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Abstract. The emergence of Cloud computing has given rise to numerous at-
tempts to study the portability of scientific applications to this new paradigm.
Tightly-coupled applications are a common class of scientific HPC applications,
which exhibit specific requirements previously addressed by supercomputers. A
key challenge towards the adoption of the Cloud paradigm for such applications
is data management. In this paper, we argue that Cloud storage services represent
a suitable data storage and sharing option for Cloud applications. We evaluate
a distributed storage plugin for Cumulus, an S3-compatible open-source Cloud
service, and we conduct a series of experiments with an atmospheric modeling
application running in a private Cloud deployed on the Grid’5000 testbed. Our re-
sults, obtained on up to 144 parallel processes, show that the application is able to
scale with the size of the data and the number of processes, while storing 50 GB
of output data on a Cloud storage service.

Keywords: Cloud computing, data management, Cloud storage service, HPC
applications, Nimbus, Cumulus.

1 Introduction

Important academic and industrial actors have recently started to investigate Cloud com-
puting, a rapidly expanding paradigm for hosting and delivering on-demand services
on a pay-per-use basis. The increasing popularity of the Cloud computing model has
drawn the attention of the high-performance computing community, research in this
area focusing on the usage of Cloud infrastructures as alternatives to the traditional
dedicated supercomputers. Tightly-coupled scientific applications have a unique range
of computing needs, from scalability and processing power to efficient parallel I/O and
high-performance network interconnects. Several studies [7,[8}[11,20] have analyzed
the impact of porting such applications on Cloud environments, evaluating the tradeoff
between the benefits of on-demand computing power and the Cloud cost model, and the
performance overhead introduced when hosting HPC applications in the Cloud.
However, past research mainly focused on performance as a means to quantify the
HPC capability of public [21] or private [[7] Clouds. Another key challenge that can di-
rectly impact the effectiveness of using clouds for HPC workloads is data management.
Many scientific applications generate large amounts of data which need to be persis-
tently stored and made available for further analysis. Typically, supercomputers rely
on parallel file systems specifically tuned for tightly-coupled application workloads for
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their storage needs. The versatility of Cloud platforms allows users to customize their
virtual machines (VMs) with any file system, this solution being adopted by most of the
existing studies. Although it allows users to recreate the original environment used for
supercomputers, this approach comes with a performance penalty caused both by the
time needed to deploy and configure their own storage mechanisms and the unreliability
of VMs local disk storage.

In this paper we analyze an alternative solution: providing Cloud storage services
for HPC applications executed on Clouds. We investigate the requirements of such a
Cloud data management system and we evaluate a tightly-coupled scientific application
with a customized open-source Cloud service. Whereas most studies [5.[1621] focus on
public Cloud infrastructures such as Amazon’s Elastic Compute Cloud (EC2) [2] and
its Simple Storage Service (S3) [17], we perform our evaluations on top of an open-
source Cloud that enables us to thoroughly control the physical infrastructure and the
Cloud configuration. To this end, we rely on the Nimbus Cloud framework [13] and its
S3-compatible storage service called Cumulus [3].

The reminder of this paper is structured as follows. Section 2] describes the motiva-
tion of our research. In Section 3] we introduce the applications we target and we detail
Cloud Model 1 [6], an MPI-based applications that simulates atmospheric phenomena.
Section [] is dedicated to our Cloud storage service solution relying on Cumulus and
BlobSeer [[15]. An experimental evaluation of this system is presented in Section[Sland
finally, Section [6]draws conclusions and ideas for future work.

2 Motivation

Infrastructure-as-a-Service Clouds typically provide the user with a set of virtual ma-
chine instances that can host applications. Such VMs are equipped with local disks the
applications can use to store generated or input data. This storage solution, however, is
not persistent, as the disk is wiped out each time a virtual machine lease ends. To cope
with this issue, Amazon provides services such as the Elastic Block Store (EBS) [1].
Essentially, EBS allows users to attach a virtual disk to each of their VMs, which can
then be backed up onto S3 to persistently store saved data. This solution has however a
major drawback: each EBS disk corresponds to a specific virtual machine, and therefore
the various VMs cannot share the stored data. Furthermore, as computing VMs carry
out simulations and generate output data on local EBS disks, no application can access
the whole final results without scanning each EBS disk and possibly copying the data
onto a single disk to enable further processing. In contrast, uploading generated data
directly into a Cloud storage system might overcome the limitations of this approach,
enabling users to achieve not only persistency, but also the capability to have a globally
shared view of their results.

The works that studied the performance of HPC applications in Cloud settings have
typically entrusted data storage and management tasks to parallel file systems, in an
attempt to recreate the original environments deployed on supercomputers. While this
approach has the advantage of providing the application with a standard file system
interface, aggregating the local storage space of virtual machines within a distributed
file system does not guarantee data persistency. The computed results are either lost
at the end of the VM lease, or the user has to manually save them into a persistent
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repository, such as Amazon S3, to make them available to higher-level applications.
This operation increases the completion time and consequently, the cost of running the
application in the Cloud. Additionally, VM failures can lead to data loss and require
application re-execution.

Moreover, such applications typically generate several output datasets, one for each
intermediate time step of the simulation. These results serve as an input for higher-level
tools. For instance, data-mining and visualization tools, such as VislIt [19], may perform
real-time data analysis, debugging or data aggregation for visualizing the output at each
timestep. Replacing local storage with a Cloud-hosted service may enable real-time vi-
sualization and analysis for each dataset, as well as availability guarantees and standard
interfaces to facilitate access to data.

3 Application Model
3.1 Tightly-Coupled Application Model

We target tightly-coupled, high-performance computing applications specific to the sci-
entific community. Such applications exhibit a set of common features, discussed below.

Parallel processes. A wide range of HPC applications split the initial problem into
a set of subproblems. Then, these smaller subproblems are spread across a fixed
set of processes, which handle the data in parallel. Such applications typically rely
on message-parsing systems (e.g., MPI) for inter-process communication and syn-
chronization.

Compute-intensive simulations. We consider applications that simulate complex phe-
nomena in various contexts, such as high-energy physics or atmospheric simula-
tions. They usually require significant computing resources and spend more time to
compute results than to perform I/O operations.

Massive output data. Real-life simulations involve large-sized output, as they com-
pute a set of variables describing the evolution in time of the modeled phenomenon.
They are typically designed to store results and additional application logs in a par-
allel file system, such as GPFS [[18] or PVFES [14].

No concurrent access to files. Each process computes a subset of the problem output
data. Concurrently dumping results into a single shared output file may lead to I[/O
bottlenecks prone to decrease the overall performance of the application. Therefore,
we consider applications involving independent processes, which perform write
operations in separate files.

3.2 Case Study: The CM1 Application

Cloud Model 1 (CM1) [6] is a three-dimensional, time-dependent numerical model de-
signed for atmospheric research, in particular for modeling major phenomena such as
thunderstorms. CM1 simulates a three-dimensional spatial domain defined by a grid of
coordinates specified in a configuration file. For each spatial point, the application is
designed to compute a set of problem-specific variables, including wind speed, humid-
ity, pressure or temperature. A CM1 simulation involves computing the evolution in
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time of the parameter set associated with each grid point. To this end, the 3D domain
is split along a two-dimensional grid and each obtained subdomain is assigned to its
own process. For each time step, all processes compute the output corresponding to
their subdomain, and then they exchange border values with the processes that handle
neighboring subdomains. The computation phases alternate with I/O phases, when each
process dumps the parameters describing its subdomain to the backend storage system.
CM1 is implemented in Fortran 95 and the communication between processes relies on
MPI [10].

4 Our Approach: A Scalable Cloud Storage Service

4.1 Background

Cumulus [3] is an open-source Cloud storage system that combines efficient data-
transfer mechanisms and data-management techniques, aiming at providing data Cloud
services in the context of scientific applications. It is designed to support swift data
transfers using S3-compatible interfaces. Cumulus features a modular architecture that
enables an efficient interaction with external modules. In particular, it is built on top of a
storage interface that allows system administrators to customize their service according
to their Cloud’s requirements.The storage interface decouples the processing of client
requests from the actual implementation of the storage backend, making Cumulus a ver-
satile tool that can be adapted to various contexts. The default storage backend shipped
with the Cumulus service implements the interaction with a POSIX-compliant file sys-
tem. It provides support for interconnecting Cumulus with either local file systems or
parallel file systems that expose a POSIX interface, such as NFS, PVFS or GPFS.

4.2 Towards a Cloud Storage Backend for Efficient Concurrent Data Transfers

To provide an efficient alternative for traditional file systems, a Cloud data service has
to comply with several requirements specific for large-scale applications.

Support for massive files. Scientific applications typically process huge amounts of
records, which cannot be hosted in separate, small files. To efficiently store such
datasets, data services have to collect all the records into massive files that can
reach Terabytes of data in size.

High-throughput concurrent data transfers. Parallel data processing is one of the
crucial features that allow scientific applications to accommodate large amounts
of data. To enable efficient support for such applications in the Cloud, data-
management platforms have to sustain high-throughput data transfers, even under
heavy access concurrency.

Fault tolerance. Reliability is a key requirement for Cloud storage, especially in public
Cloud environments. It can be achieved by employing fault-tolerant storage back-
ends. Moreover, data versioning is a desirable feature in such contexts, as it enables
a transparent support for rolling back incorrect or malicious data modifications.

The aforementioned requirements represent the design principles of BlobSeer [15]], a
concurrency-optimized data-management system for data-intensive distributed applica-
tions. BlobSeer specifically targets applications that handle massive unstructured data,
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Fig. 1. The architecture of the BlobSeer-backed Cumulus storage service

called blobs, in the context of large-scale distributed environments. Its core operations
rely on data striping, distributed metadata management and a versioning-based con-
currency control mechanism to achieve efficient data transfers under highly-concurrent
data accesses. The architecture of BlobSeer and its performance evaluation have been
presented in detail in several works, such as [13].

To optimize Cumulus for large-scale, high-throughput concurrent data transfers, we
designed and implemented a BlobSeer-based distributed storage backend for the Cu-
mulus service. To this end, we enhanced BlobSeer with a file-system layer, enabling it
to meet the requirements of the storage interface defined by Cumulus.

4.3 Design Overview

In order to run unmodified HPC applications in the Cloud and yet benefit from the Cloud
storage solutions, we implemented two interface layers. First, we integrated BlobSeer as
a backend for Cumulus, by designing a file-system interface for BlobSeer. Second, as
typical Cloud storage services expose an S3 interface, we implemented a file-system
module to run inside the VMs and stream file-oriented application data to any S3-
compatible service. Thus, applications executed inside the VMs store their output data
on local paths, assigning the file-system module the task of automatically transferring
the data to the Cloud service, i.e. Cumulus in our case, and finally to the persistent
storage backend (as shown in Figure[T)).

The BlobSeer file-system interface. We designed a file-system layer on top of BlobSeer
to enhance it with an easily-accessible and hierarchical file namespace, while preserving
the efficient concurrent data operations built into the system. To this end, we equipped
BlobSeer with a namespace manager, a centralized entity in charge of managing the
file hierarchy and mapping files to blobs. The namespace manager implements the file
system API, exposing the versioning interface of BlobSeer as well as standard file oper-
ations, such as create, open, read, write, close. However, the file system layer does not
implement the POSIX semantics, preserving instead the original Blobseer primitives,
along with their high-throughput data access guarantees.

The S3-backed file system layer. This module allows applications to interact with stan-
dard files that are transparently backed by an S3-compliant Cloud service. This in-
terface layer includes a POSIX-compatible interface relying on FUSE (Filesystem in
Userspace) [9]. Each write operation initiated by the application is translated into an
upload to the S3 service. As a result, each output file is forwarded to the persistent
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Cloud storage and at the same time it is made available to higher-level tools that can
process it as the simulation continues. To optimize read operations, we introduced a
prefetching mechanism that downloads the files from the S3 repository and stores them
locally to improve read access time.

5 Experimental Evaluation

We conducted a set of experiments to analyze the performance and scalability of the
Cumulus Cloud storage service in two different contexts. First, we investigated the be-
havior of the Cumulus service through synthetic benchmarks that assess its data transfer
capabilities. Second, we focused on the CM1 application and the impact of the Cloud
storage deployment on its performance.

5.1 Environmental Setup

We carried out a set of experiments on Grid’5000 [12], an experimental testbed gath-
ering 10 geographically-distributed sites in France. We used the Rennes cluster of
Grid’5000. The nodes it provides are interconnected through a 1 Gbps Ethernet net-
work, each node being equipped with at least 4 GB of memory.

We performed a comparison between several storage backends for Cumulus. First,
we used the local disk of each Cumulus server as the storage backend, thus employing
the storage space of all the Cumulus nodes. While this approach does not provide a
global view of the data and therefore cannot be used for a real-life application, we
included this evaluation as a baseline against which to assess the performance of the
other backends. The second storage system employed is PVFS [14], a scalable parallel
file system designed to provide high performance for HPC applications, by striping
data and storing it across several data servers. Finally, we evaluated the BlobSeer-based
Cumulus storage. Each experiment involves a distributed deployment configuration,
where a set of replicated Cumulus servers use a common storage backend to serve
concurrent data transfer requests.

5.2 Cloud Storage Benchmark

To asses the impact of various storage backends on the scalability of the Cumulus ser-
vice, we performed a set of experiments involving a large number of simultaneous data
transfers, so as to simulate a typical HPC scenario when parallel processes concurrently
generate output data.

In this experiment, both PVFES and BlobSeer were deployed in a similar configura-
tion, that is 30 data storage nodes and 10 metadata nodes. Replicated Cumulus servers
were co-deployed with the data storage nodes. For each execution we measured the
average throughput achieved when multiple concurrent clients perform the same op-
eration on the Cumulus service. The clients are launched simultaneously on dedicated
machines. Each client performs an upload and a download for a single file of 1 GB.
We increased the number of concurrent clients from 1 to 200 and we measured the av-
erage throughput of each operation. The results are shown in Figure 2l As expected,
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Fig. 2. Cumulus storage backend comparison under concurrent accesses

when each Cumulus server uses its own local disk for storage, the performance of the
data transfers is better than when Cumulus is backed by a distributed file system. As
the number of clients increases, the available network bandwidth is divided among the
concurrent requests, resulting in lower average throughputs. As the number of clients
increases to more than 100, the gap between the local disk backend and the distributed
file systems is substantially reduced, due to the efficient data striping of the latter and the
contention generated by the concurrent accesses when using the local disks. However,
PVEFS is not optimized for writing small blocks of data and its consistency mechanisms
do not allow any client-side caching. As a result, PVFS cannot achieve its raw perfor-
mance level when being used as a storage backend for the POSIX interface of Cumulus.

In contrast, the BlobSeer-based backend is specifically tuned to take full advan-
tage of the storage system features. Despite the fact that the number of concurrent
clients reaches 6 times the number of data storage nodes (which amounts to 30 nodes),
the BlobSeer-backed system sustains an almost constant transfer rate for more than
60 clients and transferred data amounting to 180 GB. Thus, BlobSeer outperforms
PVFS, maintaining a throughput approximatively 30% higher in the case of uploads
and 60% higher for downloads.

5.3 Evaluating Cumulus as a Cloud Service for CM1

To study the impact of storing HPC application data in a Cloud service, we relied on
Nimbus to provide a customizable TaaS Cloud environment on Grid’5000. We employed
64 nodes to deploy Nimbus. For each experiment, the CM1 application was executed
in a Nimbus virtual cluster of quadcore VMs with 4 GB of RAM. Each VM of such
a cluster was equipped with the S3-backed file system, to enable CM1 to execute in
parallel on the virtual cluster nodes, and to directly store its output data into Cumulus,
as shown in Figure[3(a)] We used 50 nodes to deploy the replicated Cumulus servers on
top of the three storage backends: the local file system of each Cumulus node, BlobSeer
and PVFS. Both BlobSeer and PVFS employ 50 data providers and 10 metadata nodes,
each of them being deployed on dedicated machines.

CML1 is representative for a wide class of applications that simulate the evolution
of a phenomenon in time. Each simulation is associated with a 3D domain and a time
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Fig. 3. Cloud storage evaluation for CM1 in a Nimbus Cloud environment

interval. A simulation consists in obtaining the values for a set of parameters for each
point of the domain and for each time step. The initial domain is split among the pro-
cesses and each of them is in charge of a particular subdomain. We used a 3D hurricane
simulation described in [4]. The application was configured to use MPI, each process
generating a set of output files for each time step.

Completion time when increasing the pressure on the storage system. For the first ex-
periment, we executed the application for 10 minutes of simulated time, with a time
step of 20 seconds. We increased the number of MPI processes, maintaining constant
the size of the simulated subdomain for each of them. We generated 4 intermediate out-
put files, each of them of 85 MB in size, amounting to a total of 340 MB generated
by each process per run. We deployed 4 MPI processes on each virtual machine (one
for each core) and increased the number of processes from 1 to 144. The total size of
the data generated for these simulations increases from 340 MB to 50 GB. Figure [3(b)|
shows the simulation completion time when increasing the number of processes and the
output data is stored into Cumulus.

The results show a very steep increase of the completion time when the number
of processes is small. However, for more than 20 processes, the curve flattens for all
three storage solutions. The measured runtime trend can be explained by the increasing
size of the simulated domain, which leads to a larger time spent in communication
among the MPI processes that need to exchange more subdomain border values. In
addition, the size of the output data increases along with the number of processes. The
sustained performance for a large number of processes thus suggests the application
is able to scale despite storing output data into the Cumulus external repository. The
results also indicate the BlobSeer and the PVFS backends for the Cumulus servers
do not lead to a performance drop for the application that stores data into Cumulus,
when compared against the local file system backend. Moreover, the BlobSeer-based
Cumulus version slightly outperforms the PVFS Cumulus backend. Similarly to the
Cumulus benchmarks in the previous section, this result confirms the higher throughput
delivered by BlobSeer in this context.

Application speedup. This experiment aims at evaluating the speedup obtained by scal-
ing out the number of application processes for the same initial problem. For this
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Fig. 4. Storage backend comparison for 30 minutes of simulated time with a 20 s time step.

evaluation, CM1 was executed for 30 minutes of simulation time, with a timestep of
20 seconds between consecutive computations. In contrast to the previous experiment,
we increased the duration of the computation phase, so as to highlight the benefits of
parallelizing the simulation on more processing nodes. For each point on the graph, Fig-
ure depicts the time it takes the application to complete when the initial problem
is divided among an increasing number of processes. Additionally, we have shown the
corresponding speedup in Figure [4(b)] The speedup for a specific number of processes
is computed as the measured execution time of the application for a single process di-
vided by the execution time when all the processes are employed.

As expected, as we decrease the size of the simulated spatial domain allocated to each
process, the application completes its execution much faster. The drop in the execution
time as we introduce new processes is a consequence of the smaller number of border
values to be exchanged between them and the smaller size of the output data to be sent
to the storage backend. The obtained performance of the three backends is similar, as
most of the execution time accounts for computation. Furthermore, the two distributed
backends achieve a comparable speedup. We however obtained a better speedup when
using the local file system of each Cumulus server as a storage solution. This result is
mainly due to the large execution time measured for the local file system in the case of
only one process, when the all generated data had to be dumped on a single node’s file
system, whereas it was distributed among storage nodes for the two other backends.

6 Conclusions

In this paper we address the data management needs of tightly-coupled scientific appli-
cations executed in Cloud environments. In this context, we argue that Cloud storage
services can meet some of the requirements of such applications and contribute to the
adoption of the Cloud paradigm by the HPC community. The benefit of such an ap-
proach lies in the ability to provide globally-shared access to data generated by parallel
processes and to enable simultaneous data analysis or visualization. We assess the per-
formance of an open-source Cloud data service called Cumulus, backed by various
storage solutions. Among them, we focused on BlobSeer, a data management system
optimized for highly-concurrent accesses to large-scale distributed data. We proposed
an interfacing mechanism that enables Cumulus to use BlobSeer as a storage backend
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and to take advantage of its efficient data transfer operations while exposing an S3-
compatible interface to the users. Furthermore, we evaluated Cumulus for CM1, a real-
life tightly-coupled simulator for atmospheric phenomena. We conducted experiments
on a private Nimbus Cloud deployed on the Grid’5000 infrastructure, showing that a
data service such as Cumulus allows the application to scale both with the number of
processes and with the size of the generated output. We also examined various backends
for Cumulus, the obtained results suggesting the backend choice has an impact on the
completion time of the executed application, along with providing additional benefits
for higher-level data analysis tools, such as data availability or standard interfaces.

As future work, we plan to perform more in-depth evaluations for various workloads
and access patterns, as well as to study the advantages of leveraging Cumulus for online
visualization of the generated simulation results.
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