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Abstract. A graph-coloring register allocator that optimally allocates
registers for structured programs in polynomial time is presented. It can
handle register aliasing. The assignment of registers is optimal with re-
spect to spill and rematerialization costs, register preferences and coa-
lescing. The register allocator is not restricted to programs in SSA form
or chordal interference graphs. It assumes the number of registers is to
be fixed and requires the input program to be structured, which is auto-
matically true for many programming languages and for others, such as
C, is equivalent to a bound on the number of goto labels per function.
Non-structured programs can be handled at the cost of either a loss of
optimality or an increase in runtime. This is the first optimal approach
that has polynomial runtime and works for such a huge class of programs.

An implementation is already the default register allocator in most
backends of a mainstream cross-compiler for embedded systems.
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1 Introduction

Compilers map variables to physical storage space in a computer. The problem
of deciding which variables to store into which registers or into memory is called
register allocation. Register allocation is one of the most important stages in a
compiler. Due to the ever-widening gap in speed between registers and memory
the minimization of spill costs is of utmost importance. For CISC architectures,
such as ubiquitous x86, register aliasing (i. e. multiple register names mapping
to the same physical hardware and thus not being able to be used at the same
time) and register preferences (e. g. due to certain instructions taking a different
amount of time depending on which registers the operands reside in) have to
be handled to generate good code. Coalescing (eliminating moves by assigning
variables to the same registers, if they do not interfere, but are related by a copy
instruction) is another aspect, where register allocation can have a significant
impact on code size and speed.

Our approach is based on graph coloring and assumes the number of registers
to be fixed. It can handle arbitrarily complex register layouts, including all kinds
of register aliasing. Register preferences, coalescing and spilling are handled using
a cost function. Different optimization goals, such as code size, speed, energy
consumption, or some aggregate of them can be handled by choice of the cost
function. The approach is particularly well-suited for embedded systems, which
often have a small number of registers, and where optimization is of utmost
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importance due to constraints on energy consumption, monetary cost, etc. We
have implemented a prototype of our approach, and it has become the default
register allocator in most backends of sdcc [12], a mainstream C cross-compiler
for architectures commonly found in embedded systems. Virtually all programs
are structured, and for these the register allocator has polynomial runtime. This
is the first optimal approach that has polynomial runtime and works for such a
huge class of programs.

Chaitin’s classic approach to register allocation [7] uses graph coloring. The ap-
proach assumes r identical registers, identical spill cost for all variables, and does
not handle register preferences or coalescing. Solving this problem optimally is
equivalent to finding a maximal r-colorable induced subgraph in the interference
graph of the variables and coloring it. In general this is NP-hard [8]. Even when it
is known that a graph is r-colorable it is NP-hard to find a r-coloring compatible
with a fraction of 1− 1

33r of the edges [18]. Thus Chaitin’s approach uses heuristics
instead of optimally solving the problem. It has been generalized to more com-
plex architectures [31]. The maximum r-colorable induced subgraph problem for
fixed r can be solved optimally in polynomial time for chordal interference graphs
[27,35], which can be obtained when the input programs are in static single as-
signment (SSA) form [20]. Recent approaches have modeled register allocation as
an integer linear programming (ILP) problem, resulting in optimal register allo-
cation for all programs [17,15]. However ILP is NP-hard, and the ILP-based ap-
proaches tend to have far worse runtime compared to graph coloring. There are
also approaches modeling register allocation as a partitioned boolean quadratic
programming (PBQP) problem [30,22]. They can handle some irregularities in the
architecture in a more natural way than older graph-coloring approaches, but do
not handle coalescing and other interactions that can arise out of irregularities in
the instruction set. PBQP is NP-hard, but heuristic solvers seem to perform well
formany, but not all practical cases. Linear scan register allocation [28] has become
popular for just in time compilation [13]; it is typically faster than approaches based
on graph coloring, but the assignment is further away fromoptimality.Kannanand
Proebsting [23] were able to approximate a simplified version of the register allo-
cation problem within a factor of 2 for programs that have series-parallel control-
flow graphs (a subclass of 2-structured programs). Thorup [32] uses the bounded
tree-width of structured programs to approximate an optimal coloring of the inter-
section graph by a constant factor. Bodlaender et alii [4] present an algorithm that
decides in linear time if it is possible to allocate registers for a structured program
without spilling.

Section 2 introduces the basic concepts, including structured programs. Sec-
tion 3 presents the register allocator in its generality and shows its polynomial
runtime. Section 4 discusses further aspects of the allocator, including ways
to reduce the practical runtime and how to handle non-structured programs.
Section 5 discusses the complexity of register allocation and why certain NP-
hardness results do not apply in our setting. Section 6 presents the prototype
implementation, followed by the experimental results in Section 7. Section 8
concludes and proposes possible directions for future work.
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2 Structured Programs

Compilers transform their input into an intermediate representation, on which
they do many optimizations. At the time when register allocation is done, we
deal with such an intermediate representation. We also have the control-flow
graph (CFG) (Π,K), with node set Π and edge set K ⊆ Π2 which represents
the control flow between the instructions in the intermediate representation.
For the code written in the C programming language from Figure 1, the sdcc
compiler [12] generates the CFG in Figure 2(a). In this figure, the nodes of the
the CFG are numbered, and annotated with the set of variables alive there, and
the intermediate representation. As can be seen, sdcc introduced two temporary
variables, which make up the whole set of variables V = {a, b} to be handled by
the register allocator for this code.

#include <stdint.h>

#include <stdbool.h>

bool get_pixel(uint_fast8_t x, uint_fast8_t y);

void set_pixel(uint_fast8_t x, uint_fast8_t y);

void fill_line_left(uint_fast8_t x, const uint_fast8_t y)

{

for(;; x--)

{

if(get_pixel(x, y))

return;

set_pixel(x, y);

}

}

Fig. 1. C code example

Let r be the number of registers. Let [r] := {0, . . . , r − 1} be the the set of
registers.

Definition 1. Let V be a set of variables. An assignment of variables V to
registers [r] is a function f : U → [r], U ⊆ V . The assignment is valid if it is
possible to generate correct code for it, which implies that no conflicting variables
are assigned to the same register.

Variables in V �U are to be placed in memory (spilt) or removed and their value
recalculated as needed (rematerialized).

Definition 2 (Register Allocation). Let the number of available registers be
fixed. Given an input program containing variables and their live-ranges and a
cost function, that gives costs for register assignments, the problem of register
allocation is to find an assignment of variables to the registers that minimizes
the total cost.
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0 {}: _entry($8) :

1 {}: proc _fill_line_left{void fun(unsigned char, const unsigned char)}

3 {a}: _forbody_0($4) :

2 {a}: a{unsigned char} := x{unsigned char}

4 {a}: push y{const unsigned char}

5 {a}: push a{unsigned char}

6 {a, b}: b{_Bool} = call _get_pixel{_Bool fun(unsigned char, unsigned char)}

7 {a, b}: if b{_Bool} == 0 goto _iffalse_0($2)

8 {}: ret 9 {a}: _iffalse_0($2) :

15 {}: _return($7) :

10 {a}: push y{const unsigned char}

11 {a}: push a{unsigned char}

12 {a}: call _set_pixel{void fun(unsigned char, unsigned char)}

13 {a}: a{unsigned char} = a{unsigned char} - 0x1

14 {a}: goto _forbody_0($4)

16 {}: eproc _fill_line_left{void fun(unsigned char, const unsigned char)}

(a) Control-flow graph
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(b) Nice tree-decomposition

Fig. 2. CFG and decomposition example

Our approach is based on tree decompositions. Tree decompositions [21] have
commonly been used to find polynomial algorithms on restricted graph classes
for many problems that are hard on general graphs, since their rediscovery by
Robertson and Seymour [29]. This includes well known problems such as graph
coloring and vertex cover.

Definition 3 (Tree Decomposition). Given a graph G = (Π,K) a tree de-
composition of G is a pair (T,X ) of a tree T and a family X = {Xi | i node of T }
of subsets of Π with the following properties:
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–
⋃

i node of T Xi = Π,
– For each edge {x, y} ∈ K, there is an i node of T , such that x, y ∈ Xi,
– For each node x ∈ Π the subgraph of T induced by {i node of T | x ∈ Xi}

is connected.

The width of a tree decomposition (T,X ) is max{|Xi| | i node of T } − 1. The
tree-width tw(G) of a graph G is the minimum width of all tree decompositions
of G.

Intuitively, tree-width indicates how tree-like a graph is. Nontrivial trees have
tree-width 1. Cliques on n ≥ 1 nodes have tree-width n − 1. Series-parallel
graphs have tree-width at most 2. Tree-decompositions are usually defined for
undirected graphs, and our definition of a tree-decomposition for a directed graph
is equivalent to the tree-decomposition of the graph interpreted as undirected.

Definition 4 (Structured Program). Let k ∈ N be fixed. A program is called
k-structured, iff its control-flow graph has tree-width at most k.

Programs written in Algol or Pascal are 2-structured, Modula-2 programs are
5-structured [32]. Programs written in C are (7 + g)-structured if the number
of labels targeted by gotos per function does not exceed g. Similarly, Java pro-
grams are (6 + g)-structured if the number of loops targeted by labeled breaks
and labeled continues per function does not exceed g [19]. Ada programs are
(6 + g)-structured if the number of labels targeted by gotos and labeled loops
per function does not exceed g [6]. Coding standards tend to place further re-
strictions, resulting e. g. in C programs being 5-structured when adhering to the
widely adopted MISRA-C:2004 [2] standard. A survey of 12522 Java methods
from applications and the standard library found tree-width above 3 to be very
rare. With one exception of tree-width 5, all methods had tree-width 4 or lower
[19].

Often proofs and algorithms on tree-decompositions are easier to describe,
understand and implement when using nice tree-decompositions:

Definition 5 (Nice Tree Decomposition). A tree decomposition (T,X ) of a
graph G is called nice, iff

– T is oriented, with root t, Xt = ∅.
– Each node i of T is of one of the following types:

• Leaf node, no children
• Introduce node, has one child j,Xj � Xi

• Forget node, has one child j,Xj � Xi

• Join node, has two children j1, j2, Xi = Xj1 = Xj2

Given a tree-decomposition, a nice tree-decomposition of the same width can
be found easily. Figure 2(b) shows a nice tree-decomposition of width 2 for the
CFG in Figure 2(a). At each node i in the figure, the left set is Xi.

From now on let G = (Π,K) be the control flow graph of the program, let
I = (V,E) be the corresponding conflict graph of the variables of the program
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(i. e. the intersection graph of the variables’ live-ranges). The live-ranges are
connected subgraphs of G. Let (T,X ) be a nice tree decomposition of minimum
width of G with root t. For π ∈ Π let Vπ be the set of all variables v ∈ V ,
that are alive at π (in the example CFG in figure 2(a) this is the set directly
after the node number). Let V := maxπ∈Π{Vπ} be the maximum number of
variables alive at the same node. For each i ∈ T let Vi :=

⋃
π∈Xi

Vπ be the set
of variables alive at any of the corresponding nodes from the CFG (in the nice
tree-decomposition in figure 2(b) this is the right one of the sets at each node).

3 Optimal Polynomial Time Register Allocation

The goal in register allocation is to minimize costs, including spill and remate-
rialization costs, costs from not respecting register preferences, costs from not
coalescing, etc. These costs are modeled by a cost function that gives costs for
an instruction π under register assignment f :

c : {(π, f) | f : U → [r], U ⊆ Vπ , π ∈ Π} → [0,∞]

Different optimization goals, such as speed or code size can be implemented by
choosing c. E. g. when optimizing for code size c could give the code size for π
under assignment f , or when optimizing for speed c could give the number of
cycles π needs to execute multiplied by an execution probability obtained from
a profiler. We assume that c can be evaluated in constant time. The goal is thus
finding an f for which

∑
π∈Π c(π, f |Vπ) is minimal.

Let S be the function that gives the minimum possible costs for instructions
in the subtree rooted at i ∈ T , excluding instructions in Xi when assigning
variables alive in the subtree rooted at i ∈ T when choosing f : U → [r], U ⊆ V
as the assignment of variables alive at instructions i ⊆ Π to registers, i. e.

S : {(i, f) | i ∈ T, f : U → [r], U ⊆ Vi} → [0,∞].

S(i, f) := min
g|Vi

=f |Vi

{
∑

π∈Ti

c(π, g|Vπ)

}

.

Where Ti is the set of instructions in the subtree of T rooted at i ∈ T , excluding
instructions in Xi. This function at the root t ∈ T , and the corresponding
assignment that results in the minimum is what we want:

S(t, f) = min
g|Vt=f |Vt

{
∑

π∈Tt

c(π, g|Vπ )

}

=

= min
g|∅=f |∅

{
∑

π∈Π

c(π, g|Vπ)

}

= min
g

{
∑

π∈Π

c(π, g|Vπ )

}

.
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To get S, we first define a function s, and then show that S = s and that s can
be calculated in polynomial time. We define s inductively, and depending on the
type of i:

– Leaf: s(i, f) := 0
– Introduce with child j: s(i, f) := s(j, f |Vj )
– Forget with child j: s(i, f) := min{∑π∈Xj�Xi

c(π, g|Vπ ) + s(j, g) | g|Vi = f}
– Join with children j1 and j2: s(i, f) := s(j1, f) + s(j2, f)

By calculating all the s(i, f) and recording which g gave the minimum we can
obtain an optimal assignment. We will show that s correctly gives the minimum
possible cost and that it can be calculated in polynomial time.

Lemma 1. For each i ∈ T, f : U → [r], U ⊆ Vi the value s(i, f) is the minimum
possible cost for instructions in the subtree rooted at i ∈ T , excluding instruc-
tions in Xi when assigning variables alive in the subtree rooted at i ∈ T when
choosing f as the assignment of variables alive at instructions i ⊆ Π to registers,
i. e. s = S. Using standard bookkeeping techniques we obtain the corresponding
assignments for the subtree.

Proof. By induction we can assume that the lemma is true for all children of
i. Let Ti be the set of instructions in the subtree rooted at i ∈ T , excluding
instructions in Xi.

Case 1: i is a leaf. There are no instructions in Ti = Xi � Xi = ∅, thus the
cost is zero: s(i, f) = 0 = S(i, f).

Case 2: i is an introduce node with child j. Ti = Tj, since Xi ⊇ Xj, thus the
cost remains the same: s(i, f) = s(j, f) = S(j, f) = S(i, f)

Case 3: i is a forget node with child j. Ti = Tj ∪ (Xj � Xi), the union is
disjoint. Thus we get the correct result by adding the costs for the instructions
in Xj �Xi:

s(i, f) = min
g|Vi

=f

⎧
⎨

⎩

∑

π∈Xj�Xi

c(π, f |Vπ ) + s(j, g)

⎫
⎬

⎭
=

min
g|Vi

=f

⎧
⎨

⎩

∑

π∈Xj�Xi

c(π, f |Vπ ) + S(j, g)

⎫
⎬

⎭
=

min
g|Vi

=f |Vi

⎧
⎨

⎩

∑

π∈Xj�Xi

c(π, f |Vπ ) +
∑

π∈Tj

c(π, g|Vπ )

⎫
⎬

⎭
=

min
g|Vi

=f |Vi

{
∑

π∈Ti

c(π, g|Vπ )

}

= S(i, f).

Case 4: i is a join node with children j1 and j2. Ti = Tj1 ∪Tj2 , since Xi = Xj1 =
Xj2 . The union is disjoint. Thus we get the correct result by adding the costs
from both subtrees: s(i, f) = s(j1, f) + s(j2, f) = S(j1, f) + S(j2, f) = S(i, f).
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Lemma 2. Given the tree-decomposition of minimum width, s can be calculated
in polynomial time.

Proof. Each Vπ , π ∈ Π is the union of two cliques, each of size at most V : The
variables alive at the start of the instruction form the clique, and so do the
variables alive at the end of the instruction. Thus Vi, i ∈ T is the union of at
most 2(tw(G) + 1) cliques. From each clique at most r variables can be placed
in registers.

At each node i of the tree decomposition time O(V2(tw(G)+1)r) is sufficient:
Case 1: i is a leaf. There are at most O(V2|Xi|r) ⊆ (V2(tw(G)+1)r) possible f ,

and for each one we do a constant number of calculations.
Case 2: i is an introduce node with child j. The reasoning from case 1 holds.
Case 3: i is a forget node. There are at mostO(V2|Xi|r) possible f . For each one

we need to consider at most O(V2|Xj�Xi|r) different g. Thus time O(V2|Xi|r) ·
(V2|Xj�Xi|r) ⊆ O(V2|Xi|r+2|Xj�Xi|r) = O(V2|Xj |r) ⊆ O(V2(tw(G)+1)r) is suffi-
cient.

Case 4: i is a join node with children j1 and j2. The reasoning from case 1
holds.

The tree decomposition has at most |T | nodes, thus the total time is in
O(|T |V2(tw(G)+1)r) = O(|T |Vc) for a constant c and thus polynomial.

Theorem 1. The register allocation problem can be solved in polynomial time
for structured programs.

Proof. Given an input program of bounded tree-width we can calculate a tree-
decomposition of minimum width in linear time [3]. We can then transform
this tree-decomposition into a nice one of the same width. The linear time for
these steps implies that |T | is linear in |G|. Using this nice tree decomposi-
tion s is calculated in polynomial time as above. The total runtime is thus in
O(|G|V2(tw(G)+1)r) = O(|G|Vc) for a constant c.

4 Remarks

Remark 1. The runtime bound is reduced by a factor of Vtw(G)r, if the interme-
diate representation is three-address code.

Proof. In that case there is at most one variable alive at the end of an instruction
that was not alive at the start of the instruction, so in the proof of Lemma 2,
we can replace O(V2(tw(G)+1)r) by O(V(tw(G)+2)r).

Remark 2. Bodlaender’s algorithm [3] used in the proof above is not a practical
option. However there are other, more practical alternatives, including a linear-
time algorithm that is not guaranteed to give decompositions of minimal width,
but will do so for many programming languages [32,10].

Remark 3. Implementations of the algorithm can be massively parallel, resulting
in linear runtime.
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Proof. At each i ∈ T the individual s(i, f) do not depend on each other. They
can be calculated in parallel. By requiring that |Xj | = |Xi|+ 1 at forget nodes,
we can assume that the number of different g to consider is at most V2r, resulting
in time O(r) for calculating the minimum over the s(j, g). Thus given enough
processing elements the runtime of the algorithm can be reduced to O(|G|r).
Remark 4. Doing live-range splitting as a preprocessing step is cheap.

The runtime bound proved above only depends on V , not |V |. Thus splitting
of non-connected live-ranges before doing register allocation doesn’t affect the
bound. When the splitting is done to allowmore fine-grained control over spilling,
then the additional cost is small (even the extreme case of inserting permutation
instructions between any two original nodes in the CFG, and splitting all live-
ranges there would only double Π and V).
Remark 5. Non-structured programs can be handled at the cost of either a loss
of optimality or an increase in runtime.

Programs of high tree-width are extremely uncommon (none have been found so
far, with the exception of artificially constructed examples). Nevertheless they
should be handled correctly by compilers. One approach would be to handle these
programs like the others. Since tw(G) is no longer constant, the algorithm is no
longer guaranteed to have polynomial runtime. Where polynomial runtime is
essential, a preprocessing step can be used. This preprocessing stage would spill
some variables (or allocate them using one of the existing heuristic approaches).
Edges of G, at which no variables are alive, can be removed. Once enough edges
have been removed, tw(G) ≤ k and our approach can be applied to allocate the
remaining variables. Another option is the heuristic limit used in our prototype
as mentioned in Section 6.

Remark 6. The runtime of the polynomial time algorithm can be reduced by a
factor of more than (2(tw(G)+ 1)r)!, if there is no register aliasing and registers
are interchangeable within each class. Furthermore r can then be chosen as the
maximum number of registers that can be used at the same time instead of the
total number of registers, which gives a further runtime reduction in case of
register aliasing.

Proof. Instead of using f : U → [r] we can directly use U .

– Leaf: s(i, U) := 0
– Introduce with child j: s(i, U) := s(j, U ∪ Vj)
– Forget with child j: s(i, U) :=

∑
π∈Xj�Xi

c(π, U) + min{s(j,W ) | W ∩ Vi =

U}
– Join with children j1 and j2: s(i, U) := s(j1, U) + s(j2, U)

Most of the proofs of the lemmata are still valid. However instead of the number
of possible f we now look at the number of possible U , which is at most

( V
2(tw(G) + 1)r

)

.
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Remark 7. Using a suitable cost function and r = 1 we get a polynomial time
algorithm for maximum independent set on intersection graphs of connected
subgraphs of graphs of bounded tree-width.

Remark 8. The allocator is easy to re-target, since the cost function is the only
architecture-specific part.

5 Complexity of Register Allocation

The complexity of register allocation in different variations has been studied for
a long time and there are many NP-hardness results.

Publication Difference to our setting

Register allocation via coloring [8] tw(G) unbounded
On the Complexity of Register Coalescing [5] tw(G) unbounded
The complexity of coloring circular arcs and chords [16] r is part of input
Aliased register allocation for straight line programs is
NP-complete [26]

r is part of input

On Local Register Allocation [14] r is part of input

Given a graph I a program can be written, such that the program has conflict
graph I [8]. Since 3-colorability is NP-hard [24], this proves the NP-hardness
of register allocation, as a decision problem for r = 3. However the result does
not hold for structured programs. Coalescing is NP-hard even for programs in
SSA-form [5]. Again this result does not hold for structured programs. Register
allocation, as a decision problem, is NP-hard, even for series-parallel control flow
graphs, i. e. for tw(G) ≤ 2 and thus for structured programs, when the number
of registers is part of the input [16]. Register allocation, as a decision problem, is
NP-hard when register aliasing is possible, even for straight-line programs, i. e.
tw(G) = 1 and thus for structured programs, when the number of registers is
part of the input [26]. Minimizing spill costs is NP-hard, even for straight-line
programs, i. e. tw(G) = 1 and thus for structured programs, when the number
of registers is part of the input [14].

It is thus fundamental to our polynomial time optimal approach, which han-
dles register aliasing, register preferences, coalescing and spilling, that the input
program is structured and the number of registers is fixed.

The runtime bound of our approach proven above is exponential in the num-
ber of registers r. However, even a substantially simplified version of the register
allocation problem is W[SAT]- and co-W[SAT]-hard when parametrized by the
number of registers even for tw(G) = 2 [25]. Thus doing optimal register allo-
cation in time faster than VO(r) would imply a collapse the parametrized com-
plexity hierarchy. Such a collapse is considered highly unlikely in parametrized
complexity theory. This means that not only we cannot get rid of the r in the
exponent, but we can’t even separate it from the V either.
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6 Prototype Implementation

We have implemented a prototype of the allocator in C++ for the HC08, S08,
Z80, Z180, Rabbit 2000/3000, Rabbit 3000A and LR35902 ports of sdcc [12], a
C compiler for embedded systems. It is the default register allocator for these
architectures as of the sdcc 3.2.0 release in mid-2012 and can be found in the
public source code repository of the sdcc project.

S08 is the architecture of the current main line of Freescale microcontrollers,
a role previously filled by the HC08 architecture. Both architectures have three
8-bit registers, which are assigned by the allocator. The Z80 architecture is a clas-
sic architecture designed by Zilog, which was once common in general-purpose
computers. It currently is mostly used in embedded systems. The Z180, Rab-
bit 2000/3000 and Rabbit 3000A are newer architectures derived from the Z80,
which are also mostly used in embedded systems. The differences are in the
instruction set, not in the register set. The Z80 architecture is simple enough
to be easily understood, yet has many of the typical features of complex CISC
architectures. Nine 8-bit registers are assigned by the allocator (A, B, C, D,
E, H, L, IYL, IYH). IYL and IYH can only be used together as 16-bit register
IY; there are instructions that treat BC, DE or HL as 16-bit registers; many
8-bit instructions can only use A as the left operand, while many 16-bit instruc-
tions can only use HL as the left operand. There are some complex instructions,
like djnz, a decrement-and-jump-if-not-zero instruction that always uses B as its
operand, or ldir, which essentially implements memcpy() with the pointer to the
destination in DE, source pointer in HL and number of bytes to copy in BC.
All these architectural quirks are captured by the cost function. The LR35902
is the CPU used in the Game Boy video game system. It is inspired by the Z80
architecture, but has a more restricted instruction set and fewer registers. Five
8-bit registers are assigned by the allocator.

The prototype still has some limitations, e. g. current code generation does
not allow the A or IY registers to hold parts of a bigger variable in the Z80 port.
Code size was used as the cost function, due to its importance in embedded sys-
tems and relative ease of implementation (optimal speed or energy optimization
would require profiler-guided optimization). We obtain the tree decomposition
using Thorup’s method [32], and then transform it into a nice tree decomposi-
tion. The implementation of the allocator essentially follows Section 3, and is
neither very optimized for speed nor parallelized. However a configurable limit
on the number of assignments considered at each node of the tree decompo-
sition has been introduced. When this limit is reached, some assignments are
discarded heuristically. The heuristic mostly relies on the s(i, f) to discard those
assignments that have the highest cost so far first, but takes other aspects into
account to increase the chance that compatible assignments will exist at join
nodes. When the limit is reached, and the heuristic applied, the assignment is
no longer provably optimal. This limit essentially provides a trade-off between
runtime and quality of the assignment.

The prototype was compared to the current version of the old sdcc register
allocator, which has been improved over years of use in sdcc. The old allocator
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is basically an improved linear scan [28,13] algorithm extended to take the ar-
chitecture into account, e.g. preferring to use registers HL and A, since accesses
to them typically are faster than those to other registers and taking coalescing,
register aliasing and some other preferences into account. This comparison was
done using the Z80 architecture, which has been around for a long time, so there
is a large number of programs available for it.

Furthermore we did a comparison between the different architectures, which
shows the impact of the number of registers on the performance of the allocator.

7 Experimental Results

Six benchmarks considered representative of typical applications for embedded
systems have been used to evaluate the register allocator, by compiling them
with sdcc 3.2.1 #8085:

– The Dhrystone benchmark [33], version 2 [34]. An ANSI-C version was used,
since sdcc does not support K&R C.

– A set of source files taken from real-world applications and used by the sdcc
project to track code size changes over sdcc revisions and to compare sdcc
to other compilers.

– The Coremark benchmark [1], version 1.0.
– The FatFS implementation of the FAT filesystem [9], version R0.09.
– Source code from two games for the ColecoVision video game console. All

C source code has been included, while assembler source files and C source
files that only contain data have been omitted.

– The Contiki operating system [11], version 2.5.

We first discuss the results of compiling the benchmarks for the Z80 architecture.
Figure 3 shows the code size with the peephole optimizer (a post code-generation
optimization stage not taken into account by the cost function) enabled, Figure
4 with the peephole optimizer disabled. Furthermore, Figure 3 shows the com-
pilation time, and Figure 4 shows the fraction of provably optimally allocated
functions (i. e. those functions for which the heuristic never was applied); the
former is little affected by enabling the peephole optimizer and the latter not at
all.

The dhrystone benchmark is rather small. At 108 assignments per node we
find a provably optimal assignment for 83.3% of the functions. This also results
in a moderate reduction in code size of 6.0% before and 4.9% after the peephole
optimizer when compared to the old allocator. The sdcc benchmark, even though
small, contains more complex functions; at 108 assignments per node we find
a provably optimal assignment for 93.9% of the functions. However code size
seems to be stable from 6× 107 onwards. We get a code size reduction of 16.9%
before and 17.3% after the peephole optimizer. For Coremark, we find an optimal
assignment for 77% of the functions at 108 assignments per node. We get a code
size reduction of 7.8% before and 6.9% after the peephole optimizer.
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FatFS is the benchmark which is the most problematic for our allocator; it
contains large functions with complex control flow, some containing nearly a
kilobyte of local variables. Even at 4.5 × 107 assignments per node (we did not
run compilations at higher values due to lack of time) only 45% of the functions
are provably optimally allocated. We get a reduction in code size of 9.8% before
and 11.4% after the peephole optimizer. Due to the low fraction of provably
optimally allocated functions the code size reduction and compilation time are
likely to be much higher for a higher number of assignments per node.

In the games benchmark, about 73% of the functions are provably optimally
allocated at 4.5 × 107 assignments per node; at that value the code size is re-
duced by 11.2% before and 12.3% after the peephole optimizer. This result is
consistent with the previous two: The source code contains both complex and
simple functions (and some data, since only source files containing data only
were excluded, while those that contain both code and data were included).

For Contiki, about 76% of the functions are provably optimally allocated at
4.5×106 assignments per node (we did not run compilations at higher values due
to lack of time); at that value the code size is reduced by 9.1% before and 8.2%
after the peephole optimizer. Contiki contains some complex control flow, but it
tends to use global instead of local variables; where there are local variables they
are often 32-bit variables, of which neither the optimal nor the old allocator can
place more than one in registers at a given time (due to the restriction in code
generation that allows the use of IY for 16-bit variables only).

We also did a comparison of the different architectures (except for the Rabbit
3000A, since it is very similar to the Rabbit2000/3000). Figure 5 shows the code
size with the peephole optimizer enabled, Figure 6 with the peephole optimizer
disabled. Furthermore, Figure 5 shows the compilation time, and Figure 6 shows
the fraction of provably optimally allocated functions.

The results clearly show that for the runtime of the register allocator and
the fraction of provably optimally allocated function the number of registers
is much more important than the architecture: For the architectures with 3
registers, code size is stable from 3.8 × 103 (for HC08) and 4.0 × 103 (for S08)
assignments, and all functions are provably optimally allocated from 2.5 × 104

assignments onwards. The effect of the register allocator on compiler runtime
is mostly lost in noise. For the architecture with 5 registers (LR35902), code
size is stable from 9.0× 103 assignments onwards, and all functions are provably
optimally allocated from 1.4 × 105 assignments onwards. For the architectures
with 9 registers, there are still functions for which a provably optimal assignment
is not found at 1.0 × 108 assignments. Architectural differences other than the
number of registers have a substantial impact on code size, but only a negligible
one on the performance of the register allocator.

We also see that the improvement in code size compared to the old allocator
was the most substantial for architectures that have just three registers: For the
HC08 17.6% before and 18% after the peephole optimizer, for the S08 20.1%
before and 21.1% after the peephole optimizer. This has substantially reduced,
but not completely eliminated the gap in generated code size between sdcc and
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Fig. 3. Experimental Results (Z80, with peephole optimizer)
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Fig. 4. Experimental Results (Z80, without peephole optimizer)
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Fig. 5. Experimental Results (sdcc benchmark, with peephole optimizer)
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Fig. 6. Experimental Results (sdcc benchmark, without peephole optimizer)
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the competing Code Warrior and Cosmic C compilers. The Z180 and Rabbit
2000/3000 behave similar to the Z80, which was already discussed above. Our
register allocator makes sdcc substantially better in generated code size than the
competing z88dk, HITECH-C and CROSS-C compilers for these architectures.
The LR35902 backend had been unmaintained in sdcc for some time, and was
brought back to life after the 3.1.0 release, at which time it was not considered
worth the effort to make the old register allocator work with it. There is no other
current compiler for the LR35902.

8 Conclusion

We presented an optimal register allocator, that has polynomial runtime. Reg-
ister allocation is one of the most important stages of a compiler. Thus the
allocator is a major step towards improving compilers. The allocator can handle
a variety of spill and rematerialization costs, register preferences and coalescing.

A prototype implementation shows the feasibility of the approach, and is al-
ready in use in a major cross-compiler targeting architectures found in embedded
systems. Experiments show that it performs excellently for architectures with a
small number of registers, as common in embedded systems.

Future research could go towards improving the runtime further, completing
the prototype and creating a massive parallel implementation. This should make
the approach feasible for a broader range of architectures.
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