
a line (ab) that divides the boundary of E into Γ1 and Γ2 such that Γ1 and
Γ2 are respectively the graphs of continuous functions f1, f2 : [a, b] 
→ R.
We can suppose with no loss of generality that (ab) is the x-axis. We are then

interested in measuring A(E) =
∫ b

a
f1(x) dx +

∫ b

a
f2(x) dx. Let us show how to

estimate
∫ b

a
f1(x). The same can be done for f2. We will cover the considered

area with rectangles of width equal to r starting from ar = 
a
r � × r and ending

at br = � b
r � × r as illustrated on Figure 4.

Γ1

r
x

y

a bar br

Fig. 4. The area of the considered set is covered by rectangles of width equal to r

By the property of Riemann’s integral, we have:

lim
r→0

r ×
∑

i

min
x∈[i×r,(i+1)×r]

f1(ar + x) →
∫ b

a

f1(x) dx

In our case, we only have the points with coordinates in rZ2. For a rectangle i,

we consider ni = � f1(ar+i×r)
r � (see Figure 5). The additional error induced by

considering ni instead of f1(ar + i× r) on each rectangle of the partition is then
r × (f1(ar + i × r) − ni × r) where (f1(ar + i × r) − ni × r) ≤ r. Summing on
all the rectangles gives then an error that is at most equal to (b − a) × r. Yet,
limr→0(b − a)× r → 0.

There remains the parts we neglected when we started the rectangles at ar
and finished at br. Since f1 is continuous on the compact subset [a, b], there
exists M(f1) = max

x∈[a,b]
(f1(x)). The area of the neglected part is then at most

equal to 2× r ×M(f1) and so it tends to 0 when r tends to 0. �
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Fig. 5. The error on each rectangle of the partition is r × (f1(ar + i× r)− ni)

3.1 Example

Let E = [1, 2]2 be a square having the sides equal to 1. The projections from
any point source S ∈ R

2 \E of Er = Λr(E), with r = 1/p > 0 and p ∈ N∗, verify
the following:

nr∑

j=1

srj = (
1

r
+ 1)2

The area of the pixel of rZ2 is equal to r2, and so :

A(Er) = (
1

r
+ 1)2 × r1 = 1 + 2r + r2

Then limr→0 A(Er) → 1 = A(E).

4 Perimeter Estimation from Point Sources

In this part we give two lower bounds and a higher bound to the perimeter of a
given set from two projections.

4.1 Lower Bounds of the Perimeter with One Point Source

A lower bound of the perimeter of a set E is given thanks to the following
property called the isoperimetric inequality [4]

L2(E) ≥ 4πA(E)
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where A is the measure of the area enclosed by a curve of length L. When E is
a circle, we obtain the isoperimetric equality: L2(E) = 4πA(E).

From the isoperimetric inequality we can then deduce the following:

Proposition 2. Given E ⊂ R
2 and a point source S ∈ R

2. The perimeter L(E)
of E necessarily verifies the following inequality:

L2(E) ≥ 4π lim
r→0

A(Er) (1)

When E is convex, another lower bound of the perimeter can be given thanks
to the Crofton Formula:

Proposition 3. [Crofton Formula] Let γ : [0, 1] 
→ R
2 be a planar curve.

Then the length of γ is given by

l(γ) = 1/2
∫∫

P
ηγ(ρ, θ) dρdθ

where P = R
+ × [0, 2π[ and for all (ρ, θ) ∈ P, ηγ(ρ, θ) = |γ([0, 1]) ∩ D(ρ, θ)| ∈

N ∩ {∞} which is the number of intersection points of the curve γ with the
straight line D(ρ, θ) as represented in Figure 7.

Then, if ηE(ρ, θ) is the number of points of E on the straight line D(ρ, θ), we
have

L(E) = 1/2

∫∫

P

ηE(ρ, θ) dρdθ

Yet any straight line intersects a convex set in 0, 1 (if it is a tangent line) or 2
points.

With one point source we have :

Proposition 4. Given a convex set E ⊂ R
2 and a point source S ∈ R

2. The
perimeter L(E) of E necessarily verifies the following inequality:

L2(E) ≥
∫∫

Ir ,SuppR(E,S)

dρdθ = |Iρ|∗ |SuppR(E,S)| ≥ 1/2| cos(θu)−cos(θd)|∗ |θu+θd|

Where Iρ = [ρmin, ρmax], θu and θd as represented in Figure 8.
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Fig. 7. Representation of a straight line with (ρ, θ) ∈ R
2 × [0, 2π[
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Fig. 8. Representation of the rays of a point source S. Δθ = θu + θp

4.2 Higher Bound of the Perimeter

To find a higher bound of the perimeter of a given convex set E ⊂ R
2, we need

two point sources S and S′ of R2. Similarly to the notation for S, we denote θ′

the angles of the rays issuing from S′.
Let θ1, θn, θ

′
1 and θ′m be such that

θ1 = min {θ ∈ Supp
R
(E, S)}, θn = max {θ ∈ Supp

R
(E, S)} ,

θ′1 = min {θ′ ∈ Supp
R
(E, S′)}, θ′m = max {θ′ ∈ Supp

R
(E, S′)}.

The following result is true only when both extreme rays of S (Rθ1 and Rθn)
intersect with both extreme rays of S′ (Rθ′

1
and Rθ′

m
). In this situation, let us

consider A,B,C and D the intersection points of the extreme rays of S and S′

see Figure 9. It is evident that we have E ⊆ ABCD. Thus we can prove the
following result.

Proposition 5. Let E ⊂ R
2 and two point sources S, S′ ∈ R

2. The perimeter
of L(E) of E necessarily verifies the following inequality:

L(E) ≤ L(ABCD)

where A,B,C and D are the intersection points of the extreme rays of S and S′.

Proof. As proven in [3], since ABCD is a convex, E is a convex as well, and
E ⊆ ABCD, then L(E) ≤ L(ABCD).
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Fig. 9. A,B,C and D the intersection points of the extreme rays of S and S′

4.3 Example

We consider the same square E = [1, 2]2 as for the last section. We suppose that
the vertices are (1, 1), (2, 1), (1, 2) and (2, 2). We have L(E) = 4.

– First lower bound:
Using the information about the surface area A(E) we have: L2(E) ≥ 4π ×
1 = 12.566 and so L ≥ √

12.566 = 3.54.
– Second lower bound:

To apply the Crofton formula we consider a point source S = (2, 0) (see
Figure 10).
We have then θu = 45 and θd = 0. Thus:

L2(E) ≥ 1

2
|
√
2

2
− 1| ∗ 45 = 6.59

– Upper bound:
To compute the upper bound to the perimeter, we consider a second point
source S′ = (0, 1) as illustrated on Figure 11.
We have then L(E) ≤ 3 + 2

√
2 = 5.82.

θu ∗
S(0, 0)

Fig. 10. The square E and a point source S = (2, 0). L(E) = 4.
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Fig. 11. Computation of an upper bound to the square. ABCD = 3 + 2
√
2

The perimeter verifies then :

3.54 ≤ L(E) = 4 ≤ 5.82.

5 Conclusion

We presented in this paper a new method of extracting some information about
sets given the projections from point sources. With one point source, we can
estimate the surface area of the projected set and find two lower bounds for
its perimeter. An additional point source is needed in order to have a higher
bound of the perimeter. This quantitative information is deduced directly from
the projection with no reconstruction step and with less point sources than for
the reconstruction.

A question remains about the possibility of estimating the perimeter from
projections with two point sources. Another interesting perspective to this work
is the extraction of qualitative information from projections such as topological
information.
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