
On Structured Workflow Modelling�

Bartek Kiepuszewski1, Arthur Harry Maria ter Hofstede2,
and Christoph J. Bussler3

1 Mincom Limited, GPO Box 1397, Brisbane, Qld 4001, Australia,
bartek@mincom.com

2 Cooperative Information Systems Research Centre, Queensland University of
Technology, GPO Box 2434, Brisbane, Qld 4001, Australia, arthur@icis.qut.edu.au

3 Netfish Technologies Inc., 2350 Mission College Blvd., Santa Clara, CA 95054,
USA, cbussler@netfish.com

Abstract. While there are many similarities between the languages of
the various workflow management systems, there are also significant dif-
ferences. One particular area of differences is caused by the fact that
different systems impose different syntactic restrictions. In such cases,
business analysts have to choose between either conforming to the lan-
guage in their specifications or transforming these specifications after-
wards. The latter option is preferable as this allows for a separation of
concerns. In this paper we investigate to what extent such transforma-
tions are possible in the context of various syntactical restrictions (the
most restrictive of which will be referred to as structured workflows). We
also provide a deep insight into the consequences, particularly in terms
of expressive power, of imposing such restrictions.

1 Introduction

Despite the interest in workflow management, both from academia and industry,
there is still little consensus about its conceptual and formal foundations (see
e.g. [7]). While there are similarities between the languages of various commer-
cially available workflow management systems, there are also many differences.
However, it is often not clear whether these differences are fundamental in na-
ture. For example, as different systems impose different syntactic restrictions,
one may wonder whether this affects the expressive power of the resulting lan-
guages. In addition to that, such variations result in business analysts being
confronted with the question as to whether to conform to the target language
right away when they specify their workflows, or to transform their specifications
in a later stage.

In this paper focus is on syntactic variations in workflow specification lan-
guages. Different workflow management systems impose different syntactical re-
strictions. The most restrictive types of workflows will be referred to as structured
� This research is supported by an ARC SPIRT grant “Component System Archi-
tecture for an Open Distributed Enterprise Management System with Configurable
Workflow Support” between QUT and Mincom.

B. Wangler, L. Bergman (Eds.): CAiSE 2000, LNCS 1789, pp. 431–445, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

241



B. Kiepuszewski, A.H.M. ter Hofstede and C.J. Bussler

workflows. Systems such as SAP R/3 and Filenet Visual Workflo allow for the
specification of structured workflows only. While enforcing restrictions may have
certain benefits (e.g. verification and implementation become easier), the price
that may have to be paid is that the resulting language is more difficult to use
and has less expressive power.

In this paper, it will be shown that some syntactic restrictions will lead to a
reduction of expressive power of the language involved, while other restrictions
are of a less serious nature and can be overcome by the introduction of equiva-
lence preserving transformation rules. It will be also shown that even though for
certain workflow models it is possible to transform them to equivalent structured
forms, the resulting models are less suitable than the original ones. Neverthe-
less, the automation of such rules could potentially lead to tools giving business
analysts greater freedom in workflow specification without compromising their
realisability in terms of commercially available (and preferred) workflow man-
agement systems.

2 Structured Workflows: Definitions

In this section the notion of a structured workflow is formally defined and some
elementary properties stated. Workflows as used in this paper will employ con-
cepts used in most commercial workflow management systems. Although the
graphical notation used for representing workflows is irrelevant in terms of the
results presented in this paper, we have to agree on one in order to provide
examples to illustrate our arguments. Process elements will be represented by
large circles; or-joins and or-splits will correspond to small, white circles, while
and-joins and and-splits will correspond to small, shaded circles (the indegree
and outdegree will always make it clear whether we are dealing with a join
or a split). There are many examples of languages that support the specifica-
tion of arbitrary workflows, e.g. Staffware (www.staffware.com), Forte Conductor
(www.forte.com) and Verve WorkFlow (www.verveinc.com).

A structured workflow is a workflow that is syntactically restricted in a num-
ber of ways. Intuitively a structured workflow is a workflow where each or-split
has a corresponding or-join and each and-split has a corresponding and-join.
These restrictions will guarantee certain important properties shown later in
the paper and in some cases correspond to restrictions imposed by commercial
workflow management systems.

Definition 1. A structured workflow model (SWM) is inductively defined as
follows.

1. A workflow consisting of a single activity is a SWM. This activity is both
initial and final.

2. Let X and Y be SWMs. The concatenation of these workflows, where the
final activity of X has a transition to the initial activity of Y , then also is
a SWM. The initial activity of this SWM is the initial activity of X and its
final activity is the final activity of Y .

242



3. Let X1, . . . , Xn be SWMs and let j be an or-join and s an or-split. The
workflow with as initial activity s and final activity j and transitions between
s and the initial activities of Xi, and between the final activities of Xi and j,
is then also a SWM. Predicates can be assigned to the outgoing transitions
of s. The initial activity of this SWM is s and its final activity is j.

4. Let X1, . . . , Xn be SWMs and let j be an and-join and s an and-split. The
workflow with as initial activity s and final activity j and transitions between
s and the initial activities of Xi, and between the final activities of Xi and
j, is then also a SWM. The initial activity of this SWM is s and its final
activity is j.

5. Let X and Y be SWMs and let j be an or-join and s an or-split. The workflow
with as initial activity j and as final activity s and with transitions between
j and the initial activity of X, between the final activity of X and s, between
s and the initial activity of Y , and between the final activity of Y and j, is
then also a SWM. The initial activity of this SWM is j and its final activity
is s.

All commercial WfMSs known to the authors allow for the specification of work-
flow models that are equivalent to structured models as defined in definition 1.
Some of these WfMSs do not allow for the specification of arbitrary models
though and they impose certain levels of structuredness by means of syntactical
restrictions typically implemented in the graphical process designer.

The most restricted workflow modelling languages known to the authors with
respect to imposing structuredness are the languages of FileNet’s Visual Work-
Flo (www.filenet.com) (VW) and SAP R/3 Workflow. In both languages it is
possible to design structured models only. These models resemble the definition
provided earlier very closely with some minor exceptions such as that in VW
the loops can only be of the form “WHILE p DO X”. In SAP R/3 Workflow
no loops are allowed to be modelled in a direct way. An example of syntactical
restrictions in the more general area of data and process modelling can be found
in UML’s activity diagrams where business modellers are forced to exclusively
specify structured models.

The definition of SWMs guarantees these types of workflows to have certain
properties. Specifically, by the use of structural induction it can easily be shown
that SWMs do not deadlock (see [5]). In addition to that, in SWMs it is not
possible to have multiple instances of the same activity active at the same time.
This situation is easily modelled in an arbitrary workflow if an and-split is fol-
lowed by an or-join construct. Similarly, an arbitrary workflow will deadlock if
an or-split is followed by an and-join.

Since in the following sections we will regularly pay attention to arbitrary
workflow models that do not deadlock and do not result in multiple instances, for
terminological convenience we introduce the notion of well-behaved workflows.

Definition 2. A workflow model is well-behaved if it can never lead to deadlock
nor can it result in multiple active instances of the same activity.

Corollary 1. Every structured workflow model is well-behaved.

From: CAiSE 2000, LNCS 1789 © Springer-Verlag Berlin Heidelberg 2000 243



Instead of requiring workflows to be structured, it is more common for workflow
languages to impose restrictions on loops only. For example IBMMQSeries/Work-
flow (www.ibm.com/software) and InConcert (www.inconcert.com) do not allow
the explicit modelling of loops. Instead they have to be modelled by the use of
decomposition. This is equivalent to using a “REPEAT X UNTIL p” loop. In
case of MQSeries/Workflow, predicate p is specified as the Exit Condition of
the decomposition. Hence, in between arbitrary workflow models and structured
workflow models, we recognise a third class of workflow models, referred to as
restricted loop models.

Definition 3. A restricted loop workflow model (RLWFM) is inductively defined
as follows:

1. An arbitrary workflow model without cycles is an RLWFM.
2. Let X and Y be RLWFMs with each one initial and one final node. Let j be

an or-join and s an or-split. The workflow with as initial activity j and as
final activity s and with transitions between j and the initial activity of X,
between the final activity of X and s, between s and the initial activity of Y ,
and between the final activity of Y and j, is then also a RLWFM.

Note that languages that support loops through decomposition are a subset of
the class defined by the above definition (in those cases, essentially, Y corre-
sponds to the empty workflow). Naturally, every SWF is an RLWFM and every
RLWFM is an arbitrary workflow model.

3 Equivalence in the Context of Control Flow

As there exist workflow languages that do not allow for the specification of
arbitrary workflows, business analysts are confronted with the option to either
restrict their specifications such that they conform to the tool that is used or
specify their workflows freely and transform them to the required language in a
later stage. From the point of view of separation of concerns, the latter option
is preferable. To support such a way of working it would be best to have a set
of transformations that could be applied to a workflow specification in order
to transform it to a structured workflow in the sense of the previous section.
Naturally, these transformations should not alter the semantics of the workflows

B

D

CA

D

CA

B

CA

D

F

Arbitrary specification Structured specification Restricted loop workflow model

B E

E

Fig. 1. Illustration of the three different workflow model classes

B. Kiepuszewski, A.H.M. ter Hofstede and C.J. Bussler244



to which they are applied, they should be equivalence preserving. However, this
immediately raises the question as to what notion of process equivalence is the
most applicable in the context of workflows (for an overview of different notions
of process equivalence the reader is referred to [4]).

One of the most commonly used equivalence notions is that of bisimulation.
The formal definition of bisimulation between two different workflow systems,
given the fact that they would most likely use different syntax and semantics,
would have to be defined using some common formalism that can be applied to
both systems. One of the most convenient ways to do it is to define bisimula-
tion formally in terms of their Petri-net representation. That immediately leads
to the conclusion that weak bisimulation has to be considered since Petri-net
representations of workflow models may use many, internal, non-labelled places.

In the context of workflow processes with parallelism, the notion of basic weak
bisimulation is not strong enough. Bisimulation is defined in terms of execution
sequences, i.e. in terms of arbitrary interleaving. As such, however, bisimulation
cannot distinguish between a concurrent system and its sequential simulation.
For that reason a stronger equivalence notion is needed. Such a notion is pro-
vided in [3] where it is referred to as fully concurrent bisimulation. Given the
fact that the formal definition is relatively complex and the details are not par-
ticularly useful for the purpose of this paper, we will present fully concurrent
bisimulation in the context of workflow specification in terms of the bisimulation
game (adapted from [8]):

1. There are two players, Player A and Player B, each of which having a work-
flow model specification (Workflow A and Workflow B).

2. Player A starts the initial activities in his workflow model specification.
Player B responds by starting the initial activities in his workflow model
specification (which should exactly correspond to those of player A).

3. Player A may choose to finish any of its activities and start a corresponding
subsequent activity. Player B responds accordingly by finishing and starting
an activity with the same label (possibly performing some internal, non-
labeled, steps first).

4. If Player B cannot imitate the move of Player A, he looses. By imitating
we mean that at any point in time the same set of activities in workflow B
should be completed and started as in workflow A. Player B wins if he can
terminate his workflow once Player A has terminated his workflow. Similarly
Player B wins if he can deadlock his workflow once Player A has deadlocked
his workflow. The case of an infinite run of the game is considered to be
successful for Player B too.

If there is a strategy for defending player (Player B) to always prevent Player
A from winning then we say that workflow B can simulate workflow A. If the
reverse applies as well (workflow A can simulate workflow B) then we consider
the two workflow specifications to be equivalent.

From: CAiSE 2000, LNCS 1789 © Springer-Verlag Berlin Heidelberg 2000 245



4 From Arbitrary Workflow Models to SWMs

In this section transformations from arbitrary workflow models to SWMs are
studied and to what extent such transformations are possible. All transforma-
tions presented in this section assume that the workflow patterns they operate on
do not contain data dependencies between decisions, in other words for all intents
and purposes all decisions can be treated as nondeterministic. This assumption
allows us to assume that all possible executions permitted by the control flow
specification are possible.

4.1 Simple Workflows without Parallelism

Workflows that do not contain parallelism are simple models indeed. Their se-
mantics is very similar to elementary flow charts that are commonly used for
procedural program specification. The or-split corresponds to selection (if-then-
else statement) while the activity corresponds to an instruction in the flow chart.
It is well known that any unstructured flow chart can be transformed to a struc-
tured one. In this section we will revisit these transformation techniques and
present and analyse them in the context of workflow models.

Following [11] we will say that the process of reducing a workflow model
consists of replacing each occurrence of a base model. within the workflow model
by a single activity box. This is repeated until no further replacement is possible.
A process that can be reduced to a single activity box represents a structured
workflow model. Each transformation of an irreducible workflow model should
allow us to reduce the model further and in effect reduce the number of activities
in the model.

The strong similarity of simple workflow models and flow diagrams suggests
that if we do not consider parallelism, there are only four basic causes of un-
structuredness (see e.g. [11,9]): 1) Entry into a decision structure, 2) Exit from
a decision structure, 3) Entry into a loop structure, and 4) Exit from a loop
structure. Entry to any structure is modelled in a workflow environment by an
or-join construct. Similarly, an exit is modelled by an or-split. Once parallelism
is introduced we will also consider synchronised entry and parallel exit modelled
by and-join and and-split constructs respectively.

The first transformation (all transformations in this section are based on [9]),
depicted in figure 2, can be performed when transforming a diagram containing
an exit from a decision structure. It is important to observe that variable Φ
is needed since activity D can potentially change the value of β or, if β is a
complex expression, it could change the value of one of its components. This
transformation is achieved through the use of auxiliary variables.

The transformations as depicted in figure 3 are used when a workflow model
contains an entry to a decision structure. Here workflow B2 is a transformation
of B1 achieved through node duplication, whereas workflow B3 is a transforma-
tion of B1 achieved through the use of auxiliary variables. The following two
diagrams, depicted in figures 4 and 5, capture transformations to be used when

B. Kiepuszewski, A.H.M. ter Hofstede and C.J. Bussler246



A

B C

E

F

D

a~a

b ~b

A

B C

F

D

a~a

~F

F

F:=b

F:=True

E

F

~F

Workflow A1 Workflow A2

Fig. 2. Exit from a decision structure

A

B C E

F

D

a~a

A

B C E

F

D

a~a

D

A

B C E

D

~F

F

Workflow B1 Workflow B2 Workflow B3

F

F:=a

F
~F

F:=True

Fig. 3. Entry into a decision structure

a model contains an entry to, or an exit from a loop structure, respectively. Re-
peated application of the transformations discussed in this section can remove
all forms of unstructuredness from a workflow. Hence the following theorem.

Theorem 1. All unstructured workflows without parallelism have an equivalent
structured form.

Finally, it should be remarked that in some cases we have presented alternative
transformations (not using auxiliary variables) and in some cases we have not.
In later sections, we will show that this has a reason: in the cases where no extra
transformations (not using auxiliary variables) are presented, such transforma-
tions turn out not to exist.

4.2 Workflows with Parallelism but without Loops

Addition of parallelism immediately introduces problems related to deadlock
and multiple instances. As noted in section 2, structured workflow models never

From: CAiSE 2000, LNCS 1789 © Springer-Verlag Berlin Heidelberg 2000 247



E

A B

F

C
a

~a

A

Workflow C1 Workflow C2 Workflow C3

F
~F

F:=False

B

E

C

A

F

~a

a

B

A

F

C

E

F:=True

F:=a

~F

F

Fig. 4. Entry into a loop structure

E
A

B

F

C

a

~a

A

Workflow D1 Workflow D2

F:=a

C

~FF

E

F

B

b

~b

Q:=bQ:=False

Q ~Q F

~F

Fig. 5. Exit from a loop structure

result in deadlock nor multiple instances of the same activity at the same time.
Hence, structured workflow models are less expressive than arbitrary workflow
models. This immediately raises the question as to whether well-behaved work-
flow models can be transformed to structured workflow models. As the next
theorem shows, the answer to this question is negative.

Theorem 2. There are arbitrary, well-behaved, workflow models that cannot be
modelled as structured workflow models.

A

B

C

D

E

F

B D

C E

Fig. 6. Arbitrary workflow and illustration of its essential causal dependencies

B. Kiepuszewski, A.H.M. ter Hofstede and C.J. Bussler248



Proof. Consider the workflow fragment in figure 6. The first observation is that
as activities B and C are causally independent (that is, they can be executed
concurrently) they have to be in different branches of some parallel structure in a
corresponding structured workflow. As activities C and E are causally dependent
(E is always performed after C) there must be a path from C to some activity
named E. This activity has to be in the same branch as C as it cannot be
outside the parallel structure as that would make it causally dependent on B. By
applying similar reasoning, an activity named D has to be in the same branch of
a parallel structure as B. Now we have that as C and D are in different branches
of a parallel structure they are causally independent. However, in the original
model they are causally dependent. Contradiction. No corresponding structured
workflow exists. ��

To find out which workflow models can be effectively transformed into SWMs,
let us concentrate on the causes of unstructuredness that can occur when par-
allelism is added. If loops are not taken into account, these causes are: 1) Entry
to a decision structure, 2) Exit from a decision structure, 3) Entry to a parallel
structure, 4) Exit from a parallel structure, 5) Synchronised entry to a decision
structure, 6) Parallel exit from a decision structure, 7) Synchronised entry to
a parallel structure, and 8) Parallel exit from a parallel structure. In the re-
mainder of this section we will concentrate on which of these structures can be
transformed to a structure model.

Entries and exits from decision structures are dealt with in section 4.1 and
can obviously be transformed to a structured model.

As a synchronised entry to a decision structure and an exit from a parallel
structure leads to a potential deadlock (i.e. there are instances of the model
that will deadlock), it follows that if the original workflow contains any of these
patterns, it cannot be transformed into a SWM.

Parallel exits and synchronised entries to a parallel structure are dealt with
in theorem 2. The reasoning of this theorem can be applied to any model that
contains these patterns. Hence such models, even though they may be well-
behaved, cannot be transformed into SWMs.

Before analysing the two remaining structures let us define a syntactical
structure called an overlapping structure. This structure has been previously
introduced in the context of workflow reduction for verification purposes in [10].
A specific instance of it is shown in figure 7. An overlapping structure consists of
an or-split followed by i instances of and-splits, followed by j instances of or-joins
and finally by an and-join. The structure of figure 7 has both i and j degrees
equal to two. The overlapping structure contains both an entry to a parallel
structure and a parallel exit from a decision structure and it never results in a
deadlock. It is possible to transform an overlapping structure into a SWM as
shown in figure 7.

A thorough analysis of the causes of deadlock and multiple instances in work-
flow models (see e.g. [10]) leads to the conclusion that workflow models contain-
ing a parallel exit from a decision or an entry to a parallel structure will cause
a potential deadlock unless they form a part of an overlapping structure or the

From: CAiSE 2000, LNCS 1789 © Springer-Verlag Berlin Heidelberg 2000 249



A

B C

D E F G

I J

K

A

B C

D E F G

K

I J I J

Fig. 7. Overlapping structure

exit path from the decision does not join the main execution path. Hence we
conclude:

– An entry to a parallel structure can cause a potential deadlock unless it is
part of an overlapping structure (in which case it can be transformed as
shown).

– Similarly, a parallel exit from a decision structure can cause a potential
deadlock and cannot be transformed into a SWM unless it is part of an
overlapping structure or if the exit path does not join the main path (figure 8
illustrates the second case and the corresponding transformation).

The observations in this section have led us to the following conjecture:

Conjecture 1. Any arbitrary well-behaved workflow model that does not have
loops, when reduced, does not have a parallel exit from a parallel structure, and,
when reduced, does not have a synchronised entry into a parallel structure, can
be translated to a SWM.

Workflow C1 Workflow C2

A

B

C

E

F

D

a

~a

A

B

C

E

F

D
a

~a

F

Fig. 8. Exit path not joining main path in parallel exit from decision structure

4.3 Workflows with Parallelism and Loops

Finding out whether a workflow can deadlock or not in the context of loops is
much more complex and conjecture 1 cannot be automatically applied. To expose

B. Kiepuszewski, A.H.M. ter Hofstede and C.J. Bussler250



potential difficulties let us concentrate on what kind of loops we can encounter
in a workflow model once and-join and and-split constructs are used. Every cycle
in a graph has an entry point that can be either an or-join or an and-join and an
exit point that can be either an and-split or an or-split. Cycles without an entry
point cannot start and cycles without an exit point cannot terminate. The latter
case can be represented by a cycle with an exit point where the exit condition
on the or-split is set to false.

Most cycles will have an or-joins and or-splits as entry and exit points re-
spectively (note that there may be many exit and entry points in the cycle)
provided that the workflow is well-behaved. The transformation of such cycles
is straightforward using transformations as presented earlier in this section.

If the cycle has an and-join as an entry point, the workflow will most likely
deadlock. Examples of two workflows containing cycles with and-join as an entry-
point that do not deadlock are shown in figure 9.

A

C D

B

G

E F

H Workflow A

A

C D

B

G

E F

K

Workflow B

H I

J

~a

a

~a

a

Fig. 9. Two workflow models with arbitrary loops

Conversely, most workflows that have an and-split as an exit point will most
likely result in multiple instances. Our previous observation that any workflow
resulting in deadlock or multiple instances cannot be modelled as a structured
workflow certainly holds whether or not the workflow has loops. The major
impact of introducing loops though is that finding out if the workflow deadlocks
or results in multiple instances becomes a non-trivial task [6].

In rare cases when a cycle has an and-join as entry and an and-split as
exit point and the workflow involved does not deadlock nor result in multiple
instances, theorem 2 is helpful when determining if such a workflow can be
remodelled as a structured workflow. In figure 9 for example, workflow A can be
remodelled as a structured workflow whereas workflow B cannot. The equivalent
workflow to workflow A is shown in figure 10.

From: CAiSE 2000, LNCS 1789 © Springer-Verlag Berlin Heidelberg 2000 251



C

D

G

E

F

H

Workflow A

C

D

A

B

~a
~a

a
a

Fig. 10. Structured version of leftmost workflow of figure 9

4.4 Suitability of Transformations

The transformations presented earlier in this section are using two major tech-
niques: 1) node duplication and 2) use of auxiliary variables to control conditions.
In this section we will comment on the suitability of these solutions.

Suitability in general refers to the relation between concepts offered in the
specification technique and concepts required by the problem domain. There
are a number of aspects in a workflow specification, e.g. data and control flow,
and there are a number of ways in which the same underlying model can be
presented, e.g. data flow and control flow “view”. Yet, conceptual models, in
general, are required to convey a certain amount of information which should
not be split up, if the model is to be effective (this corresponds to the Cognitive
Sufficiency Principle promulgated by [2]). For example we believe that the model
that conveys all control flow interdependencies between activities in a control
view is a better model than the model that requires both the control flow view
and data flow view to understand relationships between activities. Consider for
example the three models from figure 3. In models B1 and B2 it is clear that
activitiesB andD are exclusive in the sense that they will never be both executed
in any process instance. On the other hand, in model B3, it seems that activity
D can follow the execution of activity B. Only close inspection of the or-splits’
predicates as well as implicit knowledge that activity B does not change the
value of variable Φ can lead to the conclusion that activities B and D are indeed
exclusive.

To retain the suitability of a certain workflow model, transformations should
avoid using auxiliary variables to control or-splits through predicates. Unfortu-
nately, this is not always possible.

Theorem 3. There are forms of unstructuredness that cannot be transformed
without the use of auxiliary variables.

Proof. Consider the workflow model of figure 5. This workflow model contains
multiple exits from a loop and as such is unstructured. Now consider another
workflow model equivalent to this model, which is structured. The first observa-
tion is that as workflow representations are finite, this structured workflow model
needs to contain at least one loop as the associated language is infinite. On one
such loop there has to be an occurrence of both activities A and C. Activities
B and F should be outside any loop (as we cannot use predicates anymore to
prevent paths containing these activities to be chosen if they are included in the

B. Kiepuszewski, A.H.M. ter Hofstede and C.J. Bussler252



body of the loop). Playing the bisimulation game yields that after each instance
of activity A one should be able to choose to perform either C or B. Since B
is outside any loop, there has to be an exit point from the loop sometime after
activity A (but before activity C, as one cannot use predicates that guarantee
that activity C will be skipped after the decision has been made to exit the
loop). Similarly, after each instance of activity C one should be able to choose to
perform either activity E or activity F . As F is outside any loop, we also have
an exit point from this loop after activity C (but before activity E). Hence, the
loop under consideration has at least two exit points and the workflow cannot
be structured. Contradiction. Hence a structured workflow equivalent, not using
auxiliary variables, to the workflow of figure 5 does not exist. ��

An alternative technique to transform arbitrary models into a structured form
requires node duplication. As has been proved earlier, it cannot be used for every
model, but even when it can be used, it is not without associated problems.
Consider once again the model in figure 3. If activity D in the left model is
followed by a large workflow specification, the transformation presented in the
right model would need to duplicate the whole workflow specification following
activity D. The resulting workflow will be almost twice as big as the original
and will therefore be more difficult to comprehend.

5 Restricted Loops

In this section we will focus on languages that impose restrictions on loops only.
Examples of such languages are MQSeries/Workflow and InConcert. The main
reason these languages impose restrictions on loops is that the introduction of
cycles in their workflow specifications would result in an immediate deadlock
because of their evaluation strategy. MQSeries/Workflow for example propagates
true and false tokens and its synchronizing or-join expects tokens from every
incoming branch before execution can resume; this results in deadlock if one
of these branches is dependent on execution of the or-join itself. Note that the
semantics of the synchronising or-join is different from the semantics of the
or-join as presented earlier in this paper, but that does not compromise the
obtained results. The approach chosen in MQSeries/Workflow and InConcert
guarantees that their specifications are well-behaved (for MQSeries/Workflow
this is formally proven in [5]).

Even though one may ask the question whether any arbitrary workflow spec-
ification can be translated to a specification that uses restricted loops only, the
more practical question would be to ask whether any well-behaved arbitrary
specification can be translated to a specification using restricted loops only. As
the next theorem shows, the answer to this question is negative.

Theorem 4. There are well-behaved arbitrary workflow specifications that can-
not be expressed as RLWFMs.

From: CAiSE 2000, LNCS 1789 © Springer-Verlag Berlin Heidelberg 2000 253



A

GH

B

C

ED

F

E1

E2

~a

~a

a

a

Fig. 11. Well-behaved arbitrary workflow

Proof. By showing that the workflow from figure 11 cannot be modelled as an
RLWFM. Observe that after completion of the initial activity and as long as α
evaluates to true, there will be at least two tokens in the corresponding Petri-
net. That means that in an equivalent workflow specification that has restricted
loops only, there have to be two concurrent restricted loops running in parallel
(if there was only one loop, the moment the exit condition was evaluated there
would be only one token in the corresponding Petri-net). One of the restricted
loops would have to contain activities A, B, C, and E, and the other loop would
have to contain activities D, F , G, and H. In the original workflow specification
A is causally dependent on D. That means that there must be a path between
A and D but that is impossible if A belongs to a different restricted loop than
D according to the definition of a restricted loop. ��
The careful reader may have noticed that in the workflow model of figure 11 data
is used to make sure that both loops are exited at the same time (otherwise dead-
lock would occur). It is an open question as to whether there exist well-behaved
arbitrary workflow specifications that do not contain decision dependencies and
that can not be transformed into an RLWFM.

6 Conclusions

The transformation of arbitrary workflow models to workflows in a structured
form is a necessity typically faced by either an application programmer who has
to implement a non-structured workflow specification in an environment sup-
porting structured specifications only (e.g. SAP R/3 workflow or Filenet Visual
Workflo), or by a business analyst who is trying to capture real-world require-
ments in a structured workflow specification technique (e.g. UML’s activity di-
agrams). In this paper we have shown that even simple transformations require
the use of auxiliary variables which results in the introduction of dependencies
between decisions in a workflow graph. As a result the transformed workflow
specification is typically more difficult to understand for end-users. Moreover,
some arbitrary specifications cannot be transformed at all to a structured form.
Hence in general, structured models are less expressive and less suitable than

B. Kiepuszewski, A.H.M. ter Hofstede and C.J. Bussler254



arbitrary models. For these reasons it is our contention that any high-end work-
flow management system should support the execution of arbitrary workflow
specifications. To some, this might seem to contrast with the common consensus
of avoiding GOTO statements (and using WHILE loops instead) in procedural
programming languages, but, as shown throughout this paper, the presence of
parallelism as well as the nature of workflow specifications provide the essential
difference. As a consequence, the good workflow modelling environment should
be supported by a powerful verification engine that would help process modellers
detect syntactical problems such as potential deadlock or unwanted multiple in-
stances. Using sophisticated verification tools for these purposes (incorporating
techniques from state-of-the-art Petri-net theory) seems feasible from a practical
perspective (see [1]).

References

1. W.M.P. van der Aalst and A.H.M. ter Hofstede. Verification of Workflow Task
Structures: A Petri-net-based Approach. Information Systems, 2000. (to appear).

2. A.P. Barros and A.H.M. ter Hofstede. Towards the construction of workflow-
suitable conceptual modelling techniques. Information Systems Journal, 8(4):313–
337, October 1998.

3. E. Best, R. Devillers, A. Kiehn, and L. Pomello. Concurrent bisimulations in Petri
nets. Acta Informatica, 28:231–254, 1991.

4. R.J. van Glabbeek. The linear time-branching time spectrum. In J.C.M. Baeten
and J.W. Klop, editors, Proceedings of CONCUR’90. Theories of Concurrency:
Unification and Extension, pages 278–297, Berlin, Germany, 1990. Springer-Verlag.

5. A.H.M. ter Hofstede and B. Kiepuszewski. Formal Analysis of Deadlock Behaviour
in Workflows. Technical report, Queensland University of Technology/Mincom,
Brisbane, Australia, April 1999. (submitted for publication).

6. A.H.M. ter Hofstede and M.E. Orlowska. On the Complexity of Some Verification
Problems in Process Control Specifications. Computer Journal, 42(5):349–359,
1999.

7. S. Jablonski and C. Bussler. Workflow Management: Modeling Concepts, Archi-
tecture, and Implementation. International Thomson Computer Press, London,
United Kingdom, 1996.

8. P. Jančar. Decidability Questions for Bismilarity of Petri Nets and Some Related
Problems. In P. Enjalbert, E.W. Mayr, and K.W. Wagner, editors, STACS 94,
11th Annual Symposium on Theoretical Aspects of Computer Science, volume 775
of Lecture Notes in Computer Science, pages 581–592, Caen, France, February
1994. Springer-Verlag.

9. G. Oulsnam. Unravelling Unstructured Programs. Computer Journal, 25(3):379–
387, 1982.

10. W. Sadiq and M.E. Orlowska. Applying Graph Reduction Techniques for Iden-
tifying Structural Conflicts in Process Models. In Proceedings of the 11th Conf
on Advanced Information Systems Engineering (CAiSE’99), pages 195–209, Hilde-
berg, Germany, June 1999.

11. M. H. Williams. Generating structured flow diagrams: the nature of unstructured-
ness. Computer Journal, 20(1):45–50, 1977.

From: CAiSE 2000, LNCS 1789 © Springer-Verlag Berlin Heidelberg 2000 255


	On Structured Workflow Modelling
	1 Introduction
	2 Structured Workflows: Definitions
	3 Equivalence in the Context of Control Flow
	4 From Arbitrary Workflow Models to SWMs
	4.1 Simple Workflows without Parallelism
	4.2 Workflows with Parallelism but without Loops
	4.3 Workflows with Parallelism and Loops
	4.4 Suitability of Transformations

	5 Restricted Loops
	6 Conclusions
	References


