
Language Constructs

for Non-Well-Founded Computation

Jean-Baptiste Jeannin1, Dexter Kozen1, and Alexandra Silva2

1 Cornell University, Ithaca, NY 14853-7501, USA
{jeannin,kozen}@cs.cornell.edu

2 Institute for Computing and Information Sciences, Radboud University Nijmegen,
Postbus 9010, 6500 GL Nijmegen, The Netherlands

alexandra@cs.ru.nl

Abstract. Recursive functions defined on a coalgebraic datatype C may
not converge if there are cycles in the input, that is, if the input object
is not well-founded. Even so, there is often a useful solution. Unfortu-
nately, current functional programming languages provide no support
for specifying alternative solution methods. In this paper we give nu-
merous examples in which it would be useful to do so: free variables,
α-conversion, and substitution in infinitary λ-terms; halting probabili-
ties and expected running times of probabilistic protocols; abstract in-
terpretation; and constructions involving finite automata. In each case
the function would diverge under the standard semantics of recursion.
We propose programming language constructs that would allow the spec-
ification of alternative solutions and methods to compute them.

Keywords: coalgebraic types, functional programming, recursion.

1 Introduction

Coalgebraic datatypes have become popular in recent years in the study of infi-
nite behaviors and non-terminating computation. One would like to define func-
tions on coinductive datatypes by structural recursion, but such functions may
not converge if there are cycles in the input; that is, if the input object is not
well-founded. Even so, there is often a useful solution that we would like to
compute.

For example, consider the problem of computing the set of free variables of a
λ-term. In pseudo-ML, we might write

type term = let rec fv = function

| Var of string | Var v -> {v}
| App of term * term | App (t1,t2) -> (fv t1) ∪ (fv t2)

| Lam of string * term | Lam (x,t) -> (fv t) − {x}
and this works provided the argument is an ordinary (well-founded) λ-term.
However, if we call the function on an infinitary term (λ-coterm), say

let rec t = App (Var "x", App (Var "y", t))

M. Felleisen and P. Gardner (Eds.): ESOP 2013, LNCS 7792, pp. 61–80, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

62 J.-B. Jeannin, D. Kozen, and A. Silva

•

x •

y

(1)

then the function will diverge, even though it is clear the answer should be {x, y}.
Note that this is not a corecursive definition: we are not asking for a greatest
solution or a unique solution in a final coalgebra, but rather a least solution
in a different ordered domain from the one provided by the standard semantics
of recursive functions. The standard semantics gives us the least solution in
the flat Scott domain (P(string)⊥, �) with bottom element ⊥ representing
nontermination, whereas we would like the least solution in a different CPO,
namely (P(string), ⊆) with bottom element ∅.

The coinductive elements we consider are always regular, that is, they have a
finite but possibly cyclic representation. This is different from a setting in which
infinite elements are represented lazily. A few of our examples, like substitu-
tion, could be computed by lazy evaluation, but most of them, for example free
variables, could not.

Theoretically, the situation is governed by diagrams of the form

C

FC

A

FA

h

γ

Fh

α (2)

describing a recursive definition of a function h : C → A. Here F is a functor
describing the structure of the recursion. To apply h to an input x, the function
γ : C → FC identifies the base cases, and in the recursive case prepares the
arguments for the recursive calls; the function Fh : FC → FA performs the
recursive calls; and the function α : FA → A assembles the return values from
the recursive calls into final value h(x).

A canonical example is the usual factorial function

let rec factorial = function

| 0 -> 1

| n -> n * factorial (n-1)

Here the abstract diagram (2) becomes

� �

�+ �× � �+ �× �

h

γ

id� + id� × h

α (3)

where the functor is FX = �+ �×X and γ and α are given by:

γ(0) = ι0() α(ι0()) = 1

γ(n+ 1) = ι1(n+ 1, n) α(ι1(c, d)) = cd

Language Constructs for Non-Well-Founded Computation 63

where ι0 and ι1 are injectors into the coproduct. The fact that there is one
recursive call is reflected in the functor by the single X occurring on the right-
hand side. The function γ determines whether the argument is the base case 0
or the inductive case n + 1, and in the latter case prepares the recursive call.
The function α combines the result of the recursive call with the input value
by multiplication. In this case we have a unique solution, which is precisely the
factorial function.

Theoretical accounts of this general idea have been well studied [1,2,3,9]. Most
of this work is focused on conditions ensuring unique solutions, primarily when
C is well-founded or when A is a final coalgebra. The account most relevant to
this study is the work of Adámek et al. [2], in which a canonical solution can
be specified even when it is not unique, provided various desirable conditions
are met; for example, when A is a complete CPO and α is continuous, or when
A is a complete metric space and α is contractive. Also closely related are the
work of Widemann [10] on coalgebraic semantics of recursion and cycle detection
algorithms and the work of Simon et al. [7,8] on coinductive logic programming,
which addresses many of the same issues in the context of logic programming.

Ordinary recursion over inductive datatypes corresponds to the case in which
C is well-founded. In this case, the solution h exists and is unique: it is the least
solution in the standard flat Scott domain. For example, the factorial function
is uniquely defined by (3) in this sense. If C is not well-founded, there can be
multiple solutions, and the one provided by the standard semantics of recursion is
typically not be the one we want. Nevertheless, the diagram (2) can still serve as
a valid definitional scheme, provided we are allowed to specify a desired solution.
In the free variables example, the codomain of the function (sets of variables) is
indeed a complete CPO under the usual set inclusion order, and the constructor
α is continuous, thus the desired solution can be obtained by a least fixpoint
computation.

The example (1) involving free variables of a λ-coterm fits this scheme with
the diagram

Term P(Var)

F (Term) F (P(Var))

fv

γ

idVar + fv2 + idVar × fv

α

where FX = Var+X2 + Var×X and

γ(Var x) = ι0(x) α(ι0(x)) = {x}
γ(App (t1, t2)) = ι1(t1, t2) α(ι1(u, v)) = u ∪ v

γ(Lam (x, t)) = ι2(x, t) α(ι2(x, v)) = v \ {x}.
Here the domain of fv (regular λ-coterms) is not well-founded and the codomain
(sets of variables) is not a final coalgebra, but the codomain is a complete CPO
under the usual set inclusion order with bottom element ∅, and the desired
solution is the least solution in this order; it is just not the one that would be
computed by the standard semantics of recursive functions.

64 J.-B. Jeannin, D. Kozen, and A. Silva

Unfortunately, current programming languages provide little support for spec-
ifying alternative solutions. One must be able to specify a canonical method for
solving systems of equations over an F -algebra (the codomain) obtained from the
function definition and the input. We will demonstrate through several examples
that such a feature would be extremely useful in a programming language and
would bring coinduction and coinductive datatypes to a new level of usability in
accordance with the elegance already present for algebraic datatypes. Our ex-
amples include free variables, α-conversion, and substitution in infinitary terms;
halting probabilities, expected running times, and outcome functions of proba-
bilistic protocols; and abstract interpretation. In each case, the function would
diverge under the standard semantics of recursion.

In this paper we propose programming language constructs that would allow
the specification of alternative solutions and methods to compute them. These
examples require different solution methods: iterative least fixpoint computation,
Gaussian elimination, structural coinduction. We describe how this feature might
be implemented in a functional language and give mock-up implementations of
all our examples. In our implementation, we show how the function definition
specifies a system of equations and indicate how that system of equations might
be extracted automatically and then passed to an equation solver. In many cases,
we suspect that the process can be largely automated, requiring little extra work
on the part of the programmer.

Current functional languages are not particularly well suited to the manipula-
tion of coinductive datatypes. For example, in OCaml one can form coinductive
objects with let rec as in (1), but due to the absence of mutable variables, such
objects can only be created and not dynamically manipulated, which severely
limits their usefulness. One can simulate them with references, but this negates
the elegance of algebraic manipulation of inductively defined datatypes, for which
the ML family of languages is so well known. It would be of benefit to be able
to treat coinductive types the same way.

Our mock-up implementation with all examples and solvers is available from
[5].

2 Motivating Examples

In this section we present a number of motivating examples that illustrate the
usefulness of the problem. Several examples of well-founded definitions that fit
the scheme (2) can be found in the cited literature, including the Fibonacci func-
tion and various divide-and-conquer algorithms such as quicksort and mergesort,
so we focus on non-well-founded examples: free variables and substitution in λ-
coterms, probabilistic protocols, and abstract interpretation.

2.1 Substitution

We now describe another function on infinitary λ-terms: substitution. A typical
implementation for well-founded terms would be

Language Constructs for Non-Well-Founded Computation 65

let rec subst t y = function

| Var x -> if x = y then t else Var x

| App (t1,t2) -> App (subst t y t1, subst t y t2)

| Lam (x,s) -> if x = y then Lam (x,s)

else if x ∈ fv t then

let w = fresh ()

in Lam (w, subst t y (rename w x s))

else Lam (x, subst t y s)

where fv is the free variable function defined above and rename w x s is a
function that substitutes a fresh variable w for x in a term s.

let rec rename w x = function

| Var z -> Var (if z = x then w else z)

| App (t1,t2) -> App (rename w x t1, rename w x t2)

| Lam (z,s) -> if z = x then Lam (z,s)

else Lam (z, rename w x s)

Applied to a λ-coterm with a cycle, for example attempting to substitute a term
for y in (1), the computation would never finish. Nevertheless, this computation
fits the scheme (2) with C = A = term (the set of λ-coterms), functor

FX = term+X2 + string×X Fh = idterm + h2 + idstring × h

and γ and α defined by

γ(Var x) =

{
ι0(t) if x = y

ι0(Var x) otherwise

γ(App (t1, t2)) = ι1(t1, t2)

γ(Lam (x, s)) =

⎧⎪⎨
⎪⎩
ι0(Lam (x, s)) if x = y

ι2(w, rename w x s) if x �= y and x ∈ fv t, where w is fresh

ι2(x, s) otherwise

α(ι0(s)) = s

α(ι1(s1, s2)) = App (s1, s2)

α(ι2(x, s)) = Lam (x, s)

In this case, even though the domain is not well-founded, the solution never-
theless exists and is unique up to observational equivalence. This is because the
definition of the function is corecursive and takes values in a final coalgebra.

2.2 Probabilistic Protocols

In this section, we present a few examples in the realm of probabilistic protocols.
Imagine one wants to simulate a biased coin, say a coin with probability 2/3 of
heads, with a fair coin. Here is a possible solution: flip the fair coin. If it comes up
heads, output heads, otherwise flip again. If the second flip is tails, output tails,

66 J.-B. Jeannin, D. Kozen, and A. Silva

otherwise repeat from the start. This protocol can be represented succinctly by
the following probabilistic automaton:

s

H t

T

1
2

1
2

1
2

1
2

(4)

Operationally, starting from states s and t, the protocol generates series that
converge to 2/3 and 1/3, respectively.

PrH(s) = 1
2 + 1

8 + 1
32 + 1

128 + · · · = 2
3

PrH(t) = 1
4 + 1

16 + 1
64 + 1

256 + · · · = 1
3 .

However, these values can also be seen to satisfy a pair of mutually recursive
equations:

PrH(s) = 1
2 + 1

2 · PrH(t) PrH(t) = 1
2 · PrH(s).

This gives rise to a contractive map on the unit interval, which has a unique
solution. It is also monotone and continuous with respect to the natural order
on the unit interval, therefore has a unique least solution.

One would like to define the probabilistic automaton (4) by

type pa = H | T | Flip of float * pa * pa

let rec s = Flip (0.5,H,t) and t = Flip (0.5,T,s)

and write a recursive program, say something like

let rec pr_heads = function

| H -> 1.

| T -> 0.

| Flip (p,u,v) -> p *. (pr_heads u) +. (1 -. p) *. (pr_heads v)

and specify that the extracted equations should be solved exactly by Gaussian
elimination, or by iteration until achieving a fixpoint to within a sufficiently
small error tolerance ε. We give implementations using both methods.

The von Neumann trick for simulating a fair coin with a coin of arbitrary
bias is a similar example. In this protocol, we flip the coin twice. If the outcome
is HT, we output heads. If the outcome is TH, we output tails. These outcomes
occur with equal probability. If the outcome is HH or TT, we repeat.

s

t u

H T

p 1− p

1− p p

p 1− p

Here we would define

Language Constructs for Non-Well-Founded Computation 67

let rec s = Flip (p,t,u) and t = Flip (p,s,H) and u = Flip (p,T,s)

but the typing and recursive function pr_heads are the same. Markov chains
and Markov decision processes can be modeled the same way.

Other functions on probabilistic automata can be computed as well. The ex-
pected number of steps starting from state s is the least solution of the equation

E(s) =

{
0 if s ∈ {H, T}
1 + p · E(u) + (1 − p) · E(v) if s = Flip(p, u, v).

We would like to write simply

let rec ex = function

| H -> 0.

| T -> 0.

| Flip (p,u,v) -> 1. +. p *. (ex u) +. (1 -. p) *. (ex v)

and specify that the extracted equations should be solved by Gaussian elimina-
tion or least fixpoint iteration from 0.

The coinflip protocols we have discussed all fit the abstract definitional scheme
(2) in the form

S �

FS F�

h

γ

Fh

α

where S is the set of states (a state can be either H, T, or a triple (p, u, v), where
p ∈ � and u, v ∈ S, the last indicating that it flips a p-biased coin and moves to
state u with probability p and v with probability 1− p), and F is the functor

FX = �+ �+ �×X2 Fh = id� + id� + id� × h2.

For both the probability of heads and expected running times examples, we can
take

γ(s) =

⎧⎪⎨
⎪⎩
ι0() if s = H

ι1() if s = T

ι2(p, u, v) if s = (p, u, v).

For the probability of heads, we can take

α(ι0()) = 1 α(ι1()) = 0 α(ι2(p, a, b)) = pa+ (1 − p)b.

For the expected running time, we can take

α(ι0()) = α(ι1()) = 0 α(ι2(p, a, b)) = 1 + pa+ (1− p)b.

The desired solution in all cases is a least fixpoint in an appropriate ordered
domain.

68 J.-B. Jeannin, D. Kozen, and A. Silva

2.3 Abstract Interpretation

In this section we present our most involved example: abstract interpretation
of a simple imperative language. Our example follows Cousot and Cousot [6] as
inspired by lecture notes of Stephen Chong [4].

Consider a simple imperative language of while programs with integer expres-
sions a and commands c. Let Var be a countable set of variables.

a ::= n ∈ � | x ∈ Var | a1 + a2

c ::= skip | x := a | c1 ; c2 | if a then c1 else c2 | while a do c

For the purpose of tests in the conditional and while loop, an integer is considered
true if and only if it is nonzero. Otherwise, the operational semantics is standard,
in the style of [11]. A store is a partial function from variables to integers, an
arithmetic expression is interpreted relative to a store and returns an integer,
and a command is interpreted relative to a store and returns an updated store.

Abstract interpretation defines an abstract domain that approximates the
values manipulated by the program. We define an abstract domain for integers
that abstracts an integer by its sign. The set of abstract values is AbsInt =
{neg, zero, pos,	}, where neg, zero, and pos represent negative, zero, and positive
integers, repectively, and 	 represents an integer of unknown sign. The abstract
values form a join semilattice with join
 defined by the following diagram:

	

zeroneg pos

(5)

The abstract interpretation of an arithmetic expression is defined relative to
an abstract store σ : Var ⇀ AbsInt, used to interpret the abstract values of
variables. We write AS = Var ⇀ AbsInt for the set of abstract stores. The
abstract interpretation of arithmetic expressions is given by:

A�n�σ =

⎧⎪⎨
⎪⎩
pos if n > 0

zero if n = 0

neg if n < 0

A�x�σ = σ(x)

A�a1 + a2� =

⎧⎪⎨
⎪⎩
A�a1�σ if A�a2�σ = zero

A�a2�σ if A�a1�σ = zero

A�a1�σ
 A�a2�σ otherwise.

The abstract interpretation of commands returns an abstract store, which is an
abstraction of the concrete store returned by the commands. Abstract stores
form a join semilattice, where the join
 of two abstract stores just takes the
join of each variable: (σ1
 σ2)(x) = σ1(x)
 σ2(x). Commands other than the
while loop are interpreted as follows:

C�skip�σ = σ C�x := a�σ = σ[x �→ A�a�σ] C�c1 ; c2�σ = C�c2�(C�c1�σ)

Language Constructs for Non-Well-Founded Computation 69

C�if a then c1 else c2�σ =

⎧⎪⎨
⎪⎩
C�c1�σ if A�a�σ ∈ {pos, neg}
C�c2�σ if A�a�σ = zero

C�c1�σ
 C�c2�σ otherwise.

We would ideally like to define

C�while a do c�σ =

{
σ if A�a�σ = zero

σ
 C�while a do c�(C�c�σ) otherwise.

Unfortunately, when A�a�σ �= zero, the definition is not well-founded, because
it is possible for σ and C�c�σ to be equal. However, it is a correct definition of
C�while a do c� as a least fixpoint in the join semilattice of abstract stores. The
existence of the least fixpoint can be obtained in a finite time by iteration because
the join semilattice of abstract stores satisfies the ascending chain condition
(ACC), that is, it does not contain any infinite ascending chains.

Given A�a� and C�c� previously defined, C�while a do c� satisfies the following
instantiation of (2):

AS AS

AS+ AS× AS AS+ AS× AS

C�while a do c�

γ

idAS + idAS × C�while a do c�

α

where the functor is FX = AS+ AS×X and

γ(σ) =

{
ι1(σ) if A�a�σ = zero

ι2(σ, C�c�σ) otherwise

α(ι1(σ)) = σ

α(ι2(σ, τ)) = σ
 τ

The function C�while a do c� is the least function in the pointwise order that
makes the above diagram commute.

This technique allows us to define C�c� inductively on the structure of c. An
inductive definition can be used here because the set of abstract syntax trees is
well-founded.

The literature on abstract interpretation explains how to compute the least
fixpoint, and much research has been done on techniques for accelerating con-
vergence to the least fixpoint. This body of research can inform compiler opti-
mization techniques for computation with coalgebraic types.

2.4 Finite Automata

We conclude this section with a brief example involving finite automata. Suppose
we want to construct a deterministic finite automaton (DFA) over a two-letter
alphabet accepting the intersection of two regular sets given by two other DFAs
over the same alphabet. We might define states coalgebraically by

type state = State of bool * state * state

70 J.-B. Jeannin, D. Kozen, and A. Silva

where the first component specifies whether the state is an accepting state and
the last two components give the states to move to under the two input symbols.
The standard product construction is defined coalgebraically simply by

let rec product (s : state) (t : state) : state =

match s, t with

| State (b1,s1,t1), State (b2,s2,t2) ->

State (b1 && b2, product s1 t1, product s2 t2)

and we can compute it, provided we can solve the generated equations.

3 A Framework for Non-Well-Founded Computation

In this section we discuss our proposed framework for incorporating language
constructs to support non-well-founded computation. At a high level, we wish to
specify a function h uniquely using a finite set E of structural recursive equations.
The function is defined in much the same way as an ordinary recursive function
on an inductive datatype. However, the value h(x) of the function on a particular
input x is computed not by calling the function in the usual sense, but by
generating a system of equations from the function definition and then passing
the equations to a specified equation solver to find a solution. The equation
solver is either a standard library function or programmed by the user according
to an explicit interface.

The process is partitioned into several tasks as follows.

1. The left-hand sides of the clauses in the function definition determine syn-
tactic terms representing equation schemes. These schemes are extracted by
the compiler from the abstract syntax tree of the left-hand side expressions.
This determines (more or less, subject to optimizations) the function γ in
the diagram (2).

2. The right-hand sides of the clauses in the function definition determine the
function α in the diagram (2) (again, more or less, subject to optimizations).
These expressions essentially tell how to evaluate terms extracted in step 1
in the codomain. As in 1, these are determined by the compiler from the
abstract syntax trees of the right-hand sides.

3. At runtime, when the function is called with a coalgebraic element c, a finite
system of equations is generated from the schemes extracted in steps 1 and
2, one equation for each element of the coalgebra reachable from c. In fact,
we can take the elements reachable from c as the variables in our equations.
Each such element matches exactly one clause of the function body, and this
determines the right-hand side of the equation that is generated.

4. The equations are passed to a solver that is specified by the user. This
will presumably be a module that is programmed separately according to a
fixed interface and available as a library function. There should be a simple
syntactic mechanism for specifying an alternative solution method (although
we do not specify here what that should look like).

Language Constructs for Non-Well-Founded Computation 71

Let us illustrate this using our initial example of the free variables. Recall the
infinitary λ-term below and the definition of the free variables function from the
introduction:

•

x •

y

let rec fv = function

| Var v -> {v}
| App (t1,t2) -> (fv t1) ∪ (fv t2)

| Lam (x,t) -> (fv t) − {x}
(6)

Steps 1 and 2 would analyze the left-and right-hand sides of the three clauses in
the body at compile time to determine the equation schemes. Then at runtime, if
the function were called on the coalgebraic element pictured, the runtime system
would generate four equations, one for each node reachable from the top node:

fv t = (fv x)∪ (fv u) fv u = (fv y)∪ (fv t) fv x = {x} fv y = {y}
where t and u are the unlabeled top and right nodes of the term above.

As noted, these equations have many solutions. In fact, any set containing
the variables x and y will be a solution. However, we are interested in the least
solution in the ordered domain (P(Var),⊆) with bottom element ∅. In this case,
the least solution would assign {x} to the leftmost node, {y} to the lowest node,
and {x,y} to the other two nodes.

With this in mind, we would pass the generated equations to an iterative
equation solver, which would produce the desired solution. In many cases, such
as this example, the codomain is a complete partial order and we have default
solvers to compute least fixpoints, leaving to the programmer the simple task
of indicating that this is the desired solution method. That would be an ideal
situation: the defining equations of (6) plus a simple tag would be enough to
obtain the desired solution.

3.1 Generating Equations

The equations are generated from the recursive function definition and the input
c, a coalgebraic element, in accordance with the abstract definitional scheme (2).
The variables can be taken to be the elements of the coalgebraic object reachable
from c. There are finitely many of these, as no infinite object can ever exist in
a running program. More accurately stated, the objects of the final coalgebra
represented by coalgebraic elements during program execution are all regular in
the sense that they have a finite representation. These elements are first collected
into a data structure (in our implementation, simply a list) and the right-hand
sides of the equations are determined by the structure of the object using pattern
matching. The object matches exactly one of the terms extracted in step 1.

4 Implementation

The examples of §2 show the need for new program constructs that would allow
the user to manipulate corecursive types with the same ease and elegance as we

72 J.-B. Jeannin, D. Kozen, and A. Silva

are used to for algebraic datatypes. It is the goal of this section to provide lan-
guage constructs that allow us to provide the intended semantics to the examples
above in a functional language like OCaml.

The general idea behind the implementation is as follows. We want to keep
the overhead for the programmer to a minimum. We want the programmer to
specify the function in the usual way, then at runtime, when the function is
evaluated on a given argument, a set of equations is generated and passed on
to a solver, which will find a solution according to the specification. In an ideal
situation, the programmer only has to specify the solver. For the examples where
a CPO structure is present in the codomain, such as the free variables example,
or when we have a complete metric space and a contractive map, we provide
the typical solution methods (least and unique fixpoint) and the programmer
only needs to tag the codomain with the intended solver. In other cases, the
programmer needs to implement the solver.

4.1 Equations and Solvers

Our mock-up implementation aims to allow the programmer to encode a partic-
ular instantiation of the general diagram (2) as an OCaml module. This module
can then be passed to an OCaml functor, Corecursive, that builds the desired
function. We discuss the structure of Corecursive later in this section.

The functor F is represented by a parameterized type ’b f. The structures
(C, γ) and (A,α), which form a coalgebra and an algebra, respectively, for the
functor F , are defined by types coalgebra and algebra, respectively. This allows
us to specify γ naturally as a function from coalgebra to coalgebra f and α as
a function from algebra f to algebra. In the free variables example, if VarSet
is a module implementing sets of strings, this is done as:

type ’b f = I1 of string | I2 of ’b * ’b | I3 of string * ’b

type coalgebra = Var of string

| App of coalgebra * coalgebra

| Lam of string * coalgebra

type algebra = VarSet.t

let gamma (c:coalgebra) : coalgebra f =

match c with

| Var v -> I1 v

| App(c1, c2) -> I2(c1, c2)

| Lam(x, c) -> I3(x, c)

let alpha (s:algebra f) : algebra =

match s with

| I1 v -> VarSet.singleton v

| I2(s1, s2) -> VarSet.union s1 s2

| I3(x, s) -> VarSet.remove x s

Variables are represented by strings and fresh variables are generated with a
counter. Equations are of the form variable = t, where the variables on the
left-hand side are elements of the domain and the terms on the right side are
built up from the constructors of the datatype, constants and variables.

Language Constructs for Non-Well-Founded Computation 73

In the fv example, the domain was specified by the following datatype:

type term =

| Var of string

| App of term * term

| Lam of string * term

Recall the four equations above defining the free variables of the λ-term (1) from
the introduction:

fv t = (fv x)∪ (fv u) fv u = (fv y)∪ (fv t) fv x = {x} fv y = {y}
A variable name is generated for each element of the coalgebra encountered. For
example, here we write v1 for the unknown corresponding to the value of fv t;
v2 for x; v3 for u; and v4 for y. An equation is represented as a pair of a variable
and an element of type f variable. The intuitive meaning of a pair (v, w) is the
equation v = α(w). In the example above, we would have

("v1", I2("v2", "v3")) representing v1 = v2 ∪ v3

("v2", I1("x")) representing v2 = {x}
("v3", I2("v4", "v1")) representing v3 = v4 ∪ v1

("v4", I1("y")) representing v4 = {y}

The function solve can now be described. Its arguments are a variable v for
which we want a solution and a system of equations in which v appears. It
returns a value for v that satisfies the equations. In most cases the solution is
not unique, and the solve method determines which solution is returned.

For technical reasons, two more functions need to be provided. The function
equal provides an equality test on the coalgebra, which allows the equation
generator to know when it has encountered a loop. In most cases, this equality
is just the OCaml physical equality ==; this is necessary because the OCaml
equality = on coinductive objects does not terminate. In some other cases the
function equal is an equality function built from both = and ==.

The function fh can be seen either as an iterator on the functor f in the style
of folding and mapping on lists or as a monadic operator on the functor f. It
allows the lifting of a function from ’c (typically coalgebra) to ’a (typically
algebra) to a function from ’c f to ’a f, while folding on an element of type ’e.
It works by destructing the element of type ’c f to get some number (perhaps
zero) elements of type ’c, successively applying the function on each of them
while passing through the element of type ’e, and reconstructing an element of
type ’a f with the same constructor used in ’c f, returned with the final value
of the element of type ’e. In the example on free variables, the function fh is
defined as:

let fh (h: ’c * ’e -> ’a * ’e) : ’c f * ’e -> ’a f * ’e = function

| I1 v, e -> I1 v, e

| I2(c1, c2), e -> let a1, e1 = h (c1, e) in

let a2, e2 = h (c2, e1) in

I2(a1, a2), e2

| I3(x, c), e -> let a, e1 = h (c, e) in

I3(x, a), e1

74 J.-B. Jeannin, D. Kozen, and A. Silva

If we had access to an abstract representation of the functor f, analyzing it
allows to automatically generate the function fh. This is what we do in §5.

All this is summarized in the signature of a type SOLVER, used to specify one
of those functions:

module type SOLVER = sig

type ’b f

type coalgebra

type algebra

val gamma : coalgebra -> coalgebra f

val alpha : algebra f -> algebra

type variable = string

type equation = variable * (variable f)

val solve : variable -> equation list -> algebra

val equal : coalgebra -> coalgebra -> bool

val fh : (’c * ’e -> ’a * ’e) -> ’c f * ’e -> ’a f * ’e

end

Let us now define the OCaml functor Corecursive. From a specification of a
function as a module S of type SOLVER, it generates the equations to be solved
and sends them to S.solve. Here is how it generates the equations: starting from
an element c of the coalgebra, it gathers all the elements of the coalgebra that
are reachable from c, recursively descending with gamma and fh, and stopping
when reaching an element that is equal—in the sense of the function equal—to
an element that has already been seen. For each of those elements, it generates
an associated fresh variable and an associated equation based on applying gamma

to that element.
From an element c, generating the equations and solving them with solve

returns an element a in the coalgebra, the result of applying the function we
defined to c.

module Corecursive :

functor (S: SOLVER) -> sig

val main : S.coalgebra -> S.algebra

end

We will now explain the default solvers we have implemented and which are
available for the programmer to use. These solvers cover the examples we have
shown before: a least fixpoint solver, a solver that generates coinductive elements
and is used for substitution, and a Gaussian elimination solver.

4.2 Least Fixpoints

If the algebra A is a CPO, then every monotone function f on A has a least
fixpoint, by the Knaster–Tarski theorem. Moreover, if the CPO satisfies the

Language Constructs for Non-Well-Founded Computation 75

ascending chain condition (ACC), that is, if there does not exist an infinite
ascending chain, then this least fixpoint can be computed in finite time by iter-
ation, starting from ⊥A. Even if the ACC is not satisfied, an approximate least
fixpoint may suffice.

In the free variables example, the codomain (P(Var),⊆) is a CPO, and its
bottom element is ⊥A = ∅. It satisfies the ACC as long as we restrict ourselves
to the total set of variables appearing in the term. This set is finite because the
term is regular and thus has a finite representation.

To implement this, first consider the set of equations: each variable is defined
by one equation relating it to the other variables. We keep a guess for each
variable, initially set at ⊥A, and compute a next guess based on the equation
for each variable. This eventually converges and we can return the value of the
desired variable. Note that to implement this, the programmer needs to know
that A is a CPO satisfying the ACC, and needs to provide two things: a bottom
element ⊥A, and an equality relation on A that determines when a fixpoint is
achieved.

The same technique can be used to implement the solver for the abstract
interpretation example, as it is also a least fixpoint in a CPO. This CPO is the
subset of the join semilattice of abstract domains containing only the elements
greater than or equal to the initial abstract domain. The ACC is ensured by the
fact that the abstract domain is always of finite height. The bottom element is
the initial abstract domain. Much of the code is shared with the free variables
example. As pointed out before, only the bottom element of A and the equality
on A change.

More suprisingly, this technique can also be used in the probability examples.
Here the system of equations looks more like a linear system of equation on �.
Except in trivial extreme cases, the equations are contracting, thus we can solve
them by iterative approximation until getting close enough to a fixpoint. The
initial element ⊥A is 0. The equality test on A is the interesting part: since it
determines when to stop iterating, two elements of A are considered equal if and
only if they differ by less than ε, the precision of the approximation. This is
specified by the programmer in the definition of equality on A. Of course, such a
linear system could also be solved with Gaussian elimination, as presented below
in §4.4.

It can be seen from these examples that the least fixpoint solver is quite
generic and works for a large class of problems. We need only parameterize with
a bottom element to use as an initial guess and an equality test.

4.3 Generating Coinductive Elements and Substitution

Let us return to the substitution example. Suppose we wanted to replace y in
Fig. 1(b) by the term of Fig. 1(a) to obtain Fig. 1(c). The extracted equations
would be

v1 = App(v2, v3)

v2 = Var("x")

v3 = App(v4, v1)

76 J.-B. Jeannin, D. Kozen, and A. Silva

•

x x

(a)

•

x •

y

(b)

•

x •

•

x x

(c)

Fig. 1. A substitution example

v4 = App(Var "x", Var "x")

and we are interested in the value of v1. Finding such a v1 is easily done by
executing the following code in OCaml:

let rec v1 = App(v2, v3)

and v2 = Var("x")

and v3 = App(v4, v1)

and v4 = App(Var "x", Var "x")

in v1

This code can be easily generated (as a string of text) from the equations. Unfor-
tunately, there is no direct way of generating the element that this code would
produce. One workaround is to use the module Toploop of OCaml that provides
the ability to dynamically execute code from a string, like eval in Javascript.
But that is not a satisfying solution.

Another solution is to allow the program to manipulate terms by making all
subterms mutable using references:

type term =

| Var of string

| App of term ref * term ref

| Lam of string * term ref

This type allows the creation of the desired term by going down the equations and
building the terms progressively, backpatching if necessary when encountering
a loop. But this is also unsatisfactory, as we had to change the type of term to
allow references.

The missing piece is mutable variables, which are currently not supported
in the ML family of languages. A variable is mutable if it can be dynamically
rebound, as with the Scheme set! feature or ordinary assignment in imperative
languages. In ML, variables are only bound once when they are declared and
cannot be rebound.

References can simulate mutable variables, but this corrupts the typing and
forces the programmer to work at a lower pointer-based level. Moreover, there
are subtle differences in the aliasing behavior of references and mutable variables.
The language constructs we propose should ideally be created in a programming
language with mutable variables.

Language Constructs for Non-Well-Founded Computation 77

4.4 Gaussian Elimination

In many of the examples on probabilities and streams, a set of linear equations
is generated. One of the examples on probabilistic protocols of §2.2 requires us
to find a float var1 such that

var1 = 0.5 + 0.5 * var2

var2 = 0.5 * var1

In the case where the equations are contractive, we have already seen that the
solution is unique and we can approximate it by iteration. We have also imple-
mented a Gaussian elimination solver that can be used to get a more precise
answer or when the map is not contractive but the solution is still unique.

But what happens when the linear system has no solution or an infinite num-
ber of solutions? If the system does not have a solution, then there is no fixpoint
for the function, and the function is undefined on that input. If there are an
infinite number of solutions, it depends on the application. For example, in the
case of computing the probability of heads in a probabilistic protocol, we want
the least such solution such that all variables take values between 0 and 1.

For example, let us consider the following probabilistic protocol: Flip a fair
coin. If it comes up heads, output heads, otherwise flip again. Ignore the result
and come back to this last state, effectively flipping again forever. This protocol
can be represented by the following probabilistic automaton:

s

H t

1
2

1
2

1

The probability of heads starting from s and t, respectively, is given by:

PrH(s) = 1
2 + 1

2 · PrH(t) PrH(t) = 1 · PrH(t).

The set of solutions for these equations for PrH(t) is the interval [0, 1], thus the
set of solutions for PrH(s) is the interval [1

2 , 1]. The desired result, however, is
the least of those solutions, namely 1/2 for PrH(s), because the protocol halts
with result heads only with probability 1/2.

Again, the Gaussian solver is quite generic and would be applicable to a large
class of problems involving linear equations.

5 Future Work: Automatic Partitioning

In §4, we described a mock-up implementation that demonstrates the feasibility
of our approach. In this implementation, the programmer needs to provide the
elements of the SOLVER module. We now describe our ideas for future work, and
in particular, ideas to make the task of the programmer easier by automatically
generating some of those elements.

Providing all the elements to a SOLVER module requires from the programmer
a good understanding of the concepts explained in this paper and a method

78 J.-B. Jeannin, D. Kozen, and A. Silva

to solve equations. On the other hand, examples show that the same solving
techniques arise again and again. Ideally, we would like the programmer to have
to write only:

type term = let rec[...] fv = function

| Var of string | Var v -> {v}
| App of term * term | App (t1,t2) -> (fv t1) ∪ (fv t2)

| Lam of string * term | Lam (x,t) -> (fv t) − {x}

where the keyword rec has been parameterized by the name of a module im-
plementing the SOLVER interface for a particular codomain, such as a generic
iteration solver for CPOs or contractive maps or a Gaussian elimination solver
for linear equations.

This definition is almost enough to generate the SOLVER module. Only three
more things need to be specified by the programmer:

– the function equal on coalgebras, which is just == in most cases; and
– the two elements needed in the least fixpoint algorithm: a bottom element

⊥A and an equality test =A on the algebra A, written algebra in the code.

The other elements can be directly computed from a careful analysis of the
function definition:

– The function can be typed with the usual typing rules for recursive functions.
Then algebra is defined as its input type and coalgebra as its output type.

– An analysis of the abstract syntax trees of the clauses of the function defini-
tion can determine what is executed before the recursive calls, which com-
prises γ, and what is executed after the recursive calls, which comprises α.
An analysis of the arguments that are passed to the recursive calls, as well
as the variables that are still alive across the boundary between gamma and
alpha, determine the functor f.

– The function fh can be defined by induction on the structure of the abstract
syntax tree defining ’a f. The only difficult case is the product, where we
apply h to every element of type ’a in the product, passing through the
element of type ’e, and returning a reconstructed product of the results.

– The type equation is always defined in the same way.
– Finally, the solve function is generic for all functions solved as a least fix-

point by iteration, just depending on the bottom element and the equality
on the algebra.

6 Conclusion

Coalgebraic (coinductive) datatypes and algebraic (inductive) datatypes are sim-
ilar in many ways. Nevertheless, there are some important distinctions. Algebraic
types have a long history, are very well known, and are heavily used in modern
applications, especially in the ML family of languages. Coalgebraic types, on the
other hand, are the subject of more recent research and are less well known. Not

Language Constructs for Non-Well-Founded Computation 79

all modern languages support coalgebraic types—for example, Standard ML and
F# do not—and even those that do may not do so adequately.

The most important distinction is that coalgebraic objects can be cyclic,
whereas algebraic objects are always well-founded. Functions defined by struc-
tural recursion on well-founded data always terminate and yield a value under
the standard semantics of recursion, but not so on coalgebraic data. A more
subtle distinction is that constructors can be interpreted as functions under the
algebraic interpretation, as they are in Standard ML, but not under the coalge-
braic interpretation as in OCaml.

Despite these differences, there are some strong similarities. They are defined
in the same way by recursive type equations, algebraic types as initial solutions
and coalgebraic types as final solutions. Because of this similarity, we would like
to program with them in the same way, using constructors and destructors and
writing recursive definitions using pattern matching.

In this paper we have shown through several examples that this approach
to computing with coalgebraic types is not only useful but viable. For this to
be possible, it is necessary to circumvent the standard semantics of recursion,
and we have demonstrated that this obstacle is not insurmountable. We have
proposed new programming language features that would allow the specification
of alternative solutions and methods to compute them, and we have given mock-
up implementations that demonstrate that this approach is feasible.

The chief features of our approach are the interpretation of a recursive function
definition as a scheme for the specification of equations, a means for extracting
a finite such system from the function definition and its (cyclic) argument, a
means for specifying an equation solver, and an interface between the two. In
many cases, such as an iterative fixpoint on a codomain satisfying the ascending
chain condition, the process can be largely automated, requiring little extra work
on the part of the programmer.

We have mentioned that mutable variables are essential for manipulating coal-
gebraic data. Current functional languages in the ML family do not support
mutable variables; thus true coalgebraic data can only be constructed explicitly
using let rec, not programmatically. Moreover, once constructed, a coalgebraic
object cannot be changed dynamically. These restrictions currently constitute a
severe restriction the use of coalgebraic datatypes. One workaround is to simulate
mutable variables with references, but this is a grossly unsatisfactory alternative,
because it confounds algebraic elegance and forces the programmer to work at a
lower pointer-based level. A future endeavor is to provide a smoother and more
realistic implementation of these ideas in an ML-like language with mutable
variables.

Acknowledgments. We are grateful to Bob Constable, Edgar Friendly, Nate
Foster, Helle Hvid Hansen, Bart Jacobs, Jonathan Kimmitt, Xavier Leroy, An-
drew Myers, Stefan Milius, Ross Tate, and the anonymous referees for helpful
comments. Part of this work was done while the first two authors were visiting
Radboud University Nijmegen and the CWI Amsterdam.

80 J.-B. Jeannin, D. Kozen, and A. Silva

References

1. Adámek, J., Lücke, D., Milius, S.: Recursive coalgebras of finitary functors. Theo-
retical Informatics and Applications 41, 447–462 (2007)

2. Adámek, J., Milius, S., Velebil, J.: Elgot algebras. Log. Methods Comput.
Sci. 2(5:4), 1–31 (2006)

3. Capretta, V., Uustalu, T., Vene, V.: Corecursive Algebras: A Study of General
Structured Corecursion. In: Oliveira, M.V.M., Woodcock, J. (eds.) SBMF 2009.
LNCS, vol. 5902, pp. 84–100. Springer, Heidelberg (2009)

4. Chong, S.: Lecture notes on abstract interpretation. Harvard University (2010),
http://www.seas.harvard.edu/courses/cs152/2010sp/lectures/lec20.pdf

5. CoCaml project (December 2012),
http://www.cs.cornell.edu/Projects/CoCaml/

6. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: 4th ACM
SIGPLAN-SIGACT Symp. Principles of Programming Languages, pp. 238–252.
ACM Press, New York (1977)

7. Simon, L., Mallya, A., Bansal, A., Gupta, G.: Coinductive Logic Programming.
In: Etalle, S., Truszczyński, M. (eds.) ICLP 2006. LNCS, vol. 4079, pp. 330–345.
Springer, Heidelberg (2006)

8. Simon, L., Bansal, A., Mallya, A., Gupta, G.: Co-Logic Programming: Extending
Logic Programming with Coinduction. In: Arge, L., Cachin, C., Jurdziński, T.,
Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 472–483. Springer, Heidelberg
(2007)

9. Taylor, P.: Practical Foundations of Mathematics. Cambridge Studies in Advanced
Mathematics, vol. 59. Cambridge University Press (1999)

10. y Widemann, B.T.: Coalgebraic semantics of recursion on circular data structures.
In: Cirstea, C., Seisenberger, M., Wilkinson, T. (eds.) CALCO Young Researchers
Workshop (CALCO-jnr 2011), pp. 28–42 (August 2011)

11. Winskel, G.: The Formal Semantics of Programming Languages: An Introduction.
MIT Press, Cambridge (1993)

http://www.seas.harvard.edu/courses/cs152/2010sp/lectures/lec20.pdf
http://www.cs.cornell.edu/Projects/CoCaml/

	Language Constructs for Non-Well-Founded Computation
	Introduction
	Motivating Examples
	Substitution
	Probabilistic Protocols
	Abstract Interpretation
	Finite Automata

	A Framework for Non-Well-Founded Computation
	Generating Equations

	Implementation
	Equations and Solvers
	Least Fixpoints
	Generating Coinductive Elements and Substitution
	Gaussian Elimination

	Future Work: Automatic Partitioning
	Conclusion
	References

