Performance Engineering: From Numbers to Insight

Georg Hager

Erlangen Regional Computing Center (RRZE)
Friedrich-Alexander-Universitit Erlangen-Niirnberg
Martensstr. 1, 91058 Erlangen, Germany
georg.hager@fau.de

The ultimate purpose of running simulation tasks on high performance computers is to
solve numerical problems. The performance of an algorithm, or rather an implementa-
tion, is significant in several respects: Either a given problem should be solved in the
least possible amount of time or a larger problem should be solved in an “acceptable”
time; in both cases, the used resources must be utilized as efficiently as possible so that
overall throughput and return on investment are maximized for all users of a system.

Reaching the latter goal implies that the user has some concept of what the “maxi-
mum possible performance” of their code is. More often than not, application program-
mers employ code optimizations without a clear concept of the expected gain. As a
result, vast computational resources are wasted. Performance analysis, modeling, and
engineering approaches are required to remedy this situation.

An analysis of performance properties naturally starts at the core and chip level,
since this is where the actual numerical “work” is done. In-core execution delays, bot-
tlenecks on the chip level, and communication overhead are typical factors that can
lead to a deviation from “ideal” performance numbers. A performance model, which
is typically constructed for every hot spot or loop in a program, predicts the maximum
possible performance. The purpose of such models is not so much to predict but to de-
scribe performance behavior, often with respect to parameters such as problem size or
machine properties. When the measured performance numbers deviate from the model,
an opportunity arises to learn more about the hardware, the software, or the interaction
of both.

The construction of a useful model could be a non-trivial task, however. One of
the crucial inputs is a static analysis of the algorithm and/or the code of a hot spot,
e.g., in terms of work (flops) performed, dependencies, data transfers, inter-process

Machine characteristics Traces/HW metrics
Performance model

Fig. 1. The structured performance engineering process.

I. Caragiannis et al. (Eds.): Euro-Par 2012 Workshops, LNCS 7640, pp. 393-894] 2013.
(© Springer-Verlag Berlin Heidelberg 2013



394 G. Hager

communication, etc. A comparison with documented machine characteristics (max-
imum instruction throughput/latency, SIMD register width, theoretical latencies and
bandwidths of data paths, etc.) can already lead to a first performance estimate. Some-
times features are undocumented, or real code execution cannot saturate a resource. In
such cases, microbenchmarks can help establish a practical limit; a prominent exam-
ple is the maximum main memory bandwidth of a chip, which can often not meet the
theoretical limit given by the hardware, and should thus be measured by suitable bench-
marks such as STREAM. The roofline model [1]] and the ECM model [2/3] implement
this modeling approach successfully for modern multi- and manycore processors. If
power consumption and “energy to solution” is taken into account, a useful model will
also estimate the sweet spot of minimum energy to solution with respect to clock fre-
quency, resources used (cores, nodes), and single-thread performance [3].

When it comes to comparing the model with measurements, the pure performance
number is just one of many possible data points. Hardware performance metrics or
event traces can be used to further validate the model. For instance, the aggregated count
of cache lines transferred between adjacent memory hierarchy levels can be checked
against the model prediction. Finally, the insight that has been generated by the perfor-
mance model and its validation often leads to a clear view on possible optimizations
and their potential benefit. Since a code change might incur a substantial modification
of the whole application’s timing behavior, a new runtime profile may be in order and
the whole workflow starts from the beginning.

The constructed performance model is thus embedded in a structured performance
engineering process (see Fig.[)). Neither is it possible to automate this completely, nor
can it be put into a single “catch-all” formula. One should also note that, although hard-
ware metrics are a central component of performance analysis, they can only provide
part of the necessary information. Manual code inspection and the subsequent construc-
tion of the performance model is perhaps the most time-consuming part of the process,
which also requires substantial experience in some cases.

References

1. Williams, S.W., Waterman, A., Patterson, D.A.: Roofline: An insightful visual performance
model for floating-point programs and multicore architectures. Tech. Rep. UCB/EECS-2008-
134, EECS Department, University of California, Berkeley (October 2008),
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-134.html

2. Treibig, J., Hager, G.: Introducing a Performance Model for Bandwidth-Limited Loop Ker-
nels. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds.) PPAM 2009,
Part I. LNCS, vol. 6067, pp. 615-624. Springer, Heidelberg (2010),
http://dx.doi.org/10.1007/978-3-642-14390-8_64

3. Hager, G., Treibig, J., Habich, J., Wellein, G.: Exploring performance and power properties of
modern multicore chips via simple machine models (submitted),
http://arxiv.org/abs/1208.2908


http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-134.html
http://dx.doi.org/10.1007/978-3-642-14390-8_64
http://arxiv.org/abs/1208.2908

	Performance Engineering: From Numbers to Insight
	References




