
MetaEdit+ 
A Fully Configurable Multi-User and Multi-Tool 

CASE and CAME Environment 

Steven Kelly, Kalle Lyytinen 
Matti Rossi 

Department of Computer Science and Information Systems 
University of JyvaskyHi 

PL35 
FIN-40351 Jyvaskyla 

Finland 
email: stevek@hyeena.jyu.fi 

fax: +358 41 603011 

Abstract: Computer Aided Software Engineering (CASE) environments have 
spread at a lower pace than expected. One reason for this is the immaturity of 
existing environments in supporting development in-the-large and by-many and 
their inability to address the varying needs of the software developers. In this 
paper we report on the development of a next generation CASE environment 
called MetaEdit+. The environment seeks to overcome all the above 
deficiencies, but in particular pays attention to catering for the varying needs of 
the software developers. MetaEdit+ is a multi-method, multi-tool platform for 
both CASE and Computer Aided Method Engineering (CAME). As a CASE 
tool it establishes a versatile and powerful multi-tool environment which 
enables flexible creation, maintenance, manipulation, retrieval and 
representation of design information among multiple developers. As a CAME 
environment it offers an easy-to-use yet powerful environment for method 
specification, integration, management and re-use. The paper explains the 
motivation for developing MetaEdit+, its design goals and philosophy and 
discusses the functionality of the CAME tools. 

Keywords: CASE, CAME, method, software engineering environments, repository, 
metarnodeling, conceptual modeling, object oriented modeling, tool interoperability, 
tool integration 

1. Introduction 

CASE (Computer Aided Systems Engineering) environments have been one of the 
major technological innovations in systems development during the last decade. Many 
have claimed that CASE technology will solve the information systems (IS) 
development problems (Cha86, McC89) that have plagued the community for so long. 
These include, among others, mediocre productivity (e.g. unrealistic time schedules 
and cost overruns), and insufficient quality (e.g. low product validity and lack of 
verifiability) (Bro75, Cha86, Ost87). CASE technologies are expected to provide task 
related support for software developers in analyzing, designing and implementing a set 
of information systems (IS) or their components according to a method. A method can 

From: CAiSE 1996, LNCS 1080 © Springer-Verlag Berlin Heidelberg 1996

109



S. Kelly, K. Lyytinen and M. Rossi 

be defined as a language (vocabulary and grammatical composition rules) which can 
be used to represent features of the information system to a number of actors 
(including technical actors such as specific abstract machines like a Smalltalk 
machine) and a set of rules which define by whom, when, and how such 
representations are derived and/or used. 

The origins of CASE date back to the mid 70's when such well-known software tools 
as PSL/PSA (Tei77) and SREM (Alf77) were launched. Despite this early start, the 
breakthrough of these technologies has only occurred during the 90's. One reason for 
this is the declining cost of computing technologies and its increasing functionality -
especially graphical user interfaces. Another is the increased need for disciplining the 
art of software development and maintenance through standardized process and 
product models. Finally there is a continuing need to improve the quality and 
productivity of software production through investments in capital intensive 
technologies. 

In spite of these developments the rate of adopting CASE has been laggard, and the 
success of adoptions doubtful (Wij90, Aae91). One reason for this is software 
organizations' lack of the necessary maturity to adopt highly sophisticated 
technologies such as CASE. Another is the cost of adopting, using and maintaining the 
technological infrastructure and associated know-how. The third reason is the 
inadequate technological sophistication of CASE. Most tools in use are stand alone 
tools that support creation and maintenance of graphical models and can generate 
code to limited problem domains. Accordingly technologies have not matured for 
software development in the large and by many. The major deficiencies are thus: 
insufficient support in integrating methods, inadequate support for alternative 
representation paradigms, lack of mechanisms to cater for multiple users, rigid method 
and process support, and focus on task automation (Hen90). 

In this paper we report on the development and use experiences of a prototype next 
generation CASE tool, MetaEdit+. The environment seeks to overcome all the above 
deficiencies, but pays particular attention to the requirements concerning flexibility, 
method integration and representational richness. In line with this MetaEdit+ is a 
multi-method, multi-user, multi-tool platform for both computer aided software 
engineering (CASE) and computer aided method engineering (CAME). As a CASE 
tool it establishes a versatile environment for flexible creation, maintenance, 
manipulation, retrieval and representation of design objects (information) structured 
and created according to a method. As a CAME tool it provides a flexible and easy-to­
use environment for method specification, management, integration and re-use. This 
paper will explain the motivations for developing MetaEdit+, its design goals and 
philosophy, its design architecture, its current tool set, and its future development. 

110



From: CAiSE 1996, LNCS 1080 © Springer-Verlag Berlin Heidelberg 1996

2. Related Research 

Weaknesses in current CASE tool support can be divided into the following aspects: 

1. lack of mechanisms for integrating sets of methods while maintaining consistency 
between various models (Kel95, Mar95, Kel94a) 

2. lack of support for multiple users to create, modify and delete sets of partly 
overlapping model instances, 

3. inadequate catering for multiple representational requirements ranging from fully 
diagrammatic to fully textual or matrix representations. These are dictated by 
different method families (Mar95), 

4. failure to provide consistent mapping mechanisms between different 
representational paradigms (Kel95, Mar95), 

5. lack of flexibility and evolvability in method support ranging from syntactic 
variation in methods to crafting totally new method components (Lyy89), and 

6. insufficient catering for different information-related needs of a diverse set of 
stakeholders (Mar95). 

2.1 Lack of Method Integration Mechanisms 

Several mechanisms are available for method integration or interaction. At the most 
rudimentary level these deal with mechanisms that enable translations from one 
representation format to another. Attempts to develop such CASE "EDI'' solutions 
abound, e.g. CDIF (CDI91). Their weakness is that they do not support any inter­
model consistency checking, semantic validation and tool interoperability. 
Accordingly, they can only be used in static model transfer from one environment to 
another. A more advanced approach has been to develop generic and universal method 
specification schemata. This "super-schema" would provide a common and universal 
semantic model onto which all methods used in the environments could be mapped. 
This can be done directly as in the ND Cycle information model (Mer90), or through 
method reference models (Hey92) where the mapping takes place through a reference 
model. An early solution of this kind was the mapping of system development 
methods into generic modeling constructs of PSLIPSA (Tei77). The limitation of this 
approach is its closed nature of method integration which cannot tolerate any 
flexibility in the mappings. Moreover, it cannot cater for future evolution in the 
method arena. Finally, it can only support a limited number of method integration 
solutions which deal solely with object sharing and associated consistency checks. 

2.2 Insufficient Multi-User Support 

A large body of literature exists on concurrency control and alternative strategies to 
deal with multiple user operations in software engineering repositories (for a review 
see Bro91). A number of strategies have emerged recently for achieving varying levels 

111



S. Kelly, K. Lyytinen and M. Rossi 

of optimistic concurrency control (Kat84). Despite these advances it is still not known 
which granularity levels are appropriate for effective concurrency, what are suitable 
.transaction notions, and how much locking and what types of locks are needed. 
Moreover, it is not clear how much transaction management should be left to users' 
awareness of others' operations. In this respect, most commercial CASE environments 
provide solutions that are too crude or inefficient, while advanced mechanisms 
suggested by researchers can be computationally too demanding (e.g. use of work 
spaces and merge strategies) or cannot be adapted to the existing CASE architectures. 
Moreover, a big unsettled issue is how well semantics-driven and dedicated locking 
strategies operate in such environments and whether we should cater for differences 
between conceptual and representational objects, or between the different tools that 
operate on the design data (Kel94a). 

2.3 Insufficient Support for Multiple Representation Paradigms 

Whilst today's methods contain various representation paradigms - graphical 
diagrams, matrices, tables, etc. - most existing CASE tools operate on only one: 
graphical diagrams. If other representation forms are needed they are generated by 
some user triggered operations such as generating a report. Because of this, CASE 
tools do not offer the representation independence that could make them fully 
adaptable to differing representation demands. Thus most CASE tools offer only 
limited syntactic and graphical modifiability in supported methods. Another weakness 
is the lack of hypertext support for semi-structured and non-structured linking of 
design objects in different representation formats or model parts. Either the available 
functionality provides hypertext features as the CASE environment (Cyb92), or the 
support functionality is limited to some model areas (Poh94) or to user interface and 
user support (Oin93). 

2.4 Lack of Method Modifiability and Evolution 

The importance of CAME in CASE has been noticed in several studies (Kum92, 
Che88, Bri90, Wij91, Hey93, Ste93). To this end CASE shells- metaCASE tools, or 
fully customizable CASE environments - have been developed. Such environments 
are expected to overcome the inflexibility of method support. According to Bubenko 
(Bub88) "a CASE shell includes mechanisms to define a CASE tool for an arbitrary 
technique or a chain of techniques". Yet, metaCASE technology has not yet matured 
sufficiently to provide adequate method modifiability though the number of CASE 
products leveraging method modification facilities is increasing. Commercial products 
offering such features include Customizer™ (lnd87), VSF (Poc91), MetaEdit™ 
(Smo91a) and Paradigm+ (Pro94). Research versions of CASE shells include 
RAMATIC (Ber89), ConceptBase (Hah91) and MetaView (Sor88). Integration of 
CASE shells and their CASE environments comes in various kinds. A CASE shell can 
be a separate tool that produces a methodology specification which the CASE 
environment uses (e.g. Customizer), or it can be an integral part of the CASE 
environment (e.g. RAMATIC). MetaEdit ™ was one of the first that offered CAME 
and CASE functionality within the same tool. In MetaEdit methods are specified 
graphically (Smo91b) and these specifications are converted into a textual form, 

112



From: CAiSE 1996, LNCS 1080 © Springer-Verlag Berlin Heidelberg 1996

before compiling and loading the complete method specification into a CASE 
environment All these have been steps in the right direction. However, environments 
that can offer powerful and easy to use modification facilities, method component 
libraries, method re-use and run-time adaptability are still largely non-existent. 

2.5 Lack of Information Retrieval and Computational Facilities 

One problem in current CASE tools is their limited information retrieval and reporting 
capability. Some general and computationally powerful solutions exist in 
environments that apply a logic programming paradigm (such as ConceptBASE 
(Hah91)). Though sufficient in their expressive power and generality the use of such 
query functions is limited by their computational complexity and insufficient user­
friendliness. This is due to the lack of data base schema representations and user 
friendly query formulation. Another problem is that all existing query systems center 
around retrieving and representing textual information while most of the design 
information is input and viewed in a graphical format. Finally, few environments 
provide a means to browse through the repository via hypertext links or various 
browsing mechanisms. 

2.6 Summary 

The record of CASE research in each area demonstrates that most concerns have been 
addressed during the last decade and considerable progress has been made in 
rendering CASE environments useful. Yet, what seems to be lacking is a 
comprehensive approach that seeks to tackle most, if not all of, these weaknesses 
simultaneously. Though this may require some compromises and difficult trade-offs in 
achieving all these goals (like improving multi-user facilities and method flexibility) 
our contention is that the real impact of future CASE - in the large and by many -
will depend on our capability to offer more comprehensive solutions that address most 
of these concerns within the same environment. Unless such environments emerge the 
adoption of CASE will in all likelihood continue to be a frustrating experience. 

3. The MetaEdit+ Environment 

As a meta-CASE environment MetaEdit+ seeks to address most of the above concerns 
(2.1-2.5) in a comprehensive manner by offering an environment which is: 

• multi-user, i.e. several users can operate concurrently on the repository (2.2), 
• multi-tool, i.e. each user can operate several tools simultaneously where each tool 

provides a different view to the same object (2.3, 2.5), 
• multi-method, i.e. the environment offers several mechanisms for method 

integration and consistency checking (2.1 ), 
• multi-form, i.e. the environment provides several representation formats for the 

same design object (2.3), and 
• multi-level, i.e. the environment is a true metaCASE environment in that both an 

IS and its design methods can be engineered within the same environment (2.4). 

113



S. Kelly, K. Lyytinen and M. Rossi 

The environment seeks to improve the usability (by multiple users, forms, methods 
and tools), flexibility (by offering a multi-tool, multi-method approach), and open 
nature of CASE (i.e. by enabling evolution and plugging of new tools through well 
defined service protocols). The design goal of the environment bas been to base its 
architecture in principles of conceptual modeling, layered data base architectures, 
and object orientation. In this respect, the approach differs to some extent from other 
metaCASB approaches which focus more on the representation of methods as first 
order logical theories (Hah91), or on the graphical behavior of design objects (Ber89). 
From the viewpoint of conceptual modeling the design of a method specification is 
akin to the development of a conceptual schema for a software repository, and the 
design of a software tool resembles a design of an external view to a conceptual 
schema (ANS75). Hence, the method specification language is at the same time the 
conceptual modeling .language for the repository schema, or forms the meta­
metamodellevel in the IRDS standard (IS089). The adoption of full object orientation 
enables flexible organization and re-use of software components in the environment 
and a high level of interoperability between tools. This is achieved through both data 
integration (via shared conceptual schemata) and control integration (via object 
organization) thus making the environment fairly open. 

Our motivation in using conceptual modeling and object orientation in the design of 
MetaBdit+ has suggested three principles for the design: data independence, 
representation independence, and level independence. Data independence is defined 
in a similar way as in traditional data base theory i.e. tools operate on design 
information without "knowledge" of its physical organization, or logical access 
structure. Representation independence forms a continuum with data independence 
and it allows conceptual design objects to exist independently of their alternative 
representations as text, matrix or graphical representations. This principle allows 
flexible addition of new tools, each one only responsible for its own paradigmatically 
different view on the same underlying data. Level independence means that the 
environment follows a symmetrical approach in its treatment of data and metadata. 
Accordingly, the specifications of methods and their behaviors can be managed and 
manipulated in a similar way to any other object in the environment (therefore the 
name metaCASB). Moreover, the specifications can be concurrently operated through 
the same or somewhat specialized tools in the environment. 

3.1 General Architecture 

The functional architecture of MetaBdit+ is illustrated in Fig. 1. The heart of the 
environment is the MetaBngine, which handles all operations on the underlying 
conceptual data through a well-defined service protocol (Smo93a). In other words, the 
MetaBngine embodies the implementation of the underlying conceptual data model 
and its operation signature. Accordingly, software tools request services of the 
MetaBngine in accessing and manipulating repository data. Thereby they avoid the 
need to duplicate the manipulation code. This design choice allows flexible integration 
of new tools, each only responsible for its own paradigmatically different view 
(including operations) on the same underlying repository data. A tool, as the term is 
used within the MetaBdit+ environment, is a window type with its associated 

114



From: CAiSE 1996, LNCS 1080 © Springer-Verlag Berlin Heidelberg 1996

functionality, through which a user can view and possibly alter a design objects in a 
particular way. 

The architecture has similarities with that of the ECMA-PCTE (ECM91) - e.g. 
common services, separation of components at different levels of integration - but 
differs from it, most noticeably in the enforcement of no direct communication 
between components at the same level, or over a common bus between components 
separated by more than one level: tools communicate only via the MetaEngine. 

Repository 

Instance of 

MetaEdit+ 

Fig. 1: MetaEdit+ Architecture 

Environment 
Management 

Model 
Editing 

Model 
Retrieval 

Model Linking 
& Annotation 

Method 
Management 

MetaEdit+ can run either as a single-user workstation environment, or simultaneously 
on many workstation clients connected by a network to a server. Each client has a 
running instance of MetaEdit+, including all its tools and the MetaEngine. The 
MetaEngine takes care of all issues involved in communicating with the server. Tools 
communicate with each other only through the MetaEngine, and thereby through the 
shared data in the repository. Thus the major integration mechanism applied is data 
integration. 

115



S. Kelly, K. Lyytinen and M. Rossi 

The server forms the software repository holding all the data contained in models, and 
also in the metamodel(s), in addition to user and locking information. In particular the 
MetaEdit+ repository includes: object specification base containing all the method 
specifications represented as GOPRR concepts; symbol specification base containing 
all symbols needed to represent Objects, Relationships and Roles; tool related 
information base containing all information needed to represent conceptual objects in 
different tools (such as spatial coordinates, or size), user information base containing 
all information related to various users such as their passwords, access rights, or 
current locks held; report specification base containing all report and other output 
specifications. 

MetaEdit+ applies pessimistic concurrency control in dealing with user and multi-tool 
interactions with the repository. We have found locks useful despite some of their 
disadvantages such as stricter user control, interference with users' work, and poorer 
overall performance. The gains are greater as locks prevent conflicts from occurring 
between different copies of the repository data, help users to be warned about possible 
interference, and prevent gaining access to design objects already used in another's 
transaction. All these are of utmost importance in software repositories. Transactions 
are understood as long transactions. Their length is defined by a user triggered commit 
operation (automatically requested by the end of the session). The burden of deciding 
what to lock and when is removed from user's responsibilities and decided by the 
system. Another feature of the locking strategy is that MetaEdit+ follows more than 
one level of granularity in locking repository objects. It distinguishes locking 
granularities between metamodels, graphs, conceptual objects, and representation 
data. It can thus achieve the following desired features in locking: locks are acquired 
only when needed, they are well-placed, and are not too small to overburden the 
system. During their work users can gain information about locked objects and ·are 
thus aware of who has locks on which design objects. Accordingly, they can 
coordinate their actions through negotiating about how locks are freed and transferred. 
Although no formal testing has been carried out as yet, initial experiences suggest that 
with this strategy lock conflicts are surprisingly rare in normal CASE work. 

3.2 Tool Architecture 

In the design of the environment we have classified tools into five distinct families 
according to their purpose and underlying common functionality. From the viewpoint 
of conceptual data in the repository each family portrays similar demands in terms of 
manipulation, locking and retrieval of conceptual design objects, though the different 
representational paradigms underlying the tools may pose additional demands on 
retrieval and locking. This has to be dealt with individually in each tool. Each tool 
family contains one or more tools (Fig. 1 ). The five tool families are the following: 

1. Environment management tools: these tools are used to manage features of the 
environment, its main components and to launch it. 

2. Model editing tools: these tools are used to create, modify and delete model 
instances or their parts. In addition, these tools can be used to view the model 

116



From: CAiSE 1996, LNCS 1080 © Springer-Verlag Berlin Heidelberg 1996

instances from different representational viewpoints, and/or to derive new 
information from existing design information. 

3. Model retrieval tools: these tools are used for retrieving design objects and their 
instances from the repository for reuse and review. These tools can operate on both 
models and metamodels. 

4. Model linking and annotation tools: these tools are used for linking design 
objects for traceability and memorization, annotating model instances, finding 
specific "locations" in the design space, or maintaining conversations about design 
issues. 

5. Method management tools: these tools are for method specification, management 
and retrieval. 

4. Conceptual Data Model 

Because all method specifications in MetaEdit+ are interpreted as high level 
conceptual models of method (or methodology) the kernel of the MetaEdit+ 
functionality and architecture is determined by the underlying conceptual data model 
called GOPRR. MetaEdit+ uses the GOPRR conceptual data model as a universal and 
generic meta-metamodel i.e. as a sole language to specify methods. Very little if any 
method "knowledge" is buried into the code in tools. In addition, GOPRR is primarily 
intended to model observed, interpreted and recorded development reality as seen 
through the methods (including the world of thought and abstract ideas). In this 
respect it differs from the ontological IS models (see e.g. Wan93), which attempt to 
model what actually is, rather than just what is perceived and recorded. 

4.1 The OPRR Model 

Basically, GOPRR (Smo93b) forms an evolutionary extension of the OPRR model 
which has been successfully used in specifying methods for MetaEdit (Wel92, 
Smo91b). Whereas the original ER model (Che76) provided only sketchy concepts of 
attribute: features the object can possess; and of role: the part an object plays in a 
relationship; the OPRR model has defined these notions in full. 

The basic OPRR modeling constructs are: 

• Objects, which consist of independent and identifiable design objects. These 
typically appear as shapes in diagrams, and can have properties such as names. 
Examples of objects are an Entity in an Entity Relationship Diagram or a Process 
in a Data Flow Diagram. 

• Properties are attributes of objects and can only be accessed as parts of objects 
or relationships. Properties typically appear as textual labels in diagrams, and 
they can contain single data entries such as a name, text field or number. An 
example of a property is the number of a Process in a Data Flow Diagram 
(Gan79). 

117



S. Kelly, K. Lyytinen and M. Rossi 

• Relationships are associations between objects, and can also have properties. 
Relationships typically appear as lines between shapes in diagrams, or verbs in 
texts. An example of a relationship is a Data Flow in a Data Flow Diagram. 

• Roles define the ways in which objects participate in specific relationships. In 
diagrams roles typically appear as the end points of Relationships (e.g. an 
arrowhead). Roles too can have properties. An example of a role is the 
specification by directed arrow which end of a data flow relationship is 'to' and 
which 'from' part of the flow. 

In addition OPRR provides constructs for defining cardinality constraints for 
relationships (i.e. as properties of relationship meta-objects), and means to determine 
properties which uniquely identify each object instance. The OPRR model is founded 
on fixed mapping rules between modeling constructs and their graphical behaviors 
(Ros92). 

OPRR is further designed to be applicable to both the instance (model) and the type 
(metamodel) levels. Thus an instance object, say a Process '3.1' in a Data Flow 
Diagram model, has an object type of 'Process' on the metamodellevel, while a flow 
relationship instance 'order info' on the model level is an instance of a relationship 
type 'Data Flow' on the metamodellevel. 

4.2 Extensions in the GOPRR Model 

GOPRR extends OPRR as a conceptual meta-metamodel in several ways. First, unlike 
OPRR the GOPRR model allows multiple representations of the same underlying 
conceptual object (e.g. graphical, matrix, text), and even different graphical 
representations of the same object in the same representation paradigm. This is 
achieved by making available mechanisms that can override the default representation. 
In this sense GOPRR forms a true conceptual "kernel" on which varied 
representations of data, including not only graphical diagrams but also hypertext, text 
and matrices, can be built. This allows GOPRR to support a wide range of 
methodologies including matrix, table or text oriented ones, and gives users the ability 
to see and manipulate design information in a variety of representations. 

Second, the conceptual modeling constructs offered by OPRR have been extended in 
the GOPRR in several ways which yields a powerful but yet ease-to-use modeling 
language. These new Graph, object orientation, method integration and rule constructs 
are described below. 

Concept of Graph 

The GOPRR model adds the concept of Graph into the modeling constructs. A graph 
denotes an aggregate concept which contains a certain set of objects and their 
relationships (with specific roles). Graphs typically appear as windows on whole 
diagrams which contain objects and their bindings of roles and relationships; a graph 
also has its own properties. An example of a graph is a whole Data Flow Diagram {as 
a whole or just one level of it). In use, the Graph concept is fundamentally a 
generalized decomposition graph: it can be included in a parent graph, attached to an 

118



From: CAiSE 1996, LNCS 1080 © Springer-Verlag Berlin Heidelberg 1996

object, role or relationship therein. For instance, in Data Flow Diagrams a top level 
graph may contain a Process '3', which has a decomposition graph called 
'Decomposition of 3', containing Processes '3.1', 3.2' etc. Relationships from '1' and 
'2' to '3' in the top level graph are actually interface relationships, as we can specify 
that in the lower-level graph they link to e.g. '3.2' and '3.1' respectively. The interface 
to the object, and hence to the elements in its decomposition graph, can be shown in 
the child graph to any degree between 'not at all' and 'show copies of external 
objects'. The interface is maintained distinct from the elements of the decomposition 
graph itself, allowing reuse of the decomposition graph in different parent graphs. The 
interface 'specification' remains the same in all decompositions, but the elements 
attached to the interface at the higher level can be different in different parent graphs, 
thus allowing reuse of the graph as a white or black box. 

The design of Graph is such that many "representational" graphs can be made for one 
"conceptual" graph. For instance, a matrix and diagram representation can be made of 
the same conceptual Data Flow Diagram. In this situation changes in conceptual 
graphs are propagated between different tools and their "representational" graphs 
according to their usefulness to the user. Currently, objects added in one graph are 
immediately available to other graphs, but not automatically added. Changes to 
properties are made instantly (on transaction commit, if different users are working on 
different graphs), and additions to or changes of relationships or roles are made 
instantly in the relationship-oriented Matrix Editor, but buffered in the Diagram 
Editor, so the user can control their layout when they are added. 

The addition of the concept of Graph allows GOPRR to represent multiple methods, 
and multiple models, whilst still maintaining the contents of each as a coherent 
distinguishable whole. In this way graph enables modeling and representation of 
recursive structures such as decompositions, or complex objects as often found in 
development methods. The graph notion has also been specialized into a modeling 
unit called Project, which can contain other Graphs, and sub-projects. A Project type 
thus helps manage the allowed linkages between methods used in a particular project. 

It is noteworthy that all concepts included in GOPRR are designed for reuse: both 
types and instances of object, relationship, role, property and graph can be reused 
within other graph or project types (or instances). 

Object Orientation 

Another extension, in line with object orientation is the inclusion of generalization 
and specialization constructs into the GOPRR language. This extension helps to 
organize complex method libraries, enhances reuse, and together with the graph notion 
enables to model in economical way most method components. 

In line with object orientation objects a third extension is polymorphism of modeling 
constructs: objects, relationships, roles and properties are polymorphic in the sense 
that an object seen in one method as an object can be seen in another method as a 
relationship, or a property. This enables method component re-use and provides a 

119



S. Kelly, K. Lyytinen and M. Rossi 

powerful and flexible method integration mechanism. In this way the method 
specifications can include specifications of a set of interconnections between different 
IS models. 

Method Integration 

In addition to decomposition and polymorphism, GOPRR also adds other powerful 
method integration constructs. Objects, relationships and roles can be reused in many 
different graphs: a change to the object via one graph is also visible in the other 
graphs. Similarly, properties can be shared between several objects, with changes 
affecting all objects referring to that property. These two constructs allow different 
degrees of saying that two objects in different places are 'the same': an important 
factor in representing the same 'real world' fact in two different methods. Explosion 
works similarly to decomposition, but with freer semantics. For instance, each object 
may have only one decomposition, wherever it occurs, but can have multiple 
explosion links for every graph in which it takes part. 

Integrity Checking Rules 

Finally GOPRR provides enhanced rules for checking the model integrity. It is 
possible to attach rules to properties, in addition to the normal type restrictions. For 
example, in modeling Data Flow Diagrams, a rule has been added to the property 
'DFD Number' which constrains the contents of the string property to be a dot 
separated sequence of numbers, disallowing combinations like 'Fred', '2.', '3 .. 2.1 ', 
'.'. It is also possible to add constraints on the collection of properties for a given 
object, role, relationship, graph or project type. For example, a rule could be added to 
specify that a 'start date' must come before an 'end date' in an activity modeling 
diagram. These rules, too, are inherited by descendant types, but may be overridden. 

4.3 Example 

Although the improvements in GOPRR are best seen with complicated methods, for 
ease of understanding we take a simple Data Flow Diagram metamodel as our 
example. One way to model Data Flow Diagrams with GOPRR is to note the 
similarities between the various object types (i.e. processes, externals and stores), and 
how they may be connected. For instance, instances of all three object types must have 
a name and a description, and they can connect via a Flow relationship with a Process. 
These similarities motivate the creation of a generalized 'DFDObject' type, which is 
specialized into 'Process', 'External' and 'Store' types. DFDObject itself is marked so 
that it can never be instantiated: it is purely an abstract type. 

120



From: CAiSE 1996, LNCS 1080 © Springer-Verlag Berlin Heidelberg 1996

8 -8 
8--0' 0-8 

8' 8 

Fig. 2: A GOPRR metamodel of Data Flow Diagrams 

This inheritance hierarchy can be seen in the center of Fig. 2, where the rectangles are 
object types, diamonds are relationship types, circles role types, and ovals property 
types. DFDObject thus has two properties, Name and Description, and Process 
inherits these two and adds a third, Number. Objects can be connected by a Flow 
relationship, with the proviso that one of the objects must always be a Process: on the 
left, the Process is in the To role, and on the right, in the From role. 

The whole figure within the rectangle represents the Graph type of Data Flow 
Diagrams. The fact that a Process can decompose to a lower-level Data Flow Diagram 
is represented by the curved gray 'Decompose' relationship between Process and the 
DFD graph type's rectangle. 

5. Method Management Tools 

5.1 Motivation and Purpose of the Method Management Tools 

In MetaEdit+ the method management tool family has been developed to ease the 
creation and testing of methods, their management and evaluation support. The 
primary goal of the tool family is to allow flexibility in method creation and 
management and ease method construction. Therefore the environment supports 
alternative ways of method engineering: 1) creation from scratch, where all the parts 
of the method being defined contain new types, 2) component oriented, where 
methods are constructed through using prefabricated parts, and 3) reuse oriented, 
where method engineering seeks to achieve maximal generality of the repository 
types, and then by specializing these components derive new methods. 

121



S. Kelly, K. Lyytinen and M. Rossi 

5.2 Design Principles of Method Management Tool Family 

The development of the MetaEdit+ method management tool family has been 
influenced by earlier method engineering frameworks (Har93, Hey93, Ros95b, 
Wel92). These frameworks have sought to consider those aspects that are necessary in 
a completely functional method engineering environment. Functionally such an 
environment consists of the following parts: 

Assemblv 

Help 
generator 

Object etc. 
Tools 

~ I 

Method Report I 
support env code 
generator generator 

Symbol 
Editor 

MetaEdit+ 
CASE tool 
tailored for 
the method 

MetaEdit+ 
Method 
Management 
family 

Metrics & 
Statistics 

Fig. 3: Method Management Tools in MetaEdit+ 

Below each subsystem component will be discussed in more detail. 

The Method Assembly System 

This system part consists of several specialized editors and model retrieval and 
analysis tools that are needed in method assembly. These tools together allow one to 
specify a method's objects and relationships and their representations, so that they can 
be immediately tested within the environment. The most important components are the 

122



From: CAiSE 1996, LNCS 1080 © Springer-Verlag Berlin Heidelberg 1996

metamodel editors (including object, relationship, role, property and graph editors) by 
which every method's components and their connections are specified. Due to their 
different semantics and graphical behaviors Objects, Properties, Relationships and 
Roles all have their own specification tools. This helps to define their specialized 
semantics separately, but in particular allows re-use of existing object, relationship 
and role specifications. These concepts are then collected into complete method 
specifications using the Graph tool. This also allows the re-use of existing graph 
"patterns". Each tool also has a dialog definition subsystem, which allows custom 
definition of dialogs associated with each object type. 

The Symbol Editor helps specify symbols that are used to distinguish each object type 
from other object types. Symbols are defined by a specialized drawing tool and are 
thereafter connected to the appropriate metamodel type. The Symbol Editor also 
improves re-use as new symbols can be derived by combining or modifying existing 
symbol patterns and templates retrieved from the repository. The Consistency 
checking system in MetaEdit+ incorporates several rules that ensure the syntactical 
completeness and consistency of the resulting method specification. Completeness 
checking covers checking for missing values and missing links between different 
method components. Consistency checks verify the internal integrity of the method 
specification by analyzing that the method specification does not include contradictory 
specifications. The Metric & statistics system of the environment offers a number of 
reports developed using the report generator tool, that analyze the method 
specification (Ros94, Ros95a). The metrics reports provide a set of computed values, 
which can be used to review and analyze the properties of the specifications. 
Examples of metrics are the number of Object, Relationship and Property types in the 
method (Tei80), and the average number of Properties or Relationships per Object 
type. 

Environment Generation System 

This subsystem features several generators that help to deliver a usable and user­
friendly CASE tool by using the information contained in the method specifications. 
The Method support environment generation system compiles the method's object 
specifications into parts of the metamodel repository as soon as they have been 
defined. As noted above such specifications define the structure of MetaEdit+'s 
repository data and the symbols to represent and forms to view the object instances. 
The Method help generation system generates an on-line help component associated 
with each method. This help can then be accessed through a model editing tool 
interface from the repository. The generation is based on the defined properties of the 
metamodel types such as a definition what is an External and how it is used in 
different situations. Report and transformation generation system is used for 
delivering various reports and conducting checking on the models. These reports can 
be defined using the generic report generator discussed above. 

Parts not available in the current MetaEdit+ method management tool family but 
recognized in the earlier frameworks are: a selection assistant for selecting the right 
method or its parts for a specific project (Kum92, Har94 ), and process description and 

123



S. Kelly, K. Lyytinen and M. Rossi 

support (Wij91). These needs are not currently addressed in MetaEdit+, but there are 
ongoing activities in the project that aim at adding these features. 

5.3 An Example of a Method Specification 

Here we show how to develop part of the Data Flow Diagram metamodel. The 
example depicts how the defined components of the DFD are connected together to 
form the actual method. The tools used to manipulate the GOPRR concepts in the 
concept specification database are form-based. 

Gr1 hTool 

Fig. 4: A Graph Tool 

Fig. 4 shows the resulting graph specification of the DFD method. The Graph Tool 
allows the user to add, remove and edit components of the method (the components, 
i.e. Objects, Relationships and Roles, are modified with similar tools) and to add and 
delete method connections. The window on the left shows the definition of the DFD, 
its properties (i.e. model name and documentation) and related documentation text for 
method help. The window in the upper right corner of the figure shows the 
components of the method. The window in the lower right corner shows the possible 
explosion connections between objects in the DFD and other Graph types: Processes 
can be exploded into lower level DFD's. 

6. Discussion and Conclusions 

The limited functionality and rigidity of the current information systems development 
environments continues to pose a considerable challenge to both academia and 
practice. In this paper our goal has been to demonstrate how the prototype metaCASE 
environment called MetaEdit+ deals with these concerns. Overall, we have sought to 

124



From: CAiSE 1996, LNCS 1080 © Springer-Verlag Berlin Heidelberg 1996

develop MetaEdit+ as a platform for trying out different tools and tool construction 
principles, and also to try out the use of object oriented architecture in designing and 
implementing a metaCASE tool. This is well reflected in its current implementation. 
MetaEdit+ has been implemented using VisualW orks Smalltalk environment using the 
ArtBase object repository system and NEDT graphical programming environment, 
with ENVY as code management system. By doing this, we have been able to re-use 
about 70% of all code needed to implement the current functionality. 

Our goal in developing MetaEdit+ environment-has been to develop an environment 
which: 

• Supports high level specification of methods with a powerful yet easy to use 
method specification language 

• Has an open architecture which separates the conceptual specification of the 
repository and the view (or representation) adopted in different tools and thus 
conveys a high-level object-oriented API for the tool-repository interactions 

• Offers mechanisms for concurrent access of repository data through different tools 
and users 

• Features a comprehensive and well-organized tool set for diverse and complex 
information handling tasks with some new functionality such as matrices, hypertext 
tools and the query tool 

• Includes flexible, and varying mechanisms for tool integration and both vertical 
and horizontal method integration support 

• Provides symmetrical treatment of IS models and metamodels, and thus enables re­
use, metamodel management and utilization within the same environment 

• Provides novel support for alternative representational paradigms including 
matrices, and tables. 

We believe that with these features MetaEdit+ addresses many flaws found in current 
CASE tools. First, through its novel method integration mechanisms it provides 
innovative ways to organize methods and method families into methodologies, and 
also to organize methodologies with alternative levels of connectedness and inter­
method integrity constraints. Second, through its concurrency management 
mechanisms MetaEdit+ is able to cater for varying needs and demands for 
concurrency management for different repository objects. Third, through its open 
architecture and tool interoperability MetaEdit+ can support the highly diverse 
representational paradigms and information processing needs which are demanded 
from software engineering environments. Fourth, through its meta-metamodel 
MetaEdit+ provides flexibility and evolvability in the method specification and use 
which is unmatched by any other existing metaCASE tool. Fifth, through the 
availability of a varied yet uniform (in terms of user accessibility and user interface) 
tool set the MetaEdit+ environment is able to cater for diverse needs of different 
system development stakeholders. In this sense MetaEdit+ achieves the design goals 
of better usability, improved flexibility and a open architecture. 

125



S. Kelly, K. Lyytinen and M. Rossi 

Despite these advances MetaEdit+ is not currently a fully complete environment, 
suitable for all types of development tasks. First, it does not address the need for 
multiple distributed repositories which is typical for large scale software development. 
Second, its concurrency management strategies can be too demanding for large scale 
software repositories. Third, it does not provide flexible integration mechanisms with 
other tools (such as electronic publishing or CSCW tools). 

Future work in MetaEdit+ will take several directions. First, we want to expand the 
flexibility and evolvability to cater not only for method representation specifications, 
but also process and actor models for lSD (Mar94). Second, we will finish the 
ongoing implementation of the concurrency management system and expand it with 
the possibility to try out alternative concurrency management strategies which may be 
applicable in different environments. The third direction is to increase the capabilities 
to describe integrity constraints within and between method specifications. 

On the tool and MetaEngine level the following expansions are currently underway. 
The applicability of the concept of reusable graphs with 'interface ports', analogous to 
principles encountered in chip design, will be examined on the model and metamodel 
levels. The three constructs to represent different levels of 'two things being the same' 
in a model (multiple representations of the same concept, property sharing, hypertext 
links) will be examined in the light of current practice in methods. The possibilities of 
polymorphism based on bindings and metatypes will be examined further in particular 
as a solution to the problems of metatype polymorphism in existing methods (e.g. 
objectified associations in NIAM (Nij89), which can be viewed as both objects and 
relationships). Similarly, the possibilities of the matrix paradigm will be investigated. 

To conclude, MetaEdit+ forms a bold attempt to build a versatile platform for 
implementing flexible design information systems that will form the necessary 
organizational memory and design resource for knowledge intensive systems and 
software engineering required in the next millennium. If any improvement has been 
made in realizing this vision we have achieved our goals. 

Acknowledgments. This research was in part funded by the Ministry of Education, 
University of Jyviiskylii, and the Academy of Finland, as the MetaPHOR project 
(Lyy94). We are also grateful to our colleagues in the MetaPHOR project who have 
been involved in designing and implementing some parts of the system. 

Bibliography 

Aae91 Aaen, Ivan, Carsten S!llrensen, "A CASE of Great Expectations," Scandinavian 
Journal oflnforrnation Systems 3(1) (1991) pp.3-23. 

Alf'/7 Alford, M., "A Requirements Engineering Methodology for Real Time Processing 
Requirements," IEEE Transactions on Software Engineering 3(1) (1977) pp.60-69. 

ANS75 ANSI, "Study Group on Data Base Management Systems: Interim Report 75-02-08," 
ACM SIGMOD Newsletter 7(2) (1975). 

Ber89 Bergsten, Per, Janis Bubenko jr., Roland Dahl, Mats Gustafsson and Lars-Ake 
Johansson, "RAMATIC- A CASE Shell for Implementation of Specific CASE Tools," 
Tempora T6.1 Report, first draft, SISU, Gothenburg (1989). 

126



From: CAiSE 1996, LNCS 1080 © Springer-Verlag Berlin Heidelberg 1996

Bri90 Brinkkemper, Sjaak, "Formalisation of Information Systems Modelling," Ph.D. 
Thesis, Univ. ofNijmegen, Thesis Publishers, Amsterdam (1990). 

Bro75 Brooks, F., "The Mythical Man Month: Essays on Software Engineering," Addison­
Wesley, Reading, Mass, USA (1975). 

Bro91 Brown, Alan W., "Object-oriented Databases: their applications to software 
engineering," McGraw-Hill, Maidenhead UK (1991). 

Bub88 Bubenko, J. A., "Selecting a Strategy for Computer-Aided Software Engineering 
(CASE)," Report 59, SYSLAB, University of Stockholm, Sweden (1988). 

CDI91 COIF, "CASE Data Interchange Format Interim Standards vol. 1-3," Electronic 
Industries Association Engineering Department (1991). 

Cha86 Charette, R., "Software Engineering Environments, Concepts and Technology," 
McGraw-Hill, New York, USA (1986). 

Che76 Chen, P. P., "The Entity-Relationship Model: Toward a Unified View of Data," ACM 
Transactions on Database Systems 1(1) (1976) pp.9-36. 

Che88 Chen, Minder, "The Integration of Organization and Information Systems Modeling: 
A Metasystem Approach to the Generation of Group Decision Support Systems and 
Compute-aided Software Engineering," PhD Thesis, University of Arizona, Tuscan, 
USA (1988). 

Cyb92 Cybulski, Jacob L., Karl Reed, "A Hypertext-Based Software Engineering 
Environment," IEEE Software (March 1992) pp.62-68. 

ECM91 ECMA, "Reference Model for Frameworks of Software Engineering Environments," 
Technical Report ECMA TR/55, 2nd Edition (1991). 

Gan79 Gane, C., T. Sarson, "Structured Systems Analysis: Tools and Techniques," Prentice 
Hall, Englewood Cliffs, NJ (1979). 

Hah91 Hahn, U., M. Jarke and T. Rose, "Teamwork Support in a Knowledge-Based 
Information Systems Environment," IEEE Transactions on Software Engineering 
17(5) (1991) pp.467-481. 

Har93 Harmsen, F., S. Brinkkemper, "Computer Aided Method Engineering based on 
existing Meta-CASE technology," pp. 125-140 in Proceedings of the Fourth 
Workshop on The Next Generation of CASE Tools, Sjaak Brinkkemper, Frank 
Harmsen (Ed.)No. 93-32, Univ. ofTwente, Enschede, the Netherlands (1993). 

Har94 Harmsen, Frank, Sjaak Brinkkemper and Han Oei, "Situational Method Engineering 
for Information System Project Approaches," pp. 169-194 in Methods and 
Associated Tools for the Information Systems Life Cycle (A-55), A. A. Verrijn-Stuart 
and T. W. Olle (Ed.), Elsevier Science B.V. (North-Holland) (1994). 

Hen90 Henderson, J., J. Cooprider, "Dimensions of IS Planning and Design Aids: a 
functional model of CASE technology," Information Systems Research 1(3) (1990) 
pp.227-254. 

Hey92 Heym, M., H. Osterle, "A Reference Model of Information Systems Development," 
pp. 215-240 in The Impact of Computer Supported Technologies on Information 
Systems Development, K. E. Kendall, K. Lyytinen, J. L. DeGross (Ed.), North­
Holland, Amsterdam (1992). 

Hey93 Heym, M., H. Osterle, "Computer-aided methodology engineering," Information & 
Software Technology 35(617) (1993) pp.34S-354. 

Ind87 Index Technology Corporation, "Excelerator Reference Guide," Index Technology 
Corporation, Cambridge, USA (1987). 

IS089 ISO, "Information processing systems: Information Resource Dictionary System 
(IRDS) Framework," Draft International Standard ISO/IEC DIS 10027 (1989). 

Kat84 Katz, Randy H., "Transaction Management in the Design Environment," in New 
Applications of Databases, Georges Garderin and E Ge (Ed.), Academic Press, 
London UK (1984). 

127



S. Kelly, K. Lyytinen and M. Rossi 

Kel94a Kelly, Steven, Veli-Pekka Tahvanainen, "Support for Incremental Method 
Engineering and MetaCASE," in Proceedings of the 5th Workshop on the Next 
Generation of CASE Tools, B. Theodoulidis (Ed.) Memoranda Informatica 94-25, 
Universiteit Twente, Enschede, the Netherlands (1994). 

Kel94b Kelly, S., "A Matrix Editor for a MetaCASE Environment," Information and Software 
Technology 36(6) (1994) pp.36l-37l. 

Kel95 Kelly, Steven, Karl Smolander, "Evolution and Issues in MetaCASE," Information 
and Software Technology (to appear) (1995). 

Kum92 Kumar, Kuldeep, Richard J. Welke, "Methodology Engineering: A Proposal for 
Situation Specific Methodology Construction," pp. 257-269 in Challenges and 
Strategies for Research in Systems Development, Kottermann W. W. and Senn J. A. 
(Ed.), John Wiley & Sons, Washington (1992). 

Liu95 Liu, H., "A Visual Interface for Querying a CASE Repository," in Proc. of the 
Eleventh IEEE Symposium on Visual Languages (VL'95), Darmstadt Germany 
(1995). 

Lyy89 Lyytinen, Kalle, Karl Smolander and Veli-Pekka Tahvanainen, "Modelling CASE 
Environments in Systems Development," in Proceedings of the first Nordic 
Conference on Advanced Systems, SISU, Stockholm (1989). 

Lyy94 Lyytinen, K., P. Kerola, J. Kaipala, S. Kelly, J. Lehto, H. Liu, P. Marttiin, H. Oinas­
Kukkonen, J. Pirhonen, M. Rossi, K. Smolander, V.-P. Tahvanainen and J.-P. 
Tolvanen, "MetaPHOR: Final report," University of JyviiskyUi, Finland (1994). 

Mar94 Marttiin, P., ''Towards Flexible Process Support with a CASE shell," pp. 14-27 in 
Advanced Information Systems Engineering, Proceedings of the Third International 
Conference CAiSE'94, Utrecht, The Netherlands, June 1994, G. Wijers, S. 
Brinkkemper and T. Wasserman (Ed.), Springer-Verlag, Berlin (1994). 

Mar95 Marttiin, Pentti, Kalle Lyytinen, Matti Rossi, Veli-Pekka Tahvanainen and Juha­
Pekka Tolvanen, "Modeling requirements for future CASE: issues and 
implementation considerations," Information Resources Management Journal 8(1) 
(1995) pp.15-25. 

McC89 McClure, C., "CASE is Software Automation," Prentice Hall, Englewood Cliffs, NJ 
(1989). 

Mer90 Mercurio, V. F., B. F. Meyers, A.M. Nisbet and G. Radin, "AD/Cycle strategy and 
architecture," IBM Systems Joumal29(2) (1990) pp.l70-l88. 

Nij89 Nijssen, G. M., T. A. Halpin, "Conceptual Schema and Relational Database Design: 
A fact oriented approach," Prentice-Hall, Englewood Cliffs, NJ (1989). 

Oin93 Oinas-Kukkonen, H., "Hypertext Functionality in CASE Environments: Preliminary 
Findings," Conference on Computers and Hypermedia in Engineering Education, 
Vaasa, Finland (May 24-26 1993). 

Ost87 Osterweil, L. J., "Software processes are software too," pp. 180-188 in Proceedings 
of the 9th International Conference on Software Engineering (1987). 

Poc9l Pocock, John N., "VSF and its Relationship to Open Systems and Standard 
Repositories," pp. 53-68 in Software Development Environments and CASE 
Technology, A. Endres, H. Weber (Ed.), No. 509, Springer-Verlag, Berlin (1991). 

Poh94 Pohl, K., R. Domges and M. Jarke, "PRO-ART: PROcess based Approach to 
Requirements Traceability," in Poster Outlines: 6th Conference on Advanced 
Information Systems Engineering, Utrecht, Netherlands, June 1994 (1994). 

Pro94 ProtoSoft Inc., "Paradigm Plus/ Cadre Edition Reference Manual," ProtoSoft Inc. 
(1994). 

128



From: CAiSE 1996, LNCS 1080 © Springer-Verlag Berlin Heidelberg 1996

Ros92 Rossi, M., M, Gustafsson, K. Smolander, L.-A. Johansson and K. Lyytinen, 
"Metamodeling editor as a front end tool for a case-shell,'' pp. 547-567 in Advanced 
Information Systems Engineering, P. Loucopoulos (Ed.), Springer Verlag, Berlin, 
Germany (1992). 

Ros94 Rossi, M., J.-P. Tolvanen, "Metamodeling approach to method comparison: A survey 
of a set of lSD methods," Working Paper, University of JyvliskyUi, Jyvliskylli (1994). 

Ros95a Rossi, M., S. Brinkkemper, "Metrics in Method Engineering," pp. 200-216 in 
Advanced Information Systems Engineering, Proceedings of the 7th International 
Conference CAiSE'95, J. Iivari, K. Lyytinen and M. Rossi (Ed.)No. 932, Springer­
Verlag, Berlin (1995). 

Ros95b Rossi, M., "The MetaEdit CAME environment," Proceedings of the Meta Case 95, 
University of Sunderland press, Sunderland (1995). 

Smo91a Smolander, Karl, Kalle Lyytinen, Veli-Pekka Tahvanainen and Pentti Marttiin, 
"MetaEdit - A Flexible Graphical Environment for Methodology Modelling," in 
Advanced Information Systems Engineering, Proceedings of the Third International 
Conference CAiSE'91, Trondheim, Norway, May 1991, R. Andersen, J. A. Bubenko 
jr. and A. Solvberg (Ed.), Springer-Verlag, Berlin (1991). 

Smo91b Smolander, Karl, "OPRR: A Model for Modelling Systems Development Methods," 
in Next Generation CASE Tools, K. Lyytinen and V.-P. Tahvanainen (Ed.), lOS 
Press, Amsterdam, the Netherlands (1991). 

Smo93a Smolander, Karl, "MetaEdit+ Protocols and standard operations for processing 
GOPRR information structures: the Application Programmer's lnteiface," Internal 
Technical Document, MetaPHOR project, Univ. of JyviiskyUi, JyvliskyHi, Finland 
(1993). . 

Smo93b Smolander, Kari, "GOPRR: a proposal for a meta level model," University of 
Jyvliskylli, Finland (1993). 

Sor88 Sorenson, Paul G., Jean-Paul Tremblay and Andrew J; McAllister, "The Metaview 
System for Many Specification Environments," IEEE SOFTWARE (March 1988) 
pp.30-38. 

Ste93 Stegwee, Robert A., Ria M. C. van Waes, "Flexible CASE tools for Information 
Systems Planning," pp. 248-292 in Computer-Aided Software Engineering - Issues 
and Trends for the 1990s and Beyond, T. Bergin (Ed.), Idea Group Publishing 
(1993). 

Tei77 Teichroew, Daniel, Ernest A. Hershey_III, "PSUPSA: A Computer-Aided Technique 
for Structured Documentation and Analysis of Information Processing Systems," 
IEEE Transactions on Software Engineering (1977). 

Tei80 Teichroew, Daniel, Petar Macasovic, III Ernest A. Hershey and Yuzo Yamamoto, 
"Application of the entity-relationship approach to information processing systems 
modeling," pp. 15-38 in Entity-Relationship Approach to Systems Analysis and 
Design, P. P. Chen (Ed.), North-Holland (1980). 

Wan93 Wand, Yair, Ron Weber, "On the ontological expressiveness of systems analysis and 
design grammars," Journal oflnformation Systems (1993). 

Wel92 Welke, R. J., "The CASE Repository: More than another database application," in 
Challenges and Strategies for Research in Systems Development, William W. 
Cotterman and James A. Senn (Eds.) (Ed.), Wiley, Chichester UK (1992). 

Wij90 Wijers, G. M., H. E. van Dort, "Experiences with the use of CASE-tools in the 
Netherlands," Advanced Information Systems Engineering (1990) pp.S-20. 

Wij91 Wijers, G. M., "Modelling Support in Information Systems Development," Ph.D. 
Thesis, Delft University of Technology, Thesis Publishers, Amsterdam (1991). 

129


	MetaEdit+ A Fully Configurable Multi-User and Multi-Tool CASE and CAME Environment
	1. Introduction
	2. Related Research
	2.1 Lack of Method Integration Mechanisms
	2.2 Insufficient Multi-User Support
	2.3 Insufficient Support for Multiple Representation Paradigms
	2.4 Lack of Method Modifiability and Evolution
	2.5 Lack of Information Retrieval and Computational Facilities
	2.6 Summary

	3. The MetaEdit+ Environment
	3.1 General Architecture
	3.2 Tool Architecture

	4. Conceptual Data Model
	4.1 The OPRR Model
	4.2 Extensions in the GOPRR Model
	Concept of Graph
	Object Orientation
	Method Integration
	Integrity Checking Rules

	4.3 Example

	5. Method Management Tools
	5.1 Motivation and Purpose of the Method Management Tools
	5.2 Design Principles of Method Management Tool Family
	The Method Assembly System
	Environment Generation System

	5.3 An Example of a Method Specification

	6. Discussion and Conclusions
	Bibliography




