
Enforcing QVT-R with mu-Calculus and Games

Julian Bradfield and Perdita Stevens

School of Informatics
University of Edinburgh

Abstract. QVT-R is the standard Object Management Group bidi-
rectional transformation language. In previous work, we gave a precise
game-theoretic semantics for the checkonly semantics of QVT-R trans-
formations, including the recursive invocation of relations which is al-
lowed and used, but not defined, by the QVT standard. In this paper,
we take up the problem of enforce semantics, where the standard at-
tempts formality, but at crucial points lapses into English. We show that
our previous semantics can be extended to enforce mode, giving a precise
semantics taking the standard into account.

1 Introduction

QVT-R is the OMG standard bidirectional model transformation language [8].
It is bidirectional in the sense that, rather than simply permitting one model
to be built from others, it permits changes to be propagated in any direction,
something which seems to be essential in much real-world model-driven devel-
opment. The same transformation can be read as specifying the circumstances
under which models are consistent (checkonly mode) or as specifying exactly
how one model should be modified so as to restore consistency that has been
lost (enforce mode). This dual use of the same transformation text is beneficial
in engineering terms; separate texts for checkonly and enforce transformations
would be a maintenance nightmare. In earlier work [3,12] we gave formal se-
mantics for QVT-R in checkonly mode, including transformations in which a
relation may recursively invoke itself; this feature is used even in the example
in [8], and presents interesting complications which we tackled using the modal
mu calculus. A thorough understanding of checkonly mode is prerequisite to
understanding enforce mode, because of the requirement (hippocraticness) that
running a transformation in enforce mode should not modify models which are
already consistent.

In this paper, we go on to give a formal semantics for QVT-R in enforce mode.
Unlike previous work, we do not restrict to the case where the target model is
created afresh from the source model; we work with the general case in which
there is an existing target model which must be taken into account when produc-
ing a new version. This, the typical case of bidirectional transformation arising in
model-driven development, is more complex – even when the transformation is
not recursive – because there will usually be many different target models that

V. Cortellessa and D. Varró (Eds.): FASE 2013, LNCS 7793, pp. 282–296, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Enforcing QVT-R with mu-Calculus and Games 283

are consistent with the given source model, and the preexisting target model
influences which one is produced.

As an illustrative example, consider the following transformation (given in
ModelMorf’s QVT-R syntax), which operates on models that have two kinds of
model elements MEtop and MEchild. Both kinds have names; MEtop elements
can also have children which are of type MEchild. We represent such models
in the obvious way as forests, and notate them using the names of elements,
e.g. {N → {child1, child2, child2}} represents a model containing one element
of type MEtop with name “N”, having three children of type MEchild whose
names are “child1”, “child2”, “child2”. Notice that there is nothing to prevent
two model elements having the same name (no key declaration, for example).

transformation NonTopEnforce (m1 : TwoLayerMM1 ; m2 : TwoLayerMM2) {

top relation R {

n : String;

firstchild : TwoLayerMM1::MEchild;

secondchild : TwoLayerMM2::MEchild;

enforce domain m1 me1:MEtop {name = n, child = firstchild};

enforce domain m2 me2:MEtop {name = n, child = secondchild};

where { S(firstchild,secondchild); }}

relation S {

n : String;

enforce domain m1 me1:MEchild {name = n};

enforce domain m2 me2:MEchild {name = n};}}

Models are consistent according to this transformation provided that two
directional checks succeed. For every MEtop element me1 in m1, there must be an
MEtop element me2 of the same name in m2, such that the name of every child

of me1 occurs as the name of a child of me2. The check in the m2 direction is
symmetric.

Running this transformation in checkonly mode in ModelMorf, consulting
[8], yields no surprises. Running it in enforce mode lets us illustrate semantic
choices that [8] has made and some odd behaviour of ModelMorf. Let m1 be {N →
{child1, child2, child3}} throughout. If m2 is identical, of course it is not modified
(except that ModelMorf, for some reason, rewrites all the xmi:ids): check-before-
enforce ensures that, since the models are already consistent, no change is made.
Next, let m2 be the empty model, and enforce so that a new m2 is created from
m1. ModelMorf produces {N → {child1}, {N → {child2}, {N → {child3}} (not
the copy of m1 that some might intuitively expect). This is consistent with (our
reading of) [8]; it arises because each valid binding to variables in R is checked
independently. Thus for each binding to me1, (n and) firstchild for which no
matching binding is found, new objects are created for me2 and secondchild

and the child property of me2 is set to secondchild.
Next consider m2 = {N → {child1, child2, cuckoo}}. Interpreting this as the

name of the third child being wrong, we would intuitively expect the least change
modification to be made, i.e. for the name “cuckoo” to be changed to “child3”.
By the same argument as above, however, we see that ModelMorf is in accord
with [8] in actually returning {N → {child1, child2}, {N → {child3}}}. Rather

284 J. Bradfield and P. Stevens

than modify an existing child, a whole new binding is created to be the match.
Here we have the first obvious use of the delete phase: the child named “cuckoo”
has been removed. Why is this? We may argue: because if it had been left alone
– if ModelMorf had returned {N → {child1, child2, cuckoo}, {N → {child3}}} –
the resulting version of m2 would not have been consistent with m1 when checked
in the direction of m1. Even though any run of ModelMorf has a direction (in con-
trast to [8] in which a transformation being evaluated in checkonly mode involves
checks in all directions, as explained in detail in [12]), ModelMorf does ensure
that the result of an enforce transformation passes the checkonly transformation
in all directions, not just in the same direction as the enforce.

Finally, however, consider m2 = {N → {child1, child2, child2}}. In this case,
the checkonly transformation run in the direction of m1 will already succeed;
the only problem is when running the checkonly transformation in the direc-
tion of m2, as there is no valid match for valid binding of me1 to the unique
MEtop and firstchild to the MEchild with name “child3”. We would expect
{N → {child1, child2, child2}, {N → {child3}}} as the result of enforcement.
In fact, however, ModelMorf unnecessarily deletes one of the “child2” MEchilds,
giving exactly the same result as in the “cuckoo” case. As we shall discuss, the
interpretation of element deletion in [8] is problematic and so it is not very sur-
prising that ModelMorf sometimes gives odd results. We discuss this further in
section 4.3.
We will return to these examples after presenting our semantics.

2 Related Work

The first crucial feature of QVT-R enforce mode with which this paper is con-
cerned is its true bidirectional nature. That is, the model which is computed as
the result of a QVT-R transformation in enforce mode depends on two (or in
general, more) models: the “source” model(s) and the existing “target” model.
The second feature we emphasise is the possibility of recursion, in which one
relation may invoke another, or even itself, on different or the same arguments.
Both of these features are important to practical usability of QVT-R, as we
argued more fully in [3] for recursion and in [11] for bidirectionality.

Most previous work on model transformations, and to our knowledge all pre-
vious work on QVT-R enforce mode, does not address either of these features.
Rather, it formalises only the special case in which the original target model is
empty, so that the QVT-R transformation simply produces the target model from
the source model (we will call this “unidirectional QVT-R”); and it assumes that
the when-where graph, the “call graph” of QVT-R relations, is acyclic (“acyclic
QVT-R”).

Triple graph grammars [10] do have this property of modifying an existing
target model in the light of a source model. This works, roughly, by jointly pars-
ing the input graph models, making use of (or constructing) a correspondence
graph that connects them, so that a hypothetical source model consistent with
the current target model, together with a sequence of rules that would lead from

Enforcing QVT-R with mu-Calculus and Games 285

the hypothetical to the current source model, is known. Then this sequence of
rules is applied to the current target model to give the result target model. By
placing careful restrictions, it is possible to ensure that the process succeeds and
gives a uniquely defined result [7]. Greenyer and Kindler [6] gave a translation
from QVT Core to Triple Graph Grammars (TGGs), and informally discuss
trying to extend the approach to QVT-R, although they do not provide a se-
mantics for QVT-R. Unfortunately, as discussed at length in [12], the claim in
[8] that QVT-R can be translated in a semantics-preserving way to QVT Core
is not sustainable (QVT Core is insufficiently expressive), so this approach does
not lead to a semantics for QVT-R. The same problem may apply to [4] which a
semantics for QVT-R enforce mode (with both unidirectional and acyclic restric-
tions) using coloured petri nets; it states that it is consistent with [8]’s incorrect
translation to QVT Core. Another paper in this tradition is [14] which discusses
using CPN theory as implemented in a model transformation framework called
TROPIC to provide debugging facilities for QVT-R transformations. Again, the
paper addresses only the unidirectional use of QVT-R.

Romeikat and others [9] translated QVT-R transformations, restricted to the
acyclic case, to QVT Operational. The focus is on unidirectional use of QVT-
R. The bidirectional case is discussed briefly, but not in detail; it seems to be
considered only where all model elements are identified by key expressions. A
different approach is to give semantics to QVT-R using algebraic specification,
as exemplified by [1], which describes the MOMENT-QVT tool. This work, too,
addressed only the unidirectional use of QVT-R. Recursive relation invocations
are not discussed and do not seem to be allowed for.

The two extant tools addressing QVT-R are Medini and ModelMorf. As dis-
cussed in [12], Medini deliberately departs from [8]. ModelMorf is thus the most
reliable (although not infallible) implementation and the one we compare our
semantics with.

3 Preliminaries

3.1 QVT-R

A transformation T is defined over a finite set of (usually two)metamodels (types
for the input models) and, when executed in enforce mode, can be thought of as a
function from tuples of models, each conforming to the appropriate metamodel,
to an updated model (or failure). In any execution there is a direction, that is,
a distinguished model which is being checked/enforced. The argument models
are also known as domains and we will be discussing transformation execution
in the direction of the kth domain. That is, the kth argument model is being
checked/enforced against the others. See [12] for further discussion; here we
assume some familiarity with QVT-R.

We use the notions of variables, values, typing, bindings and expressions. In
QVT-R these matters are prescribed, building on the MOF metamodelling dis-
cipline and OCL. The available types are the metaclasses from any of the meta-
models, together with a set of base types (defined in OCL) such as booleans,

286 J. Bradfield and P. Stevens

strings and integers, and collections. Values are instances of these. The expres-
sion language is an extension of OCL over the metamodels. QVT-R is a typed
language, with some type inference expected.

In this paper, as in the previous work, we do not depend on QVT-R’s partic-
ular choices in these matters, but provide a framework applicable to any similar
language. We assume given sets Var of typed variables, Val of values and Expr
of typed expressions over variables. We write fv(e) for the set of free variables
in e ∈ Expr. Constraint is the subset of Expr consisting of expressions of type
Boolean. A (partial) set of bindings B for a set V ⊆ Var of variables will be a
(partial) function B : V ⇀ Val satisfying the typing discipline. We write B′ � B
when dom(B′) ⊇ dom(B) and B′ and B agree on dom(B). We assume given an
evaluation partial function eval : Expr × Binding ⇀ Val defined on any (e, b)
where fv(e) ⊆ dom(b). Like [8] we will assume all transformations we consider
are statically well-typed.

A transformation T is structured as a finite set of relations R1 . . . Rn, one or
more of which are designated as top relations. A QVT-R relation is not (just) a
mathematical relation – it consists of: a unique name; for each domain a typed
domain variable and a pattern; and optional when and where clauses. We allow
when or where clauses to contain arbitrary boolean combinations of relation
invocations and boolean constraints (from Constraint). A relation invocation
consists of the name of a relation together with an ordered list of argument
expressions. Evaluating these expressions yields values for the domain variables
of the invoked relation. We write rel(T) for the set of names of relations in T
and top(T) ⊆ rel(T) for the names of relations designated top. A pattern is a set
of typed variables together with a constraint (“domain-local constraint”) over
these variables and the domain variable. A variable may occur in more than one
pattern, provided that its type is the same in all.

The set of all variables used (in QVT-R declarations can be implicit) in a
relation R will be denoted vars(R). The subset of vars(R) mentioned in the when
clause of R is denoted whenvars(R). The subset mentioned in the domains other
than the kth domain is denoted nonkvars(R). The set containing the domain
variables is denoted domainvars(R). These subsets of vars(R) may overlap.

3.2 Game/mu-Calculus Semantics for QVT-R

In [3], we gave our semantics both in terms of a game and in terms of a modal
mu-calculus formula, the two presentations being equivalent. Although the game
version is easier to understand, the logical version is more concise and easier to
adapt; so for reasons of space, we here give details only in the logical form.

The meta-logic for our semantics is modal mu-calculus. We refer to [3] for
a fuller explanation of the logic and its relation to the game. Here we recap
briefly the key points. The structures for the logic are transition systems – i.e.
edge-labelled graphs – and formulae are true or false at states (nodes) in the
systems. The formula [a]φ is true at s iff φ is true at every state reached from
s by a single a-transition (‘a-successor’); 〈a〉φ is true iff φ is true at some a-
successor. The greatest and least fixpoints νZ.φ(Z) and μZ.φ(Z) are formally

Enforcing QVT-R with mu-Calculus and Games 287

co-inductive and inductive definitions, but are best understood as allowing the
specification of looping behaviour – infinite loops for greatest fixpoints, and finite
(but unbounded) loops for least fixpoints. Establishing a formula corresponds to
constructing a winning strategy in the game for Verifier where she chooses at ∨
and 〈〉, and Refuter chooses at ∧ and []. See [2] for a detailed explanation of the
relation between modal mu-calculus, parity automata, and parity games.

Our semantics translates a QVT-R checkonly transformation instance into
a modal mu calculus model-checking instance. Again, we refer to [3] for a full
explanation. The key points are that we build a transition system encoding all
the non-logical information about the models and the transformation, and we
build a formula encoding the purely logical aspects.

Apart from a distinguished initial node, nodes of the transition system we
construct each consist of a pair (R,B) whereR ∈ rel(T) and B : vars(R) ⇀ Val is
a set of (well-typed, as always) bindings. In order to be able to handle cases where
the same relation may be invoked more than once in the when or where clause
of another relation, we begin by labelling each relation invocation in the static
transformation text with a natural number, so that an invocation R(e1, . . . , en)
is replaced by Ri(e1, . . . , en) for an i unique within the transformation; invoking
the relation at invocation i will be modelled by a transition labelled invokei.
Figure 1 defines the LTS formally. Note that the direction parameter k affects
the meaning of nonkvars.

The boolean flag is needed to handle negation, and in particular the negation
implicit in when clauses. When the flag is true, the players have their usual roles;
when the flag is false, they swap turns, so that Verifier handles [] and so on.

The mu calculus formula does not represent the domain variables, the patterns
or the arguments to the relation invocations: all that information is represented
in the transition system, and the invokei transitions and modalities connect the
LTS and formula appropriately. Figure 1 defines the translation process formally.

Note that tr2 is used to translate when and where clauses, building an envi-
ronment that maps relations to mu variables in the process. Relation invocations
are translated using the environment if the relation has been seen before, and
otherwise, using a new fixpoint.

As discussed in [3], the possibility of recursive relation invocations in when
clauses leads to potential undefined results. We adopt the well-formedness re-
quirement defined and justified in [3], that there must be an even number of
negations and whens between two invocations of a relation.

4 Enforcement

The description of enforcement semantics in [8], as with its description of check-
only semantics, does not address how to treat relations that are called in the
when and where clauses of other relations. The “formal” semantics in Annex B
uses a predicate logic formula, although it is actually understood as an impera-
tive program. The only way to interpret this, is that relation invocations other
than at top level are treated as pure predicates. Consequently, object creation

288 J. Bradfield and P. Stevens

Input: Transformation T defined over metamodels Mi, models mi : Mi, direction k.
Output: Labelled transition system lts(T,mi, k) = (Initial, A, S,−→)
Nodes:
S = {Initial} ∪ {(R,B) : R ∈ rel(T),B : vars(R) ⇀ Val}
Labels:
A = {challenge, response, ext1, ext2} ∪ {invokei : i ∈ N}
Transitions:
Initial

challenge−→ (R,B) if R ∈ top(T) and dom(B) = whenvars(R) ∪
nonkvars(R)

(R,B)
response−→ (R,B′) if dom(B) = whenvars(R)∪nonkvars(R) andB′ � B

and dom(B′) = vars(R)

(R,B)
ext1−→ (R,B′) if dom(B) = domainvars(R) and B′ � B

and dom(B′) = domainvars(R) ∪ whenvars(R) ∪
nonkvars(R)

(R,B)
ext2−→ (R,B′) if dom(B) = domainvars(R) ∪ whenvars(R) ∪

nonkvars(R) and B′ � B and dom(B′) = vars(R)

(R,B)
invokej−→ (S,B′) if S is invoked at the invocation labelled j in the

where clause of R with arguments ei, dom(B) =
vars(R) and dom(B′) = domainvars(S) with ∀i ∈
domainvars(S).B′ : vi �→ eval(ei, B)

(R,B)
invokej−→ (S,B′) if S is invoked at the invocation labelled j in the

when clause of R, with arguments ei, dom(B) ⊇
whenvars(R) and dom(B′) = domainvars(S) with
∀i ∈ domainvars(S).B′ : vi �→ eval(ei, B)

LTS definition

Input: Transformation T . Output: tr(T) given by:
tr(T) =

∧
Ri∈top(T) tr1(Ri)

tr1(Ri) = [challenge] (〈response〉(tr2∅(where(Ri), true)∨
tr2∅(when(Ri), false))

tr2E(φ, true) = φ
tr2E(φ, false) = ¬φ
tr2E(e and e′, true) = tr2E(e, true) ∧ tr2E(e

′, true)
tr2E(e and e′, false) = tr2E(e, false) ∨ tr2E(e

′, false)
tr2E(e or e′, true) = tr2E(e, true) ∨ tr2E(e

′, true)
tr2E(e or e′, false) = tr2E(e, false) ∧ tr2E(e

′, false)
tr2E(not e, b) = tr2E(e,¬b)
tr2E(R

i(e1 . . . en), true) = 〈invokei〉E[R] if R ∈ domE
tr2E(R

i(e1 . . . en), true) = 〈invokei〉νX. ([ext1]
(〈ext2〉tr2E[R �→X](where(R), true)∨
tr2E[R �→X](when(R), false))

otherwise

tr2E(R
i(e1 . . . en), false) = [invokei] (¬E[R]) if R ∈ domE

tr2E(R
i(e1 . . . en), false) = [invokei]μX. (〈ext1〉

([ext2] tr2E[R �→¬X](where(R), false)∧
tr2E[R �→¬X](when(R), true))

otherwise

Mu calculus formula definition

Fig. 1. Definition of the checkonly translation

Enforcing QVT-R with mu-Calculus and Games 289

or update happens only in top level relation calls. As we saw in the introduc-
tion, this leads to the creation of many new objects in top level bindings, where a
smaller change could be achieved by recursively enforcing the lower level relation.
In this paper we present only semantics following the approach of [8].

The [8, Annex B] enforcement specification breaks into two steps: first, cre-
ate (or modify) any objects in the target required to satisfy the transformation;
secondly, delete certain objects in the target not required to exist by the trans-
formation. We use the same phases.

4.1 Extending the QVT Game/Logic for Enforcement

Determining that two models are consistent, in our semantics, amounts to finding
a winning strategy for Verifier, or alternatively establishing the truth of a formula
expressed in mu-calculus. To play an enforcement game, we need to give Verifier
additional moves: if she is unable to win the checkonly game at a certain point,
she has the option to change the model and try again. In mu-calculus terms,
this amounts to adding disjunctions at appropriate places in the formula, with
formulae involving a model-changing transition.

The model-changing is encoded thus: the states of the transition system in
Fig. 1 are extended to be of the form (Initial,M) or (R,B,M) so that they carry
the (entire) target model M as part of the state, and the transitions defined
there leave it untouched. For technical reasons, the models M also include a
‘modification record’ for each model element, saying whether a given property
has been changed.

4.2 The Object Creation/Update Phase

The first extension to our previous semantics is to force the re-start of check-
ing/enforcement after a model update. While Annex B does not discuss this, it
is obvious that after a model update, all top relations may need to be checked
again. (Of course a tool might optimise.) Therefore we wrap the entire top level
formula in a least fixpoint, so that the first line of Fig. 1 ‘formula definition’ is
changed to

tr(T) = μW.
∧

Ri∈top(T)

tr1(Ri)

where the variable W will appear later in the translation, and the fixpoint has to
be minimal because for enforcement to succeed, only a finite number of updates
can be done.

Per Annex B, object creation (or update) occurs if, after source and when
bindings are chosen, there is no binding to the target variables that satisfies
the domain pattern. In our game, this occurs at the point following a challenge
transition taken by Refuter. If Verifier is unable to choose bindings that let her
win, or to win by challenging the when clause, she has the possibility to update
the model, so line 2 of Fig. 1 ‘formula definition’ becomes

tr1(Ri) = [challenge] (〈response〉(tr2∅(where(Ri), true))

290 J. Bradfield and P. Stevens

∨ tr2∅(when(Ri), false)
∨ 〈update〉W)

and the update transitions are defined by

(R,B,M)
update−→ (Initial,M ′) if (*)

where the side-condition property (*) must capture when changing the model
to M ′ is legal. (*) depends on whether the kth domain variable, say me:ME, is
already in dom(B) (which will be the case if me ∈ whenvars(R)), and whether a
key constraint is specified for ME. If me �∈ dom(B) and ME has no key constraint,
then M ′ is a model formed from M by creating a new object, say o, of type
ME, with properties set according to the kth domain pattern of R with bindings
from B.

However, the domain pattern does not (usually) specify all properties of o and,
for enforcement to succeed, properties that are not specified may nevertheless
matter, as they may have to take values which will cause a where clause to
succeed – note that the actual point in the transformation at which the values
of these properties of o matter could be arbitrarily many invocations away from
R. [8] does not specify how such properties are to be set, but a useful tool must
find correct values as often as possible (not “if they exist”, because it is clear
that the problem in general is noncomputable, given a constraint language as
powerful as OCL). In our semantics, we model an update transition for every
legal choice of the properties. A choice is legal if it obeys the metamodel and
domain pattern (including domain-local constraints). Note that our transition
system already contained infinite branching because of the potentially infinite
choices for bindings; we will shortly discuss how a transformation engine could
ensure determinacy by searching systematically for a winning strategy (and thus
always finding the same one, even if there are many).

If a new object o cannot be created because me was already bound (say to o′)
in B, then (*) must permit no update transition unless there is a key specification
for ME, because only then will it be legal to modify properties of o′.

Now consider the case where there is a key specification for ME such that the
bindings in B determine an object (say o′) in M (regardless of whether this is
because B includes a binding of me to o′ itself, or because it includes bindings
for key properties that determine o′). Then (*) is adjusted to make M ′ the result
of modifying properties of o′, that have not already been marked ‘modified’ to a
different value, in any way which is valid according to the metamodel, domain
pattern, and domain local constraint as before, and setting the modification flag
on the object’s modified properties. (The reason for the modification flag is that
enforcement is required to fail if an object is modified in inconsistent ways.)

Corresponding moves are added to the game presentation, allowing Verifier a
move modifying the target model if she cannot win by either providing bindings
from the current model or challenging the when clause. (Details are elided as,
although simple, they do become long-winded: if Verifier tries to choose an up-
date move when in fact she could have won by one of the other move types –

Enforcing QVT-R with mu-Calculus and Games 291

that is, if she makes an unnecessary change to the model – we need to let Re-
futer win by demonstrating that her update was unnecessary. This corresponds
to the inverting of Boolean flags in the short circuit evaluation version of the mu
formula below.)

A logical formula has no order of evaluation built in, whereas the imperative
interpretation of Annex B does. It is possible to impose an order of evaluation
externally upon the model-checker; it is also possible to modify the formula
to simulate it. This makes no difference to whether our enforcement formula
succeeds, but it does affect the model that results from evaluating whether en-
forcement succeeds. If our formula is to do updates only when needed, we can
simulate short-circuit evaluation by modifying the new formula thus:

tr1(Ri) = [challenge] ((〈response〉(tr2∅(where(Ri), true)))
∨tr2∅(when(Ri), false)
∨(([response] tr2∅(where(Ri), false))
∧tr2∅(when(Ri), true) ∧ 〈update〉W))

so that Verifier can only successfully choose the update branch if the other
branches fail. (Here we use [3, Lemma 1].)

There is one issue that is best dealt with by the evaluation/model-checking
procedure, rather than in the formula or game. There is, in general, nothing to
stop Verifier from making unnecessary updates, by choosing an update transi-
tion that does not in fact satisfy the where clause; she will then re-start, and
update again. With sufficient additional book-keeping in the model and formula,
this could be avoided; however, it is simpler to invoke the notions of ‘canonical
tableau’ or ‘optimal progress measures’ from the theory of mu-calculus model-
checking, so that the model-checker constructs the strategy with the smallest
number of updates. (So-called bottom-up model-checkers do this automatically;
top-down model-checkers do not. See [2].)

At this point, our semantics matches that of Annex B after the create phase.
Showing that the formula is true amounts to constructing a winning strategy
for Verifier in the game, and the constructed model is extracted by examining
the update transitions in the winning strategy (or, in practice, by examining the
trace of updates taken during construction).

Enforcement may involve creating and choosing properties for many new ob-
jects. It is also possible that an object created by one update may be used (e.g.
with modification) by a subsequent update. It is therefore possible in general
that the constructed model depends on the order of transition choices in modal-
ities, which in turn depends on the order in which source bindings are checked
– in our terms, on the order in which Refuter makes choices when challenging.
While this is also the case in Annex B, it is desirable that an enforcement algo-
rithm should be deterministic, which requires fixing the order of all choices. It
is not feasible or sensible to encode this into the logic; rather it is appropriately
done by specifying how the mu-calculus model-checking algorithm proceeds, or
equivalently how the construction of a winning strategy proceeds. While all real
model-checkers make such choices, they do not normally expose them; if the

292 J. Bradfield and P. Stevens

result of enforcement is to be unique, the choices must be explicit. For example,
we might specify that formulae are checked left to right, and that when choos-
ing a transition, the possible transitions are ordered according to their internal
representations and the lowest in the order is taken.

4.3 The Deletion Phase

Here we need to be cautious because a literal reading of [8] (sections 7.10.2 and
Annex B) gives behaviour that is clearly undesirable and contradicts Model-
Morf’s behaviour. [8] specifies that certain elements of the target model, that
constitute valid bindings of domain k variables, are deleted if they are not ‘re-
quired to exist’ by the relation. For example, if model m1 contains an E1type

with name ’foo’, and m2 contains no E2type called ’foo’, then enforcing the
relation

top relation Zap {

n : String;

domain m1 e1:E1type { name=n };

domain m2 e2:E2type { name=n };

when { n = ’foo’; } }

on m2 would, in addition to creating a new E2type called ’foo’, delete all E2type
elements in the old m2, because they are not required to exist by the relation. It
is hard to believe that this is the desired result, and indeed ModelMorf does not
do this (it sensibly creates a new ’foo’ E2type, leaving other E2types alone).

To see what is probably intended, consider the same relation without the when
clause, which ought to embody a more stringent consistency check:

top relation Matchname {

n : String;

domain m1 e1:E1type { name=n };

domain m2 e2:E2type { name=n };}

Bidirectionally, this says every E1type element in one domain has a (not neces-
sarily unique) matching-named element in the other. Suppose we enforce on m2,
and there is an element e called ’foo’ in m2 with no match in m1. We expect
it to be deleted. [8] will delete it because it is ‘not required’. However, the real
reason for deleting is surely that it fails the relation in the direction m1; it is not
that e is not required, it is that its absence is required for Matchname to check
in the m1 direction (as we are not allowed to create an element in m1).

Deciding that we should delete objects whose absence is required, we can
implement the deletion phase more easily: for each checked (source) domain j
(e.g. m1 above), we set up the transition system and formula for checking in the
direction of the jth domain, and then modify the formula exactly as before, but
replacing update by delete, and add transitions

(R,B,M)
delete−→ (Initial,M ′) if (**)

Enforcing QVT-R with mu-Calculus and Games 293

where property (**) is: M ′ is the model formed from M by deleting the object
bound in B to the top level domain variable of the kth domain (which is now
a source domain for the checkonly formula). In the typical case of two domains,
we only need run the delete step once; where there are k > 2 checked domains
and we are enforcing on the kth, we must run the deletion step for each of the
domains j = 1, . . . , k − 1.

If this formula evaluates to true, the resulting model is read off from the
winning strategy as before.

4.4 Putting It together

Enforcement now amounts to first evaluating the creation formula; if it is true,
read off the model and evaluate the deletion formula. If that is true, read off
the model. If either stage fails, then enforcement fails, either because there is no
way to restore consistency, or because the simple-minded update strategy is not
powerful enough to do so.

There is one further check needed: the resulting model must be checked (in
checkonly mode) ab initio, as it is possible that inconsistency in the transfor-
mation arises from the combination of creation and deletion – for example, an
object might be required to exist by checking in direction k, but required not to
exist by checking in the direction k′.

This procedure can be coded up to produce a single giant transition sys-
tem and formula, but the process is not enlightening, and does not simplify
correctness.

5 Example

Consider the example NonTopEnforcewith m1= {N → {child1, child2, child3}},
from Section 1, enforcing against an empty model m2. We demonstrate a “best”
winning strategy (canonical tableau) for Verifier: as discussed this avoids unnes-
sary updates. Refuter will challenge in R by binding {n �→ ’N’, f irstchild �→ c1}
where c1 is one of the three children, say the one with name ’child1’. (In mu
calculus terms, we pass through [challenge] and along a challenge transition
to a game position with this binding.) Verifier will be unable to find matching
bindings and there is no when clause so she will update the model. (In mu cal-
culus terms, the first two disjuncts of the short-circuiting formula are false so
model checking proceeds to the 〈update〉 disjunct.) There are no key expres-
sions and me2 is not bound, so Verifier creates a new MEtop element and sets
its properties according to the domain pattern: that is, its name will be ’N’. She
must also create a MEchild element to bind to secondchild but is not con-
strained as to its properties: all of the infinitely many choices are legal game
moves and correspond to infinitely many update transitions each to a different
modified model. Playing a best strategy, however, she creates an MEchild with
name ’child1’. Play now restarts at the initial position with the modified model.
If Refuter were to make the same challenge this time, he would lose because

294 J. Bradfield and P. Stevens

Verifier now has bindings with which to match. If, instead, he challenges with
one of the other children, say with binding {n �→ ’N’, f irstchild �→ c2} where
c2’s name is ’child2’, exactly the same thing will happen. Although Verifier could
this time choose matching bindings, she could not win by doing so (in mu cal-
culus terms, although 〈response〉tt is true, 〈response〉(tr2∅(where(Ri), true)) is
false) and so she will choose to create a new MEtop element, again with name
’N’, and a new MEchild to be the value of its child property and to bind to
secondchild. Repeating once more we find that the result of the create phase
of the game (playing with a best strategy so that no junk has been created)
is {N → {child1}, {N → {child2}, {N → {child3}}. (In mu calculus terms we
have unwound the fixpoint W three times, once for each update; no fewer un-
windings would lead to success.) The checkonly game in direction m1 is won by
Verifier already so no deletions are required.

6 Properties of Transformations

In [11] we formalised properties that, we argued, should hold of bidirectional
transformations; other work in this direction includes [5,13]. Now that we have
formal semantics for QVT-R in both checkonly and enforce mode, it makes
sense to ask whether it has properties of interest. Recall that a bidirectional
transformation R : M ↔ N can be modelled by a triple R ⊆ M × N (slight

abuse of notation),
−→
R : M × N → N ,

←−
R : M × N → M . In QVT-R, R(m,n)

should be true iffR returns true when run in checkonly mode (either direction) on

models m and n, while
−→
R (m,n) returns n′ if R run in enforce mode with source

m and target n, i.e. in the direction of n, modifies n to n′. Because enforcement
is not guaranteed to succeed in our setting (whether because of inconsistency

or uncomputability), we must modify the framework to make
−→
R and

←−
R partial

functions, which may return ⊥.
Relatively uncontroversial properties are (partial) correctness and hippocratic-

ness. We prove that these both hold of every well-defined QVT-R transformation,
interpreted according to our checkonly and enforce semantics.

Theorem 1. Given our semantics, QVT-R is (partially) correct: that is, for

any well-defined transformation R and models m and n, if
−→
R (m,n) �= ⊥, then

R(m,
−→
R (m,n)), and dually.

Proof. By construction, our enforcement semantics ensures that any transfor-
mation execution finishes with a full checkonly evaluation, and fails if this is not
satisfied.

Theorem 2. Given our semantics, QVT-R is hippocratic: that is, for any well-

defined transformation R and models m and n, R(m,n) ⇒ −→R (m,n) = n and
dually.

Proof. Our enforcement semantics is the evaluation of a formula which (via the
simulation of short-circuit evaluation) only proceeds into a branch containing

Enforcing QVT-R with mu-Calculus and Games 295

model-changing transitions if the models do not already satisfy the checkonly
formula (proved correct in [3]).

Undoability, the third property discussed in [11], is more problematic. As is now
well-understood, although theoretically desirable because it gives good algebraic
properties, it is in practice too strong. It is straightforward to construct an exam-
ple in which both our semantics and ModelMorf fail undoability: deleting, and
then recreating, a piece of information on one side results in the loss of anything
on the other side that was “stuck” to the deleted and recreated information.
Thus we cannot expect QVT-R transformations to be undoable.

7 Conclusions and Future Work

By giving formal semantics to QVT-R enforce mode, we have clarified issues, par-
ticularly with object deletion, in the standard, and we have brought this hard
problem into the much studied and well understood domain of model-checking.
Our semantics relies on model-checking algorithms that can compute the canon-
ical tableau or best winning strategy; in the case of finite models, this is routine,
and in the case of infinite models there is an extensive body of work on algo-
rithms for well-behaved families of infinite models. Our semantics, like our earlier
checkonly semantics [3], has two equivalent formulations. We translate an enforce
problem into a modified mu calculus model checking problem – the model check-
ing process computes the changes needed to a model, and these changes are then
verified by model checking. This presentation is convenient for proofs, because it
enables us to exploit properties of mu calculus. The alternative, equivalent for-
mulation, in terms of simple two-player games, is more convenient for direct use.

We hope that our semantics work may help to inform designers of future
bidirectional languages. One lesson, we suggest, is that while the syntax of QVT-
R is appealing in the intuitiveness of individual relations, the way in which
QVT-R connects relations is probably not optimal.

In future, aiming to define a QVT-R-like language with semantics that better
support MDD, we will consider semantic variations, including those (such as the
bisimulation-like game [12], and reducing the special treatment of top relations
[3]) that we considered in previous work on checkonly but for space reasons
have not explored here. Variations specific to enforce mode include specifying
deterministic update transitions, making use of information gathered in previous
steps of the evaluation. More fundamentally we will explore allowing updates in
recursive relation invocations, corresponding to on-the-fly enforcement of lower
level relations. The present semantics, like [8], ensures that each change to the
target model, considered locally, is necessary, and also that the minimum number
of distinct updates is done. However, as we have seen, updates can be larger than
necessary. Understanding what precise senses of minimal change are desirable,
achievable and supportable by tools is a challenging and interesting problem.

Acknowledgements. We thank the referees for their constructive suggestions,
including some that could not be addressed in this version for space reasons. The

296 J. Bradfield and P. Stevens

first author is partly supported by UK EPSRC grant EP/G012962/1 ‘Solving
Parity Games and Mu-Calculi’.

References

1. Boronat, A., Carśı, J.Á., Ramos, I.: Algebraic Specification of a Model Transfor-
mation Engine. In: Baresi, L., Heckel, R. (eds.) FASE 2006. LNCS, vol. 3922, pp.
262–277. Springer, Heidelberg (2006)

2. Bradfield, J.C., Stirling, C.: Modal mu-calculi. In: Blackburn, P., van Benthem, J.,
Wolter, F. (eds.) Handbook of Modal Logic, vol. 3, pp. 721–756. Elsevier (2007)

3. Bradfield, J., Stevens, P.: Recursive Checkonly QVT-R Transformations with Gen-
eral when and where Clauses via the Modal Mu Calculus. In: de Lara, J., Zisman, A.
(eds.) FASE 2012. LNCS, vol. 7212, pp. 194–208. Springer, Heidelberg (2012)

4. de Lara, J., Guerra, E.: Formal Support for QVT-Relations with Coloured Petri
Nets. In: Schürr, A., Selic, B. (eds.) MODELS 2009. LNCS, vol. 5795, pp. 256–270.
Springer, Heidelberg (2009)

5. Diskin, Z.: Algebraic Models for Bidirectional Model Synchronization. In:
Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter, M. (eds.) MODELS 2008.
LNCS, vol. 5301, pp. 21–36. Springer, Heidelberg (2008)

6. Greenyer, J., Kindler, E.: Comparing relational model transformation technologies:
implementing query/view/transformation with triple graph grammars. Software
and System Modeling 9(1), 21–46 (2010)

7. Hermann, F., Ehrig, H., Orejas, F., Czarnecki, K., Diskin, Z., Xiong, Y.:
Correctness of Model Synchronization Based on Triple Graph Grammars. In:
Whittle, J., Clark, T., Kühne, T. (eds.) MODELS 2011. LNCS, vol. 6981, pp.
668–682. Springer, Heidelberg (2011)

8. OMG. MOF2.0 query/view/transformation (QVT) version 1.1. OMG document
formal/2009-12-05 (2009), http://www.omg.org

9. Romeikat, R., Roser, S., Müllender, P., Bauer, B.: Translation of QVT Relations
into QVT Operational Mappings. In: Vallecillo, A., Gray, J., Pierantonio, A. (eds.)
ICMT 2008. LNCS, vol. 5063, pp. 137–151. Springer, Heidelberg (2008)

10. Schürr, A., Klar, F.: 15 Years of Triple Graph Grammars. In: Ehrig, H., Heckel,
R., Rozenberg, G., Taentzer, G. (eds.) ICGT 2008. LNCS, vol. 5214, pp. 411–425.
Springer, Heidelberg (2008)

11. Stevens, P.: Bidirectional model transformations in QVT: Semantic issues and open
questions. Journal of Software and Systems Modeling (SoSyM) 9(1), 7–20 (2010)

12. Stevens, P.: A simple game-theoretic approach to checkonly QVT Relations. Jour-
nal of Software and Systems Modeling, SoSyM (2011); Published online March 16,
2011

13. Stevens, P.: Observations relating to the equivalences induced on model sets by
bidirectional transformations. EC-EASST, 049 (2012)

14. Wimmer, M., Kusel, A., Schoenboeck, J., Kappel, G., Retschitzegger, W.,
Schwinger, W.: Reviving QVT Relations: Model-Based Debugging Using Colored
Petri Nets. In: Schürr, A., Selic, B. (eds.) MODELS 2009. LNCS, vol. 5795, pp.
727–732. Springer, Heidelberg (2009)

http://www.omg.org

	Enforcing QVT-R with mu-Calculus and Games
	Introduction
	Related Work
	Preliminaries
	QVT-R
	Game/mu-Calculus Semantics for QVT-R

	Enforcement
	Extending the QVT Game/Logic for Enforcement
	The Object Creation/Update Phase
	The Deletion Phase
	Putting It together

	Example
	Properties of Transformations
	Conclusions and Future Work
	References

