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Abstract. In concurrent systems, the choice of executing the next tran-
sition depends both on the timing between the agents that make in-
dependent or collaborative interactions available, and on the conflicts
(nondeterministic choices) with other transitions. This creates a chal-
lenging modeling and implementation problem. When the system needs
to make also probabilistic choices, the situation becomes even more com-
plicated. We use the model of Petri nets to demonstrate the modeling
and implementation problem. The proposed solution involves adding se-
quential observers called agents to the Petri net structure. Distributed
probabilistic choices are facilitated in the presence of concurrency and
nondeterminism, by selecting agents that make the choices, while guar-
anteeing that their view is temporarily stable. We provide a distributed
scheduling algorithm for implementing a system that allows distributed
probabilistic choice.

1 Introduction

Adding probabilities in the presence of concurrency and nondeterminism is chal-
lenging. Autonomous models in which branching probabilities and nondeter-
minism coexist are well understood. A prominent example is Markov decision
processes (MDPs) [21]. Probabilistic automata (PAs) [23], a slight generalization
of MDPs, have been equipped with parallel composition in a CSP-like fashion.
They constitute a framework for concurrent systems that exhibit both nondeter-
ministic and probabilistic behavior. Examples of such systems are randomized
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Fig. 1. A Petri net (left) covered by agents (right)

distributed algorithms and network security protocols. There is however a serious
anomaly [17]: for concurrent PAs, a global scheduler may establish strong corre-
lations between the behavior of system components and, e.g., resolve choices in
one PA based on the outcome of a coin flip in the other.

An example illustrates the issue. Assume two scientists want to write a paper
for a forthcoming important conference. Given the deadline, each can be involved
in only one paper. Each scientist has his own idea that can be materialized into a
single-authored paper a or c. They also have a joint idea for a paper b. The Petri
net in Figure 1(left) depicts this situation. As they face a tough choice, they
want to use some probabilistic measures to make the decision, e.g., a fair coin.
The difficulty in modeling is that the available choices for such a decision may
differ depending on the concurrent scheduling. If, say, the outcome of the flipped
coin by the first author yields paper a, the selection of the other author is no
more probabilistic; he has no choice but to write his own paper c. While writing
two independent papers is concurrent, the selection by one author affects (e.g.,
removes) the alternative(s) for the other; this phenomenon is called confusion in
Petri nets.

Such a subtle interplay between concurrency and probabilistic choices has
recently led to various proposals to remedy or control this phenomenon, e.g.,
token-based schemes [7] and distributed schedulers [11], with impacts in the
context of quantitative security [3] and testing theory [10]. In this paper, we
start from an expressive concurrency model—Petri nets—and equip them with
branching probabilities. An important advantage of Petri nets is that the arti-
facts that affect the aforementioned problem such as independence, conflict (or
confusion), and concurrency are well studied. (Our concepts can be however also
demonstrated similarly with other models.) The challenge with Petri nets is to
deal with confusion. Indeed, various earlier proposals for probabilistic Petri nets
restrict the semantics and/or their analysis to confusion-free nets [2,18,25]. Con-
fusion describes a situation where a nondeterministic choice between transitions
is affected (i.e., possibilities are added or removed) by firing an independent
transition. This situation is problematic as, e.g., a probabilistic decision can be
altered potentially without being observed.

Our proposal is to add information about the structure of a net, by defining
what we call agents. The transitions of a net are covered by a set of (possi-
bly intersecting) agents. Agents represent processes, observers, or component
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automata, which can make both nondeterministic and probabilistic decisions
based on their “local” information. The selection of the next agent that can
resolve a choice is done nondeterministically, and is supposed to be done by a
scheduler. Adding agents to Petri nets yields, what we refer to as, covered nets.
In Figure 1(right), the two agents π1 and π2, indicated by contours that encapsu-
late their transitions and places, model the two scientists. The selection between
which scientist may decide first, say π1, is done globally and nondeterministi-
cally. Agent π1 can control transitions a and b and observe all places except p5,
i.e., all the input and output places related to its transitions.

Contributions of this paper. The technical contributions of this paper are:

– An extension of Petri nets with agents. Agents resolve choices based on a
local state of the net, as opposed to resolving choices based on global state
information (as is usual in net theory).

– A semantics for these nets with a two-level control mechanism: a (global)
selection of an agent followed by a (local) choice by this agent. Under this
semantics, concurrency occurs when an agent’s transition does not affect the
choices available to another agent. In contrast with standard net semantics,
it identifies confusion as an additional source of dependency.

– The applicability of this framework to a novel notion of probabilistic Petri
nets where agents are responsible to resolve probabilistic choices locally.
This provides a novel and clean treatment of concurrency in the presence of
branching probabilities, and naturally yields an MDP.

– A distributed algorithm for selecting a set of agents that can resolve their
choices in an independent, concurrent fashion. The algorithm is based on a
structural analysis of the net (thus is efficient), is deadlock free, and relies on
low-level atomicity assumptions. To the best of our knowledge, this is the first
algorithm that implements distributed scheduling of concurrent probabilistic
systems.

2 Preliminaries

Petri nets. We start by introducing some basic concepts and notations of Petri
nets; for more details, see e.g., [22].

Definition 1 (Syntax). A 1-safe Petri net N is a tuple (P, T,E, s0) where

– P is a finite set of places. The states of N are defined as S = 2P .
– T is a finite set of transitions.
– E ⊆ (P ×T )∪ (T ×P ) is a bipartite relation between places and transitions.
– s0 ∈ S (i.e., s0 ⊆ P ) is the initial state.

For a transition t ∈ T , let the set •t of input places be {p ∈ P | (p, t) ∈ E}, and
the set t• of output places be {p ∈ P | (t, p) ∈ E}. Similarly, for a place p ∈ P ,
we denote by p• the transitions {t ∈ T | (p, t) ∈ E}, and by •p the transitions
{t ∈ T | (t, p) ∈ E}.
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Definition 2 (Enabled Transition). A transition t ∈ T is enabled in a state
s, denoted s[t〉, if •t ⊆ s and t• ∩ s ⊆ •t. The set of enabled transitions in a
state s is denoted en(s). A state s is in deadlock if en(s) = ∅.
Definition 3 (Fired Transition). A transition t ∈ en(s), i.e., s[t〉, can fire
(or execute) from state s to state s′, denoted by s[t〉s′, if s′ = (s \• t) ∪ t•.

Transitions are visualized as lines, places as circles, and the relation E is repre-
sented using arrows. The net in Figure 3 has places p1, p2, . . . , p9 and transitions
a, b, c, d, e, and f . We depict a state by putting a full circle, called a token, in-
side each place of that state, leaving the other places empty. The net in Figure 3
has the initial state s0 = {p1, p2, p9}. The transitions that are enabled in s0 are
a and b. If we fire transition a from that state, the token from place p1 will be
removed, and a token will be placed in p3. All other tokens reside in their places.

Definition 4 (Execution). An execution of a Petri net N is a maximal (i.e., it
cannot be extended) alternating sequence of states and transitions s0t1s1t2s2 . . .,
where s0 is the initial state of N and for all i ≥ 0, si[ti+1〉si+1 holds.

If it is clear from the context, we sometimes use just the sequence of states as
executions. A state is reachable in a Petri net N if it occurs in at least one
of its executions. The state graph of N is a digraph where the nodes represent
reachable states of N and the edges represent the firing relation. Figure 4 depicts
the state graph for the Petri net in Figure 3.

Decomposition into disjoint places. A composition of Petri nets, see Fig-
ure 2 (which can also be seen as a decomposition), was given, e.g., by
Mazurkiewicz [19]. It combines different Petri nets by unifying their compo-
nents. This can be seen as synchronizing the executions of transitions of the
components that have the same name. The places of the components are dis-
joint, but this condition can be relaxed (e.g., when modeling systems with shared
variables).

Definition 5 (Composition). Let N1, N2, . . . , Nn be Petri nets, where N i =
(P i, T i, Ei, si0). Then the Mazurkiewicz composition of these nets is the net

N = (
⋃

1≤i≤n

P i,
⋃

1≤i≤n

T i,
⋃

1≤i≤n

Ei,
⋃

1≤i≤n

si0)

This kind of decomposition is also present in the component-based platform BIP
(Behavior, Interaction, Priority) [6]. There, the finite state components may be
engaged in internal or collaborative transitions. For a distributed implementa-
tion, a synchronization algorithm is required for selecting an interaction among
several choices, dealing with the complication of guaranteeing a consistent inter-
action in the presence of different choices by the different participants. Specif-
ically, it is essential to prevent the situation where a component is committed
to an interaction, while another participant has meanwhile selected a conflicting
interaction. A scheduler such as α-core [20] (that algorithm contains a small
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Fig. 2. Petri net composition/decomposition

error, which is corrected in [13]) provides such a guarantee by performing a
two-phase exchange of messages for requesting an interaction and committing
to it by all participants. In the next section, we propose another perspective on
decomposing nets. The key to this decomposition is the concept of an agent.

3 Covering Petri Nets by Agents

This section introduces covered Petri nets, i.e., nets whose transitions are com-
pletely covered by agents. Agents act as entities that resolve nondeterministic
(and later in Section 4, probabilistic) choices in a net. They do so on the basis of
their local view of the state of the net. Executions of covered nets include in each
step an agent that selects one of its enabled transition. It is nondeterministically
determined when an agent (which has an enabled transition) gets its turn.

Covered Petri Nets. We first recapitulate some standard notions on transitions.

Definition 6 (Dependent, Conflicting Transition). Transitions t1, t2 ∈ T
are dependent (see [19]) if (•t1 ∪ t1

•) ∩ (•t2 ∪ t2
•) 	= ∅. Let D ⊆ T × T be the

dependence relation. Transitions t1, t2 ∈ T are independent if (t1, t2) 	∈ D. Let
I = (T × T ) \D.

Dependent transitions t1 and t2 are conflicting if (•t1 ∩ •t2) ∪ (t1
•∩ t2

•) 	= ∅.
(We often call the transitions that are dependent but not conflicting sequential.)

Dependent transitions have some common place. They are conflicting if they
share some input or some output place. For example, the transitions a and b in
Figure 1(left) are dependent (and conflicting), and so are transitions b and c.
The transitions a and c are independent.

In order to facilitate probabilistic choices in Petri nets (see Section 4), we
extend nets with agents that make decisions based on a partial view of the state
of the net. This yields covered Petri nets.

Definition 7 (Covered Petri Net). A covered Petri net (in short CPN)
C = (N,Π) is a net N = (P, T,E, s0) and a set Π ⊂ 2T of nonempty sets
of transitions with T =

⋃
π∈Π π satisfying:

1. If t, t′ ∈ π and (t, t′) ∈ I, then for no reachable state s of N , t, t′ ∈ en(s).
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Fig. 3. A Petri net for mutual exclusion

2. For each p ∈ P , there is a π ∈ Π such that •p ⊆ π, and for any other
π′ ∈ Π, |•p ∩ π′| ≤ 1. The same holds when replacing •p by p•.

The sets of transitions in Π satisfying the above constraints are called agents.

Covering of Petri nets appears in [14]. Agents are nonempty and together cover
all transitions of the net. A transition can belong to several agents, e.g., when it
models a synchronization between agents. For instance, in Figure 1, transition
b belongs to both agents π1 and π2. Let us explain the above definition in some
more detail. The first constraint asserts that no two independent transitions in
agent π can ever be executed from the same state1. Stated differently, transi-
tions of an agent that can be simultaneously enabled are dependent. The second
constraint requires that all input transitions of a place are captured by an agent;
the same holds for all its output transitions. In addition, any other agent in Π
contains at most one input transition (and similarly, for output transitions).

Example 1. The net in Figure 3 is covered byΠ = {π1, π2, π3} with the left agent
π1 = {a, c, e}, the right agent π2 = {b, d, f}, and the third agent π3 = {c, d, e, f}.
Remark that all transitions of agent π3 are shared with some other agent. The
set of agents Π ′ = {π1, π2} does not cover the net as •p9 = {e, f} is not captured
by a single agent, i.e., there is no single agent π with •p9 ⊆ π.

The constraint on the places of the CPN reflects the goal of agents to resolve
a choice. Only if p• ⊆ π (•p ⊆ π, respectively), agent π can resolve the choice
between transitions that require p to have (not have, respectively) a token. This

1 This restriction, which we find natural, can be alleviated, but this requires a change
in the algorithm presented in Section 5.
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explains the choice of agents in Figure 1: π1 = p1
• = {a, b}, and π2 = p2

• =
{b, c}. In Figure 5, π1 = {b, c} can execute c, while π2 = p1

•= {a, b} makes the
choice between a and b.

Definition 8 (Neighborhood). The neighborhood ngb(T ′) of a set T ′ ⊆ T of
transitions is the set of places

⋃
t∈T ′(•t ∪ t•).

We will visually represent the separation of transitions of a Petri net into agents
using a contour line that encapsulates the neighborhood of its agents. The
neighborhood of agent π1 in Figure 3 is {p1, p3, p5, p7, p9}. Place p9 belongs
to the neighborhood of all indicated agents (i.e., π1, π2 and π3), and acts as a
semaphore.

Definition 9 (Local Information). The local information of agent π ∈ Π of
a CPN C = (N,Π) in state s of N , denoted s�π, is defined by s�π= s ∩ ngb(π).

In the net in Figure 3, the local information of π1 in any state s equals
s ∩ {p1, p3, p5, p7, p9}. In the initial state s0, s0�π1 equals {p1, p9}. After exe-
cuting transition b, the local information of π1 does not change. The subsequent
execution of transition d removes p9 from the local information of π1. The local
information of an agent represents the limited view it has regarding the state of
the system. This is formalized in the following lemma:

Lemma 1. Let CPN C = (N,Π). For states s and s′ of N , and π ∈ Π we have:

1. If s�π= s′�π, then en(s) = en(s′).
2. If s[t〉s′ for transition t ∈ π, then s \ ngb(π) = s′ \ ngb(π).

CPN Executions. We now define the concept of executions for CPNs. A CPN
execution involves not only the states and the enabled transitions fired from
them (as for an execution of a Petri net, cf. Definition 4), but also the agents
that are selected to decide which of their enabled transition will be fired. We
call such a scheduling agent centric and in Section 5 provide an algorithm for
implementing such scheduling. The basic principle of selecting agents is to give
priority to agents that have a more complete view of a nondeterministic choice in
the net. This is formalized by the notion of subsumption. Let CPN C = (N,Π)
with π, π′ ∈ Π .

Definition 10 (Subsumption). An agent π subsumes an agent π′ over tran-
sition t ∈ π ∩ π′, denoted π t π

′, if the following conditions hold:

1. For each state s such that t ∈ en(s), |en(s) ∩ π′| = 1, i.e., there is no
alternative choice for π′ in s besides t, and

2. There is at least one state s such that t ∈ en(s) and |en(s) ∩ π| > 1, i.e., π
has a nondeterministic choice in s that includes t.
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Fig. 4. State graph for the net (mutual exclusion) in Figure 3

In the following definition, an execution of a CPN only allows a transition t to
be fired by an agent π′ if there is no other agent π that subsumes π′ over t. That
is to say, if π t π′, agent π′ will never be selected to make a decision to fire
transition t. The justification for this notion is that its view is more restricted
than that of agent π, which observes more alternatives to t.

In Figure 3, we have that π3 c π1 and (by symmetry) π3 d π2. In the
notion of CPN execution defined below, agent π3 resolves the nondeterministic
choice between c and d, rather than agents π1 or π2. In a sense, we can remove
the transitions c and d from the scope of agent π1 and π2, respectively. However,
this will create a hole in the structure of the agent π1 and π2. (The same applies
to the choice between the transitions e and f , although in this case the choice is
somewhat fake as it is clear from the structure of the net that only one of these
transitions can be enabled in all states.)

Definition 11 (CPN Execution). An execution of a CPN C = (N,Π) is a
maximal sequence s0[π1|t1〉s1[π2|t2〉s2 . . . where s0 is the initial state of N , for
all i ≥ 0, si[ti+1〉si+1, πi ∈ Π, ti ∈ πi and there is no π ∈ Π such that π ti πi.
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The choice between admissible agents (agents that currently have an enabled
transition t and that are not subsumed by another one over t) is performed in a
nondeterministic way.

The subsumption relation π t π
′ is static: it does not depend on the current

state. For simplicity of the presentation, we will remove henceforth from the
description of an agent the transitions that it cannot execute due to subsumption.
Thus, this leaves, for the CPN in Figure 3, π1 = {a} and π2 = {b}.

Confusion and Weak Places. In the sequel of this section, we recall some stan-
dard notions from Petri net theory (such as confusion and concurrency), and
introduce some new notions that become relevant for the scheduling algorithm
in Section 5.

Definition 12 (Confusion). The quadruple (t1, t2, t3, s) is a confusion occur-
rence in state s if transitions t1 and t2 are conflicting, (t1, t3) ∈ I, t1, t3 ∈ en(s),
and the execution of t3 (from s) changes the enabledness of t2.

2 The pair
(t, t′) ∈ T × T is a confusion if there exists some transition t′′ ∈ T and a
state s where (t, t′′, t′, s) is a confusion occurrence.

Confusion appears in the nets in Figures 1 and 5. These are two classical ex-
amples of confusion, where the first one is symmetric and the second one is
asymmetric. In Figure 1, (a, b, c, s0) and (c, b, a, s0) are confusion occurrences
for the initial state s0 = {p1, p2}. The former is due to the fact that a and b
are conflicting and the firing of c disables b; the second is due to the conflict be-
tween c and b and firing a disables b. This gives (a, c) and (c, a) as (symmetric)
confusions, respectively. In Figure 5, (a, b, c, s0) is a confusion occurrence for the
initial state s0 = {p1, p2} as firing c enables b. Thus, (a, c) is a confusion. Since
(c, a) is not a confusion, this confusion is asymmetric. A confusion occurrence
may not be detectable by considering the local information of an agent; e.g., in
the net of Figure 5, neither agent π1 nor agent π2 can locally detect that the
current (initial) state is a confusion occurrence.

Definition 13 (Confusion Pivot). A place p ∈ P is pivotal for a confusion
(t, t′), if there is a confusion occurrence (t, t̂, t′, s) such that firing t′ from s
changes the value of a place p ∈ •t̂ ∪ t̂•. We denote the pivotal places for a con-
fusion (t, t′) by pivotal(t, t′). For T ′ ⊆ T , let pivot(T ′) =

⋃
t′∈T ′,t∈T pivotal(t′, t).

Intuitively, the pivot places are the places that are changing during the occur-
rence of the confusion, to create or to eliminate some choice, by the firing of an
independent transition. In Figure 1, pivot(π1) = {p2} and pivot(π2) = {p1}. In
Figure 5, p5 is pivotal for the confusion (a, c), resulting in pivot(π2) = {p5}.

Definition 14 (Concurrent Transitions). Independent transitions t and t′

are concurrent if neither (t, t′) nor (t′, t) is a confusion. Let C ⊆ T × T be the
symmetric and irreflexive concurrency relation.

2 That is, t2 ∈ en(s) and t2 �∈ en(s′), or t2 �∈ en(s) and t2 ∈ en(s′), where s[t3〉s′.
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The notion of concurrent transitions is pessimistic: two transitions t and t′ may
be in confusion, yet t′ can execute independently of t without affecting its con-
flicts.

Definition 15 (Weak Places). For CPN C = (N,Π) and π ∈ Π, let
weak(π) = ngb(π) ∩ ⋃

π′∈Π\{π} ngb(π
′).

Thus, the places in weak(π) are in the part of the neighborhood of an agent π
that can be changed by transitions fired by agents other than π. For example,
in Figure 1, weak(π1) = {p1, p2, p4}, and in Figure 5, weak(π1) = {p5}.
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Fig. 5. A Petri net with confusion and its state graph

4 Probabilistic Covered Petri Nets

In this section, we extend the notion of covered Petri nets with branching proba-
bilities. This naturally gives rise to a Petri net model that can be used to describe
Markov decision processes [21] at a high level of abstraction. The nondeterminis-
tic choices in the MDPs correspond to the selection of (enabled) agents whereas
the agents are responsible for resolving the probabilistic choices (based on their
local view).

Probabilistic CPNs. In the sequel, for countable set T , let Dist(T ) be the set of
probability distributions over T , and Dist⊥(T ) be the set of distribution functions
that for some elements in T may be undefined, i.e., yield the value ⊥. Functions
μ ∈ Dist⊥(T ) thus are of type T �→ [0, 1]∪{⊥} and satisfy

∑
t∈T,μ(t) �=⊥ μ(t) = 1.

Definition 16 (Probabilistic CPN). A probabilistic CPN D = (N,Π, f) is
a CPN (N,Π) equipped with a function f : Π × S → Dist⊥(T ) satisfying for all
π ∈ Π and s ∈ S:

1. f(π, s)(t) = ⊥ iff t 	∈ en(s) ∩ π.
2. For each s′ ∈ S, f(π, s) = f(π, s′) whenever s�π= s′�π.
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Intuitively speaking, the function f assigns to a pair (π, s) a probability distri-
bution over the enabled transitions in state s (of N) that are “visible” by the
agent π. The first clause asserts that f is undefined only for transitions that are
disabled for agent π. The second clause requires that an agent π, whose local
views in states s and s′ coincide, chooses a given transition in these states with
equal probability. That is to say, the probability distribution over the enabled
transitions only depends on the local information of the agent.

Example 2. Consider the CPN in Figure 1(right) and agent π1 with ngb(π1) =
P \ {p5} and let state s = {p1, p2}. Assume π1 has a fair coin, yielding
f(π1, s)(a) = f(π1, s)(b) =

1
2 . The same distribution for π1 applies to the state

s′ = {p1, p2, p5}, since s�π1= s′�π1 . Now, consider agent π2 with ngb(π2) =
P \ {p3}. Agent π2 may select an enabled transition in s by flipping a biased
coin, say, f(π2, s)(b) = 1

3 and f(π2, s)(c) = 2
3 . Note that the transition b is

common to the two agents, but its firing probabilities may differ, depending on
which agent selects b. If π1 is selected first to resolve the choice between a and
b, and it selects to fire a, subsequently, we obtain the state s′′ = {p2, p3} and
π2 has a new local information view, namely {p2}. Thus, it now only has the
possibility to choose c, yielding f(π2, s

′′)(c) = 1.

Example 3. Figure 3 represents a simple randomized mutual exclusion algo-
rithm [4] where access to the critical section is arranged by an arbiter. In the
initial state, agent π1 can decide to fire transition a. By symmetry, agent π2 can
do the same for b. However, to fire transition c or d—acquiring access to the
critical section—we use a third agent π3 that acts as arbiter. If only c (or only
d) is enabled, then π3 decides to fire this transition. In case both c and d are
enabled, i.e., in the state {p3, p4, p9}, the agent π3 flips a fair coin (say) yielding
probability 1

2 for transition c and d.

From probabilistic CPNs to MDPs. In the following, we show that probabilistic
CPNs naturally give rise to MDPs (Markov Decision Processes [21]). In the sequel
we also show that there is a one-to-one relationship between probabilistic CPN
adversaries and (traditional) adversaries for MDPs. Let us start by recalling the
notion of MDPs [21]. As we consider 1-safe Petri nets, it suffices to consider
finite-state MDPs.

Definition 17 (Markov Decision Process). A Markov decision process
(MDP) is a tuple (Q,Act,P, q0) where

– Q is a finite set of states with initial state q0 ∈ Q.
– Act is a finite set of actions.

– P : Q×Act×Q �→ [0, 1] with for each q ∈ Q,α ∈ Act,
∑

q′∈Q

P(q, α, q′) ∈ {0, 1}.

An action α is enabled in state q iff P(q, α, q′) > 0 for some q′ ∈ Q.

The intuitive semantics of an MDP is as follows. In state q, one of its enabled
actions is selected nondeterministically. As usual, we assume that for every state
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this set is nonempty. After having selected action α, say, in state q, the next
state is randomly determined. More precisely, the probability of moving to state
q′ (which may equal q) is P(q, α, q′). An MDP execution is thus an alternating
sequence of states and actions q0α1q1α2 . . . such that αi+1 is enabled in state
qi. Probabilistic CPNs can be viewed as a modeling formalism for MDPs in the
following way.

Definition 18 (The MDP of a probabilistic CPN). Let D = (N,Π, f) be
a probabilistic CPN with N = (P, T,E, s0). The MDP of D, denoted mdp(D), is
the tuple (S,Act,P, s0), where S = 2P , Act = Π, and

P(s, π, s′) =
∑

{f(π, s)(t) | t ∈ π, s[t〉s′ and for no π′ ∈ Π, π′ t π}.

Stated in words, the states of mdp(D) are the states of the net N . Its actions are
the agents. This corresponds to the intuition that an agent is selected nondeter-
ministically, which resolves the probabilistic choice. The transition probabilities
in mdp(D) correspond to the function f , provided the selected agent has the
privilege to resolve the probabilistic choice. As several transitions in a given
state of the net may result in the same target state, we take the sum over all
individual probabilities of these transitions.

Adversaries. As the former of the previous examples showed, the probability of
a transition occurrence may depend on the agent that has been selected. This
suggests to define a probability measure over the behaviours of a probabilistic
CPN that is subject to a given selection of agents. In order to do so, we resort
to the standard notion of an adversary [21] (sometimes also called scheduler or
strategy) and adapt this to our setting.

Definition 19 (MDP Adversary). An adversary (strategy) for an MDP is a
function A that maps execution fragments q0 q1 . . . qn of the MDP such that the
action A(q0 q1 . . . qn) is enabled in qn.

An adversary thus selects an enabled action in the final state of a given execution
fragment of the MDP.3 The basic idea of an adversary for a probabilistic CPN is
that it takes as argument a prefix of an execution and maps this onto an agent
that can extend this prefix.

Definition 20 (Adversary for a probabilistic CPN). An adversary A
for a probabilistic CPN C = (N,Π, f) is a function that maps a prefix ρ =
s0[π1|t1〉s1 . . . sn−1[πn|tn〉sn of an execution of C onto an agent πn+1 ∈ Π such
that ρ[πn+1|tn+1〉sn+1 is a prefix of an execution of C for some tn+1 ∈ πn+1.

An adversary thus selects after a finite execution fragment of the covered net
which agent is to resolve the next probabilistic choice. (The random choice,

3 These are also called deterministic adversaries [21]. Our setting can easily be gen-
eralized to randomized adversaries that select agents according to a probability dis-
tribution. This falls however outside the scope of this paper.
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i.e., the selection of transition tn+1 is done by the selected agent, not by the
adversary.) An A-execution is an execution s0[π1|t1〉s1[π2|t2〉s2 . . . of the proba-
bilistic CPN such that for all i ≥ 0, πi+1 = A (s0[π1|t1〉s1 . . . si−1[πi|ti〉si). That
is to say, an A-execution is the execution fragment of the probabilistic CPN
in which adversary A decides on every step which agent is to make a selec-
tion. A probability measure can now be defined on A-executions in the following
way. The probability of the execution fragment s0 is one, and the probabil-
ity of s0[π1|t1〉s1 . . . sn−1[πn|tn〉sn is defined as the product f(s0, π1)(t1) · . . . ·
f(sn−1, πn)(tn). An alternative way of looking at this, is that an adversary A
imposed on a probabilistic CPN yields an infinite Markov chain in which states
correspond to finite execution fragments and transition probabilities are deter-
mined by the agent selected by adversary A in the current state.

Example 4. Consider the CPN of Figure 3 and let s0 = {p1, p2, p9} with A(s0) =
π1. As π1 can only select transition a, this yields the execution fragment ρ1 =
s0[π1|a〉s1 with s1 = s0 \ {p1} ∪ {p3}. Let A(ρ1) = π2. As π2 has a single choice,
it selects transition b yielding ρ2 = s0[π1|a〉s1[π2|b〉s2 with s2 = {p3, p4, p9}. Now
only π3 has a choice between enabled transitions. If π3 randomly selects cwe obtain
ρ3 = s0[π1|a〉s1[π2|b〉s2[π3|c〉s3. Assuming as before that π3 flips a fair coin to
resolve the choice between c and d, we obtain that the probability of execution
fragment ρ3 = f(s0, π1)(a) · f(s1, π2)(b) · f(s2, π3)(c) which equals 1·1· 12 .
It is not difficult to see that an adversary of a probabilistic CPN corresponds
directly to an adversary for its MDP. This immediately yields:

Lemma 2. The Markov chain induced by adversary A on probabilistic CPN D
is isomorphic to the Markov chain induced by A on the MDP mdp(D).

A probabilistic CPN can thus be considered as a high-level (and possibly suc-
cinct) representation of an MDP. The MDP loses the structural information of
the CPN, much as the state graph of a net. A measure over sets of infinite A-
executions can be defined in the standard way using a cylinder set construction,
see, e.g., [4, Ch. 10]. A measurable set of A-executions of a probabilistic CPN for
a given adversary A is called an event. Based on the probability measure over A-
executions one can now define the maximal, and dually the minimal, probability
of certain events of interest. For instance, for set G ⊆ S of states, let ♦G denote
the set of executions of a CPN that at some point reach some state in G. The set
♦G is measurable (and thus an event). The maximal probability of ♦G stands
for the supremum over all possible agent selections (by any kind of adversary de-
fined above) of eventually reaching G. In a similar way, the minimal probability
is defined as the infimum over all possible agent selections to reach G. This can
be generalized towards arbitrary LTL-formulas rather than simply reachability
properties. Due to the above lemma, there is a direct relation between the occur-
rence probabilities in a probabilistic CPN to those in its MDP. Model-checking
algorithms for MDPs [4, Ch. 10] can thus be exploited to calculate quantitative
bounds such as the minimal and maximal probability of a reachability property
♦G, or of a temporal logic formula in LTL (or probabilistic CTL). The details of
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these algorithms fall outside the scope of this paper; it suffices here that the key
numerical component is solving a system of linear inequations, whereas for LTL
model checking of MDPs the construction of an automaton on infinite words is
an additional important ingredient.

5 A Distributed Scheduling Algorithm for Making
Probabilistic Choices

We described in this paper a Petri net based model that allows concurrency, non
deterministic choice (among agents) and probabilistic choices. In order to show
how distributed scheduling of probabilistic choices, as required by our model,
can be achieved, we provide now an algorithm for implementing systems based
on CPNs. The algorithm concretizes the possible schedulers of Def. 20.

Our algorithm is by no means the only possible way of implementing a system
described as a probabilistic CPN, or the most efficient one. As identified in [7],
it is important to provide a temporarily stable view for an agent that makes
a probabilistic decision; the choices that this agent has must not change after
the agent has finished collecting the information about its choices and before
a probabilistic choice is made. In component-based systems [6,20] there is a
similar difficulty in synchronization algorithms that guarantee a selection of an
interaction. However, here the problem is to stabilize the interaction in which
agents participate, rather than selecting a single interaction. Thus the approach
is agent centric instead of interaction centric.

Requirements. We impose the following requirements on the distributed schedul-
ing algorithm.

Concurrency. The algorithm allows concurrent probabilistic choices. (The al-
gorithm in [7] allows only a single agent to make a choice; this is established by
passing a token among the agents.)

Semaphores. The scheduling is implemented using semaphores. Only standard
lock and free operators of semaphores are allowed. If needed, semaphore opera-
tions can be imitated by message passing.

Efficiency. A simple analysis of the structure of the Petri net, i.e., the graph
between transition and places, and the partitioning into agents, in time quadratic
in the size of the net, is performed once. This establishes the interactions that
will be needed at run time.

Fine granularity. Atomicity is not assumed at a coarse granularity. Realisti-
cally we cannot assume that the local information of an agent needs to be ex-
amined atomically. While gathering this information, some of the checked places
may have gained or lost a token. Thus, several actions may be needed in setting
up the conditions for the correct firing of a transition according to the semantics
of the CPN.
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Liveness. No deadlock is introduced. In fact, the algorithm does not limit the
executions and admits exactly the set of executions of the CPN.

Finite memory. The scheduling decisions for agents are based only on the
current state of the execution and the value of the semaphores.

Partial view. The scheduling is based on the local information of agents and
not on the global states [8].

The scheduling algorithm. The idea is to assign a semaphore to certain places of
the net. We will henceforth relate interchangeably in notation, when clear from
context, semaphores and the places they are associated with. Prior to firing a
transition, a phase of locking semaphores associated with a set of places is carried
out. This set is precisely defined below. The capturing of semaphores provides
a temporarily stable view of an agent regarding the (probabilistic) choices that
it needs to make. When an agent π makes a probabilistic decision, it needs to
stabilize some tokens of weak(π) (this subset is defined precisely below), as the
value of these places can affect π’s set of choices. For the scheduling algorithm,
we use a set of semaphores related to the weak places:

sem(Π) =
⋃

π∈Π

weak(π).

It is of course important to minimize the number of semaphores an agent is
required to lock. Capturing weak(π) before firing a transition by π would indeed
guarantee a stable environment for a probabilistic choice, but may incur need-
less overhead and severely restricts the concurrency by locking semaphores that
are not relevant in the current state. We therefore propose a smaller subset of
semaphores needed to be locked by agent π in state s so as for π to make a
(probabilistic) choice:

capture(π, s) = weak(π) ∩ (ngb(en(s) ∩ π) ∪ pivot(en(s) ∩ π)).

Thus, capture(π, s) includes two sets of places:

weak(π) ∩ ngb(en(s) ∩ π) are the places that π may change by firing the next
transition and can affect other agents; also, changing these places by firing
a transition by another agent would affect their enabledness for π, and

weak(π)∩pivot(en(s)∩π) are the places that other agents can change and may
alter the choices available to π.

For our algorithm we assume the existence of a partial order, denoted ≺, on
the set of semaphores sem(Π) such that no two semaphores that are in weak(π)
for some π ∈ Π are unordered. We do neither assume that an agent collects
its local information or acquires all needed semaphores atomically, nor that it
changes all places involved in firing a transition atomically. However, we assume
the existence of a mechanism by which an agent π can set an interrupt that
informs it if a place was changed after its value has been inspected. By requiring
that changing the value of a (weak) place p is done only after p’s semaphore is
acquired, we can safely assume that an agent knows the correct value of p when
it holds its semaphore. Our algorithm now proceeds in two phases:



426 J.-P. Katoen and D. Peled

Phase 1. Each agent checks which of its transitions are enabled. It is not neces-
sary that this is done atomically; rather, a lookup through the places (rep-
resented by variables, message queues, etc.) is performed. An interrupt that
reports a change in the value of a place that has been already checked in
this phase, causes a restart of this phase.

Phase 2. Agent π locks the semaphores capture(π, s) in an ascending order
according to the partial order ≺. If there is an interrupt announcing a change
in the value of a place p that was checked in Phase 1 before p’s semaphore
is locked, all the semaphores locked by π so far are released in descending
order (according to ≺), and Phase 1 is restarted.

If agent π has acquired all semaphores in capture(π, s), it randomly selects one of
its enabled transition. It is important to note that capture(π, s) = capture(π, s′)
when s�π= s′�π. That is, capture(π, s) depends only on the local information
of π. This allows calculating capture(π, s) during the execution of the algorithm
locally by π.

Example 5. Consider the net in Figure 5. Agent π2 has one weak place: p5. In
the initial state s0 = {p1, p2}, weak(π2)∩ngb(en(s0)∩π2) = ∅ because the places
ngb(en(s0) ∩ π2) = ngb({a}) = {p1, p3} are not weak (as they belong only to
π2). However, as p5 is pivotal to the confusion (a, c), capture(π2, s0) is in this
case weak(π2) ∩ pivot(en(s0) ∩ π2) = {p5}. Thus, in order for π2 to maintain a
stable situation with respect to the choices it can make (in this case, just firing
a), π2 must lock the semaphore for place p5. Now agent π1 cannot fire transition
c: in order to do that from s0, it needs to lock capture(π1, s0), which is, in this
case, weak(π1)∩ ngb(en(s0)∩ π1) = {p5}. Note that π2 needs to lock p5 because
it is pivotal to a confusion with transition a, whereas π1 needs to lock p5 because
it may want to change it by firing c. The set of semaphores that an agent needs
to lock is dependent on its local information; when p1 does not have a token,
agent π2 does not need to lock the semaphore for p5.

Lemma 3. An agent π cannot change a place by firing a transition without
capturing the corresponding semaphore for that place.

Proof. Follows immediately from the need for an agent to lock, before firing the
next transition, the semaphores for capture(π, s). This set includes weak(π) ∩
ngb(en(s) ∩ π). �

While no change occurs to the semaphores in capture(π, s), agent π has a
stable set of choices, as proved by the following result.

Lemma 4. A change to the set of currently enabled transitions of an agent π
in a state s, i.e., en(s)∩ π, by firing a transition t by another agent π′ (possibly
t ∈ π ∩ π′) in state s involves a change to some place in capture(π, s).

Proof. Distinguish two cases.

1. t depends on some transition t′ ∈ en(s) ∩ π. By Def. 6, a state-change by t
implies a change of a common place with ngb(t′) ⊆ ngb(en(s) ∩ π). As t is
executed by agent π′ 	= π, this place also belongs to weak(π).
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2. t is independent of all the transitions in en(s) ∩ π. As (by assumption) t
changes the enabled transitions of π in en(s) ∩ π while being independent
of (all of) them, firing t enables some new transition of π, which, by the
definition of agents, depends on some already enabled transition of π. Thus,
by Def. 12, (t′, t) is a confusion for some t′ ∈ en(s)∩π. By Def. 13, some place
p ∈ pivot(en(s) ∩ π) is altered by t to cause the enabledness of a transition
of π in conflict with t′. As t 	∈ π, p is in weak(π). �

Note how the need to lock a semaphore associated with a pivotal place due to
a confusion can reduce concurrency between independent transitions. This is in
accordance with Definition 14.

Lemma 5. The scheduling algorithm does not introduce a deadlock.

Proof. Capturing semaphores in ascending order and releasing them in descend-
ing order is a solution for a generalized mutual exclusion problem, suggested
originally by Dijkstra for the dining philosophers problem. See [24] for its cor-
rectness, including deadlock freeness. Note that if Phase 1 restarts, some progress
must have occurred, as a place was changed by firing some transition. �
Lemma 6. The scheduling algorithm admits exactly the set of CPN executions.

Proof. Clearly, any execution of the net under the obtained scheduler must
conform to the semantics of execution of the Petri nets. Conversely, for each ex-
ecution of the CPN, we have a behavior of the scheduling algorithm in which the
two phases related to the firing of each transition are clearly separated, where
the capturing of the semaphores and the firing of a transition do not interleave
(although the scheduling algorithm also allows interleaving of semaphore cap-
turing, checking places and firing transitions in other ways). �
The above algorithm determines a possible schedule of the agents to fire en-
abled transitions: any agent that has acquired the necessary semaphores can
randomly choose one of its enabled transitions. Note that it is possible that sev-
eral agents are in a position to carry out a random selection, in case they all
acquired their semaphores. In this case, an agent can be picked nondeterminis-
tically. That is to say, the algorithm determines a possible adversary (scheduler)
A for the probabilistic CPN at hand. The following result asserts that the com-
puted schedule yields indeed probabilities (for LTL formulas) that fall inside the
scope of the minimal and maximal probabilities that are typically determined
by model-checking algorithms for MDPs.

Theorem 1. For probabilistic CPN D and LTL formula ϕ, the probability of
satisfying ϕ for any obtained schedule by our tho-phase algorithm is within the
probability bounds of the MDP mdp(D) satisfying ϕ.

Proof. Based on Lemmas 3, 4 and 5, the obtained adversaries for D by our
algorithm correspond to a subset of the adversaries of the MDP mdp(D). �
For various events of interest, such as the earlier mentioned reachability events
of the form ♦G, the minimal and maximal probabilities are attained by a sim-
ple class of adversaries, the so-called memoryless adversaries. An adversary A
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of a probabilistic CPN is memoryless whenever its decision for execution frag-
ment s0[π1|t1〉 . . . [πn|tn〉sn only depends on sn. That is, a memoryless adversary
selects for every visit to state sn the same action regardless of the execution frag-
ment before reaching sn.

Theorem 2. Our scheduling algorithm admits any memoryless adversary.

Proof (sketch). An agent can only get its turn whenever it has acquired all
semaphores. Acquiring the semaphores is based on the local information of an
agent in a given state of the net. The decision whether an agent can perform a
transition or not is memoryless. In case several agents can perform a transition
(i.e., they have all acquired their necessary semaphores), the order between these
agents is to be determined by the adversary. Our algorithm does not restrict
this ordering: any memoryless order of admissible agents is allowed. A selected
enabled agent then performs a (local) probabilistic choice. �

6 Related Work

The most well known extensions of Petri nets with randomness are (generalized)
stochastic Petri nets (GSPNs) [18]. There, transitions are equipped with rates,
i.e., parameters of exponential distributions. In stochastic Petri nets (SPNs) all
transitions have a rate—concurrency becomes a random phenomenon and con-
fusion is absent. Due to immediate transitions in GSPNs, confusion re-appears.
This is partially tackled using weights (resolving choices probabilistically based
on a global state), but the analysis of GSPNs is basically restricted to confusion-
free nets. Recently, a semantics of GSPNs with confusion has been proposed
using stochastic real-time games [9,12].

The few works on probabilistic Petri nets treat probabilistic branching quite
differently. In [2], probabilities are attached to outgoing edges of places. Alter-
natively, weights are assigned to edges [25]; here, choices are resolved in a proba-
bilistic way whereas independent transitions fire in any order. A relation is shown
between confusion-free weighted nets and Mazurkiewicz equivalence. Kudlek [15]
focuses, instead, on the expressive power of the formalism, whereas [1] proposes
truly concurrent probabilistic Petri nets. Here, the likelihood of processes is de-
fined on partial orders, not on firing sequences. An MDP interpretation to nets
is given in [5]. There, an extended Petri net model includes explicit transitions
that indicate where a nondeterministic choice and where a probabilistic choice
starts. Processes subscribe to such a choice, and the choice is made globally.
To our knowledge, the treatment of probabilities in nets using the concept of
agents—resolving probabilistic choices locally—is new.

The fact that global schedulers establish strong correlations between the be-
havior of system components (i.e., agents) has been observed earlier in [7,17]. To
get around this problem [7] proposes switched probabilistic I/O automata. By
passing a token between agents, one of the agents may make a probabilistic deci-
sion. This token-based scheme however restricts concurrency. In our model, con-
current nondeterministic and probabilistic decisions are possible. Concurrency is
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restricted only by confusions, which correspond to potential changes to the avail-
able choices. Also in testing theory and security analysis, it has been recognized
that the resolution of local choices within a component using global knowledge
yields undesirable and counterintuitive behavior. Our two-level scheduling mech-
anism in which agents are selected based on global state information, whereas
agents select based on their local perspective, is closely related to that of dis-
tributed schedulers [11]. In contrast to our case, the selection of components
there can be probabilistic. (As mentioned earlier, our framework can be easily
extended to random agent selection.) Agent scheduling is also a principle used
in the setting of quantitative security [3]. We are unaware of any concrete dis-
tributed algorithms realizing this kind of scheduling. In our case, we complement
the theoretical setting with such algorithm.

7 Epilogue

In this paper, we enhanced Petri nets with agents covering the net transitions.
The local view of an agent in a covered net consists of the neighborhood (input
and output places) of its transitions. In a step of a net execution, an agent is non-
deterministically selected which—based on its local view—resolves a (probabilis-
tic) decision. This provides an elegant and robust basis for resolving probabilis-
tic choices in a nondeterministic setting. It is shown that probabilistic covered
nets can be viewed as high-level descriptions of MDPs. Finally, we presented a
distributed scheduling algorithm (based on semaphores) for implementing such
nets. Our algorithm is obtained by a simple structural analysis of net. Confu-
sions, in our view, are no longer an obstacle for implementing Petri nets. Rather,
they are an artifact reducing concurrency, similar to the notion of dependency in
trace theory [19]. In fact, the identification and analysis of confusions provides
a basis for our algorithm.

We used in this paper Petri nets to demonstrate the main concepts involved
in modeling and implementing distributed probabilistic scheduling. In particu-
lar, confusion was originally observed in Petri nets and has a simple and clean
formal presentation within this model. Nevertheless, our modeling concepts and
scheduling algorithm can be easily adapted to other models that include concur-
rency and probabilistic choice.

Acknowledgments. The authors thank Barbara Jobstmann and Gadi Tauben-
feld for valuable discussions.
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