
Process Change Patterns: Recent Research,
Use Cases, Research Directions

Manfred Reichert and Barbara Weber

Abstract In previous work, we introduced change patterns to foster a systematic
comparison of process-aware information systems with respect to change support.
This paper revisits change patterns and shows how our research activities have
evolved. Further, it presents characteristic use cases and gives insights into current
research directions.

1 Introduction

Information systems (IS) are increasingly aligned in a process-oriented way.
This emerging generation of IS is referred to as process-aware information systems
(PAIS) [1]. A PAIS should support real-world processes properly, i.e., there should
be no mismatch between the processes implemented by it and those existing in
reality. Hence, advanced support is needed for customizing a PAIS to its application
environment as well as for quickly adapting implemented processes to changing
needs. The increasing demand for process change support poses new challenges for
IS engineers and requires the use of change enabling technologies.

Accordingly, a method is required that allows PAIS engineers to systematically
assess the change capabilities of available technologies. In [2], we introduced
change patterns as well as change support features to enable such a systematic
assessment of PAIS with respect to process change support. In particular, change
patterns allow for high-level process adaptations. In turn, change support features

M. Reichert (�)
University of Ulm, Ulm, Germany
e-mail: manfred.reichert@uni-ulm.de

B. Weber
University of Innsbruck, Innsbruck, Austria
e-mail: barbara.weber@uibk.ac.at

J. Bubenko et al. (eds.), Seminal Contributions to Information Systems Engineering,
DOI 10.1007/978-3-642-36926-1 32, © Springer-Verlag Berlin Heidelberg 2013

397

mailto:manfred.reichert@uni-ulm.de
mailto:barbara.weber@uibk.ac.at


M. Reichert and B. Weber

summarize fundamental features to be provided by a PAIS in order to change and
evolve implemented processes in a correct, robust and secure way.

This paper discusses how our research on change patterns has evolved, how they
have been used in theory and practice, and what research directions are.

2 Background: Process Change Patterns

Originally, in [2] we introduced 17 patterns for realizing control flow changes. These
patterns reduce the complexity of process changes and raise the level for expressing
changes by providing abstractions above the level of primitive change operations.
To structure the change patterns, we divided them into adaptation patterns and
change patterns for predefined changes (cf. Fig. 2 in [2]). While the former enable
structural changes of a process schema, the latter allow process participants to add
information regarding unspecified parts of a process schema during run-time.

An adaptation pattern (AP) enables structural changes of process schemes.
AP1 (AP2) allows inserting (deleting) a process fragment. Moving and replacing
fragments is supported by AP3 (Move Process Fragment), AP4 (Replace Process
Fragment), AP5 (Swap Process Fragment), and AP14 (Copy Process Fragment).
AP6 and AP7 allow adding or removing levels of hierarchy: the extraction of a
sub-process from a process schema is supported by AP6, whereas the inclusion
of a sub-process into a process schema is supported by AP7. Patterns AP8–AP12
support adaptations of control dependencies: embedding a process fragment in a
loop (AP8), parallelizing a process fragment (AP9), embedding a process fragment
in a conditional branch (AP10), and adding/removing control dependencies (AP11,
AP12). Finally, AP13 allows changing transition conditions. Generally, the region
to which an adaptation pattern is applied may be chosen dynamically. Hence,
adaptation patterns are well suited for realizing ad-hoc changes and coping with
the evolving nature of business processes [1]. For each adaptation pattern, we have
provided a name, a description, an illustrating example, a description of the problem
it addresses, a couple of design choices, remarks regarding its implementation, and
references to related patterns. In this context, design choices allow parameterizing
change patterns keeping the number of distinct patterns manageable.

Patterns for changes in pre-defined regions allow for better dealing with
uncertainty by deferring decisions regarding the exact control-flow to the run-time.
Instead of requiring a process model to be fully specified prior to execution, parts
of the model may remain unspecified. As opposed to adaptation patterns, whose
application is not restricted a priori to a particular process part, the parts of a
process schema that may be changed or expanded are constrained. In this category,
we identified four patterns: Late Selection (PP1), Late Modeling (PP2) and Late
Composition of Process Fragments (PP3), and Multi-Instance Activity (PP4). These
four patterns differ regarding the parts that may remain unspecified resulting in a
different degree of freedom during run-time.

398



Process Change Patterns: Recent Research, Use Cases, Research Directions

3 Recent Research on Process Change Patterns

In recent work we have detailed the change patterns and provided empirical
evidence for them. Further, we have formalized and implemented them. In detail:

Detailing change patterns and empirical evidence. We extended our original
work in [3], which provides an in-depth description of all change patterns; it
describes the pattern selection criteria, the data sources used, and the procedure
applied for pattern identification. Further, it discusses how the patterns were
identified based on the analysis of large process model collections from the
healthcare and automotive domains. Finally, Weber et al. [3] introduces additional
patterns and provides an extended pattern-based evaluation of selected approaches
from industry as well as academia.

Change pattern formalization. To obtain unambiguous pattern descriptions and
ground pattern implementation as well as pattern-based analyses on a sound basis,
we provided a formal semantics for change patterns in [4]. For each change pattern,
its formal semantics is specified by comparing the execution traces producible on
a process schema before and after applying the pattern to it. The formalization
is independent from any process meta model and thus allows implementing the
patterns in a variety of process support tools.

Pattern implementation. The change patterns were implemented in an adaptive
PAIS – the AristaFlow BPM Suite [5]. The adaptation patterns are realized
in terms of high-level change operations, which can be used for creating and
changing process schemes. Hence, flexible exception handling and controlled
process evolution become possible. Further, adaptation patterns are associated with
pre-/post-conditions to ensure structural and behavioral soundness of a process
schema after pattern application; i.e., correctness by construction is ensured.

Recently, we complemented the existing workflow patterns by a set of time
patterns to make PAIS comparable with respect to their ability to deal with temporal
constraints [6].

4 Characteristic Use Cases for Change Patterns

On one hand, change patterns provide the basis for realizing changes in different
stages of the process life cycle [7]. On the other, they serve as benchmark for
evaluating change support in existing languages and tools.

4.1 Supporting Process Changes Along the Process Life Cycle

We first discuss fundamental use cases for realizing changes in different stages of
the process life cycle:

399



M. Reichert and B. Weber

Process schema creation. Change patterns have been used for intelligent process
schema creation [8]. For example, AristaFlow allows modeling a sound process
schema based on an extensible set of adaptation patterns [5]. Only those patterns
may be applied in a given context, which do not violate the soundness of the process
schema. In turn, Gschwind et al. [9] describes a set of pattern compounds, similar to
the adaptation patterns, allowing for the context-sensitive selection and composition
of workflow patterns during process modeling. Finally, adaptation patterns have
been used for the model-based integration of services into business applications
at later stages during the process life cycle [10].

Process schema configuration. The configuration of a reference process schema
constitutes another use case for adaptation patterns. Provop, for example, allows
creating a process variant by applying a sequence of adaptation patterns (e.g., AP1,
AP2 or AP3) to the given reference schema [11]. By utilizing the semantics of the
adaptation patterns applied in a given configuration setting, it is further ensured that
the resulting process variant schema is sound [12].

Process instance change. An important use case is to enable actors to deviate
from a pre-specified process schema at run-time, e.g., to cope with exceptions.
For this purpose, AristaFlow supports instance-specific changes based on the
same adaptation patterns as used for process modeling [5]. Further, it utilizes the
semantics of the applied adaptation patterns to ensure correctness of the resulting
process instance schema. Recently, approaches aiming at automated instance
changes have emerged. Usually, they only consider a subset of the adaptation
patterns. For example, Q-Advice uses AP1 and its variants to automatically inject
quality measure activities into the workflows of software engineers at run-time.
The activities to be added are determined situationally using contextual knowledge
and quality goal tracking [13]. A more generic approach to automate instance
adaptations, which is based on declarative processes and planning, is described
in [14]. Regarding ad-hoc changes, Kumar et al. [15] additionally ensures com-
pliance of process instance adaptations with defined semantic constraints. For
this, integer programming formulation is used to validate the applied adaptation
patterns against the given set of semantic constraints (AP1–AP5 are considered).
An approach for the flexible support of product development processes is presented
in [16]; the sub-processes of such a process, which refine analysis, synthesis, and
verification activities, may be dynamically selected to allow for a flexible process
execution without need for structural adaptations. Thereby, a subset of the patterns
for changes in pre-defined regions is considered (i.e., PP1–PP3).

Process schema evolution. Adaptive PAIS allow for schema evolution considering
version management and the migration of already running process instances to
the new schema version. Gerth et al. [17] presents techniques for detecting and
resolving conflicting change operations, which rely on selected adaptation patterns
and their semantics. In turn, Küster et al. [18] shows how to compute a sequence of
adaptation patterns required to transform a given schema version into another one.

400



Process Change Patterns: Recent Research, Use Cases, Research Directions

Both scenarios consider AP1, AP2, and AP3. Particularly, adaptation patterns play a
crucial role for ensuring the correctness of schema changes and instance migrations.
In AristaFlow, schema evolution is based on the same adaptation patterns as used for
process modeling and ad-hoc changes [5]. Thereby, pattern semantics is utilized to
cope with conflicting changes at the type and instance level, to increase the number
of migratable process instances, and to efficiently represent applied changes [19–
21]. Note that similar concepts exist for evolving service compositions [22].
Furthermore, continuous process improvement, relying on case-based reasoning and
adaptation patterns, is considered in [23]. Finally, Jamshidi and Pahl [24] introduces
patterns for co-evolving processes and software architectures. These patterns are
based on selected adaptation patterns and allow describing the impact a business
process change has on corresponding software architectures.

Process schema refactoring. A specific kind of schema evolution is provided by
process schema refactorings; i.e., syntactical transformations of a process schema
not changing its behavior. Examples of such refactorings and their relation to
adaptation patterns (e.g., AP6 and AP7) are discussed in [25].

Process change reuse. When handling exceptions, it might be useful to reuse
changes applied in similar problem contexts earlier [26]. For example, ProCycle
fosters change reuse based on case-based reasoning and semantic change
annotations [7]. Further, it supports AP1–AP5 and utilizes their specific semantics
to adjust parameter settings of recorded changes when reusing them.

Process schema comparison. Comparing two process schemes is crucial to decide
how similar the schemes are or how to derive the one from the other. In this context,
adaptation patterns can be used to describe the structural difference (i.e., edit
distance) between schemes in terms of high-level changes. Based on specific
variants of patterns AP1–AP3, Li et al. [27] presents a technique that allows
determining this difference. A similar approach is presented in [28].

Process change analysis. Adaptive PAIS capture process changes in change logs,
which record applied adaptation patterns and their parameter settings. For change
analysis, different techniques exist. Based on AP1–AP3, Günther et al. [29] applies
process mining to change logs to discover change processes providing an aggregated
visualization of all changes. In turn, MinAdept does not presume the existence of a
change log, but allows analyzing a collection of process variants derived from the
same schema [30]; algorithms are provided discovering a reference process schema
whose average edit distance to the process variants is minimal.

In summary, process change patterns are relevant for a variety of use cases
in the process life cycle. As shown, the patterns have served as basis for the
design and implementation of techniques supporting these use cases. While tools
like AristaFlow enable a broad support of most use cases and adaptation patterns,
other proposals only consider a specific use case and a subset of the adaptation
patterns.

401



M. Reichert and B. Weber

4.2 Assessing and Designing Process Change Frameworks

Change patterns have been used for realizing pattern catalogs for specific modeling
languages, assessing existing PAIS, and enabling user-friendly changes. Examples
of corresponding approaches are presented in the following.

Realizing a pattern catalog for a specific modeling language. Döhring et al. [31]
combines change, exception and time patterns into a BPMN pattern catalog. Change
patterns are referred to as generic patterns, which are tailored and extended to
be applicable to BPMN. In turn, Tragatschnig and Zdun [32] uses the adaptation
patterns for designing a pattern catalog for BPEL schema changes.

Assessing existing approaches. A measure for a pattern-based assessment of
service orchestration languages is defined in [33]. In particular, the designed pattern
catalog includes the patterns for changes in predefined regions (i.e., PP1–PP4) and
discusses how they are supported in existing BPEL dialects.

Enabling user-friendly changes. Kolb et al. [34] presents an approach enabling
end users to change large process schemes based on personalized process views;
AP1, AP2, and AP8–AP10 may be applied to a process view, followed by the
propagation of the defined changes to the underlying process schema. In turn,
Kolb et al. [35] introduces a user-centric approach for creating, changing and
visualizing process schemes based on the Concurrent Task Tree (CTT) – a task
modeling language known from end-user programming. Thereby, the described
adaptation patterns are mapped to CTT change operations. Finally, Kolb et al. [36]
presents a controlled experiment that investigates the way users create and change
process schemes on multi-touch devices. Based on this, a gesture set for realizing
adaptation patterns AP1, AP2, AP6, AP7, AP8, AP10, and AP11 on multi-touch
devices is designed.

5 Research Directions

When using change patterns for modeling, the quality of process schemes might
increase. Particularly appealing in this context is the mentioned correctness by
construction. However, the use of change patterns implies a different way of
creating process schemes compared to the use of change primitives. First of all, the
correctness-by-construction principle imposes a rather structured way of modeling
and hence constraints on change pattern combinations. In addition, the exact set
of change patterns (e.g., presence vs. non-presence of the move pattern) might
determine how patterns have to be combined to create a process fragment. While
the creation of process schemes based on change primitives has caused attention in
recent years [37], only little is known about the process of process modeling when
utilizing change patterns. To obtain an in-depth understanding of it, we are currently
working on empirical studies on the use of change patterns.

402



Process Change Patterns: Recent Research, Use Cases, Research Directions

References

1. Reichert, M., Weber, B.: Enabling Flexibility in Process-Aware Information
Systems - Challenges, Methods, Technologies. Springer (2012)

2. Weber, B., Rinderle, S., Reichert, M.: Change patterns and change support features in
process-aware information systems. In: Proc. CAiSE’07. (2007) 574–588

3. Weber, B., Reichert, M., Rinderle-Ma, S.: Change patterns and change support
features - enhancing flexibility in process-aware information systems. Data and Knoweldge
Engineering 66 (2008) 438–466

4. Rinderle-Ma, S., Reichert, M., Weber, B.: On the formal semantics of change patterns in
process-aware information systems. In: Proc. ER’08. (2008) 279–293

5. Dadam, P., Reichert, M.: The ADEPT project: a decade of research and development for robust
and flexible process support. Comp Scie - R&D 23 (2009) 81–97

6. Lanz, A., Weber, B., Reichert, M.: Time patterns for process-aware information systems.
Requirements Engineering (2013)

7. Weber, B., Reichert, M., Wild, W., Rinderle-Ma, S.: Providing integrated life cycle support
in process-aware information systems. Int’l Journal of Cooperative Information Systems 18
(2009) 115–165

8. Smirnov, S., Weidlich, M., Mendling, J., Weske, M.: Object-sensitive action patterns in process
model repositories. In: Proc. BPM’10 Workshops. (2010) 251–263

9. Gschwind, T., Koehler, J., Wong, J.: Applying patterns during business process modeling. In:
Proc BPM’08. (2008) 4–19

10. Heller, M., Allgaier, M.: Model-based service integration for extensible enterprise systems
with adaptation patterns. In: ICE-B. (2010) 163–168

11. Hallerbach, A., Bauer, T., Reichert, M.: Capturing variability in business process models:
The Provop approach. Journal of Software Maintenance and Evolution: Research and Practice
22 (2010) 519–546

12. Hallerbach, A., Bauer, T., Reichert, M.: Guaranteeing soundness of configurable process
variants in Provop. In: Proc. CEC’09. (2009) 98–105

13. Grambow, G., Oberhauser, R., Reichert, M.: Contextual injection of quality measures into
software engineering processes. Int’l J Adv in Software 4 (2011) 76–99

14. Marrella, A., Mecella, M., Russo, A.: Featuring automatic adaptivity through workflow
enactment and planning. In: Proc CollaborateCom’11. (2011) 372–381

15. Kumar, A., Yao, W., Chu, C.H., Li, Z.: Ensuring compliance with semantic constraints in
process adaptation with rule-based event processing. In: Proc RuleML’10. (2010) 50–65

16. Reichel, T., Rünger, G., Steger, D.: Flexible workflows for an energy-oriented product
development process. In: Proc ISSS/BPSC’10. (2010) 243–254

17. Gerth, C., Küster, J., Luckey, M., Engels, G.: Detection and resolution of conflicting change
operations in version management of process models. SOSYM (2011) 1–19

18. Küster, J., Gerth, C., Engels, G.: Dynamic computation of change operations in version
management of business process models. In: ECMFA’10. (2010) 201–216

19. Rinderle, S., Reichert, M., Dadam, P.: On dealing with structural conflicts between process
type and instance changes. In: Proc. BPM’04, Potsdam (2004) 274–289

20. Rinderle-Ma, S., Reichert, M., Weber, B.: Relaxed compliance notions in adaptive process
management systems. In: Proc. ER’08. (2008) 232–247

21. Rinderle, S., Reichert, M., Jurisch, M., Kreher, U.: On representing, purging, and utilizing
change logs in process management systems. In: BPM’06. (2006) 241–256

22. Andrikopoulos, V., Benbernou, S., Papazoglou, M.P.: Managing the evolution of service
specifications. In: Proc. CAiSE’08. (2008) 359–374

23. Kim, D., Lee, N., Kang, S.H.: An approach to continuous process improvement based on
case-based reasoning and process change patterns. IJICIC 8 (2011)

24. Jamshidi, P., Pahl, C.: Business process and software architecture model co-evolution patterns.
In: Proc. MISE’12. (2012) 91–97

403



M. Reichert and B. Weber

25. Weber, B., Reichert, M., Mendling, J., Reijers, H.A.: Refactoring large process model
repositories. Computers in Industry 62 (2011) 467–486

26. Aghakasiri, Z., Mirian-Hosseinabadi, S.H.: Workflow change patterns: Opportunities for
extension and reuse. In: Proc. SERA’09. (2009) 265–275

27. Li, C., Reichert, M., Wombacher, A.: On measuring process model similarity based on
high-level change operations. In: Proc. ER’08. (2008) 248–264

28. Küster, J.M., Gerth, C., Förster, A., Engels, G.: Detecting and resolving process model
differences in the absence of a change log. In: BPM’08. (2008) 244–260

29. Günther, C.W., Rinderle, S., Reichert, M., van der Aalst, W.M.P.: Change mining in adaptive
process management systems. In: Proc. CoopIS’06. (2006) 309–326

30. Li, C., Reichert, M., Wombacher, A.: Mining business process variants: Challenges, scenarios,
algorithms. Data & Knowledge Engineering 70 (2011) 409–434

31. Döhring, M., Zimmermann, B., Karg, L.: Flexible workflows at design- and runtime using
bpmn2 adaptation patterns. In: Proc. BIS. (2011) 25–36

32. Tragatschnig, S., Zdun, U.: Runtime process adaptation for bpel process execution engines.
In: EDOCW, IEEE Computer Society (2011) 155–163

33. Lenhard, J., Schönberger, A., Wirtz, G.: Edit distance-based pattern support assessment of
orchestration languages. In: OTM Conferences (1). (2011) 137–154

34. Kolb, J., Kammerer, K., Reichert, M.: Updatable process views for user-centered adaption of
large process models. In: Proc. ICSOC’12. (2012) 484–498

35. Kolb, J., Reichert, M., Weber, B.: Using concurrent task trees for stakeholder-centered
modeling and visualization of business processes. In: S-BPM ONE. (2012)

36. Kolb, J., Rudner, B., Reichert, M.: Towards gesture-based process modeling on multi-touch
devices. In: Proc. CAiSE Workshops. (2012) 280–293

37. Pinggera, J., et al: Modeling styles in business process modeling. In: BMMDS/EMMSAD.
(2012) 151–166

404


	Process Change Patterns: Recent Research, Use Cases, Research Directions
	1 Introduction
	2 Background: Process Change Patterns
	3 Recent Research on Process Change Patterns
	4 Characteristic Use Cases for Change Patterns
	4.1 Supporting Process Changes Along the Process Life Cycle
	4.2 Assessing and Designing Process Change Frameworks

	5 Research Directions
	References


