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Abstract. In general, the modeling and analysis of algorithmic systems involve 
discrete structural elements. However, the modeling and analysis of recursive 
algorithmic systems can be done in the form of differential equation following 
control theoretic approaches. In this paper, the modeling and analysis of 
generalized algorithmic systems are proposed based on heuristics along with z-
domain formulation in order to determine the stability of the systems. The 
recursive algorithmic systems are analyzed in the form of differential equation 
for asymptotic analysis. The biplane structure is employed for determining the 
boundary of the recursions, stability and, oscillatory behaviour. This paper 
illustrates that biplane structural model can compute the convergence of 
complex recursive algorithmic systems through periodic perturbation.  

Keywords: recursive algorithms, z-domain, stochastic, control theory, 
perturbation.  

1 Introduction 

The algorithm design and analysis are the fundamental aspects of any computing 
systems. The modeling and analysis of algorithms provide an analytical insight along 
with high-level and precise description of the functionalities of systems [3, 4, 6]. In 
general, the recursive algorithms are widely employed in many fields including 
computer-controlled and automated systems [10]. Traditionally, the algorithms are 
analyzed within the discrete time-domain paying attention to the complexity 
measures. However, the convergence property and the stability analysis of the 
algorithms are two important aspects of any algorithmic systems [10]. In case of 
recursive algorithms, the convergence analysis is often approximated case by case. 
The asymptotic behaviour of algorithms is difficult to formulate with generalization 
[4, 10]. The asymptotic behaviour of stochastic recursive algorithms is formulated by 
constructing models [10], however, such models fail to analyze the stability of the 
algorithm in continuous time domain throughout the execution. This paper argues that 
the stability analysis of any algorithm can be performed within the frequency-domain 
by considering the algorithms as functional building blocks having different 
configurations. In order to perform generalized frequency-domain analysis, the 
algorithms are required to be modeled and transformed following the algebraic 
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constructs. Furthermore, this paper proposes that boundary of execution of recursive 
algorithms can be analyzed following biplane structure and the stability of the 
algorithms can be observed in the presence of stochastic input by following the traces 
in the biplane structure bounding the algorithms. The proposed analytical models are 
generalized without any specific assumptions about the systems and thus, are 
applicable to wide array of algorithmic systems. This paper illustrates the mechanism 
to construct analytical model of any complex algorithmic system and methods to 
analyze the stability of the system under consideration. The rest of the paper is 
organized as follows. Section 2 describes related work. Section 3 illustrates the 
modeling and analysis of the algorithms in frequency-domains and their stability 
analysis using biplane structure. Section 4 and 5 present discussion and conclusion, 
respectively. 

2 Related Work 

The modeling of computer systems and algorithms is useful to gain an insight to the 
designs as well as to analyze the inherent properties of the systems [2, 3, 4, 6, 7, 10]. 
For example, the fusion of models of artificial neural network (ANN) and fuzzy 
inference systems (FIS) are employed in many complex computing systems. The 
individual models of the ANN and FIS are constructed and their interactions are 
analyzed in order to establish a set of advantages and disadvantages overcoming the 
complexities of these systems [1]. The other successful applications of modeling 
techniques to the distributed algorithms and the distributed database in view of Petri 
Nets are represented in [2, 6]. It is illustrated how Petri Nets can be employed to 
model and analyze complex distributed computing algorithms [2]. However, in case 
of distributed database, the concurrency control algorithms are modeled by 
formulating extended place/transition net (EPTN) [6]. The EPTN formalism is a 
derivative of the Petri Nets. In structured peer-to-peer (P2P) networks, the random-
walks mechanism is used to implement searching of information in minimum time. 
The model of searching by random-walks in P2P network is constructed to obtain 
analytical expressions representing performance metrics [3]. Following the model, an 
equation-based adaptive search in P2P network is presented. The analysis of 
probabilistic as well as real-time behaviour and the correctness of execution are the 
challenges of systems involving wireless sensor networks (WSN). Researchers have 
proposed the modeling techniques of WSN to analyze the behaviour, correctness and 
performance of WSN by using Real-Time Maude [4]. The Real-Time Maude model 
provides an expressive tool to perform reachability analysis and the checking of 
temporal logic in WSN systems. On the other hand, the modeling and analysis of 
hand-off algorithms for cellular communication network are constructed by 
employing various modeling formalisms [5, 8]. The modeling of fast hand-off 
algorithms for microcellular network is derived by using the local averaging method 
[5]. The performance metrics of the fast hand-off algorithms and the necessary 
conditions of cellular structures are formulated by using the model construction. In 
another approach, the modeling technique is employed to evaluate the hand-off 
algorithms for cellular network [8]. In this case, the model is constructed based on the 
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estimation of Wrong Decision Probability (WDP) and the hand-off probability [8]. In 
the image processing systems, the modeling and analysis of signals are performed by 
designing the sliding window algorithms. Researchers have proposed the Windowed 
Synchronous Data Flow (WSDF) model to analyze the sliding window algorithms [7]. 
The WSDF is constructed as a static model and a WSDF-balance equation is derived.    

The analysis of convergence of any algorithm is an important phenomenon [9, 10]. 
The convergence analysis of canonical genetic algorithms is analyzed by using 
modeling techniques based on homogeneous finite Markov chain [9]. The constructed 
model illustrates the impossibility of the convergence of canonical genetic algorithms 
towards global optima. The model is discussed with respect to the schema theorem. 
On the other hand, the modeling and analysis of generalized stochastic recursive 
algorithms are performed using heuristics [10]. The heuristic model explains the 
asymptotic behaviour of stochastic recursive algorithms. However, the model does 
not perform the stability analysis of the recursive algorithms in the presence of 
stochastic input.  

3 Models of Algorithms in z-domain 

The z-domain analysis is widely used to analyze the dynamics and stability of the 
discrete systems. The computing algorithms can be modeled in z-domain in order to 
construct heuristic analysis as well as stability analysis of the various algorithmic 
models in the view of the transfer functions. 

3.1 Singular Model 

In the singular model, the algorithm is considered as a transfer function with single 
input and single output (SISO) mechanism. The schematic representation of the 
singular model is presented in Fig. 1. 

 

Fig. 1. Schematic representation of singular model 

In SISO model, the algorithm A1 acts as a discrete transfer function for instances  
k = 0, 1, 2, 3, …..N and transfers the discrete input f(k) into corresponding discrete 
output v(k). Let, a non-commutative composition of any two functions x and y is 
described as (xοy). Thus, the dynamics of the singular algorithmic model can  
be composed as, v(k) = A1(f(k)) = (A1οf)(k). Let, α1 = (A1οf), hence in z-domain  
v(z) = Σk = 0, ∞ α1(k).z-k = α1(z). The algorithmic transfer function is stable if α1(z) is a 
monotonically decreasing function for sufficiently large k. 
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3.2 Chained Model 

In the chained model of the algorithmic system, two independent algorithms are put in 
series as illustrated in Fig. 2. 

 

Fig. 2. Schematic representation of chained model 

In the chained model, two algorithms act as independent transfer functions 
transforming discrete input to discrete output at every instant k. Thus, the overall 
transfer function of chained model can be presented as, v(k) = (A2οα1)(k) = α21(k). 
Hence, in the z-domain v(z) = α21(z) and the chained algorithms are stable if α21(z) is 
monotonically decreasing for sufficiently large k. 

3.3 Parallel Models 

In case of parallel model, two (or more) independent algorithms execute in parallel on 
a single set of input at every instant k and, the final output of the system is composed 
by combining the individual outputs of the algorithms. A 2-algorithms parallel model 
is illustrated in Fig. 3. 

 

Fig. 3. Schematic representation of 2-algorithms parallel model 

So, in the 2-algorithms parallel model, the output is computed as, v(k) = (A1οf)(k) + 
(A2οf)(k) = α1(k) + α2(k). Hence, in the z-domain the discrete values of the output can 
be presented as, v(z) = α1(z) + α2(z). This indicates that a parallel algorithmic system 
is stable if either the individual algorithmic transfer functions are monotonically 
decreasing or the combined transfer function of the system is converging for 
sufficiently large k. On the other hand, the 2-algorithms parallel model can be further 
extended to parallel-series model by adding another algorithm in series as illustrated 
in Fig. 4. 
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Fig. 4. Schematic representation of 2-algorithms parallel-series model 

However, in this case algorithm A3 transforms the output of parallel computation 
in deterministic execution at discrete instances k. Hence, the final output of the 
system is, vf(k) = A3(α1(k) + α2(k)). As, v(k) = α1(k) + α2(k), thus vf(k) = α3(k), where 
α3 = (A3οv) and vf(z) = α3(z). The parallel-series model is stable if α3(z) is a 
converging function. This indicates that, vf(z) can be stable even if v(z) is diverging 
function provided A3(v(z)) is a monotonically converging function. 

3.4 Recursion with Stochastic Observation 

The recursive algorithms are widely used in computing systems. The fundamental 
aspect of any computing system involving the recursive algorithm is the existence of a 
feedback path as illustrated in Fig. 5. In the feedback algorithmic model, the feedback 
path is positive and the feedback gain can be either unity or can have any arbitrary 
transfer-gain. 

 

Fig. 5. Schematic representation of recursive model 

In pure recursive computing model, the feedback path will have unit gain and the 
system will be controlled by external input f(k) at k = 0, whereas the further input 
series to the system will change to v(k) due to positive feedback for k > 0, where  
f(k > 0) = 0. The behaviour of such system can be analyzed by using two formalisms 
such as, heuristics and z-domain analysis techniques.  

3.4.1   Heuristics Analysis 
The generalized difference equation of the recursive algorithmic system is given as, 
v(k) = A1(A2(v(k-1)) + f(k)). In case of positive feedback with unit gain, the closed-
loop difference equation controlling the system is given as,  

 
                                 v(k) = A1(v(k-1) + f(k))    (1)  
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Equation (1) represents a recursive algorithm with stochastic input f(k), where A1 is a 
deterministic function having a set of regularity conditions. The function f(k) can be 
generalized by using some function y as,  

 
                                 f(k) = y(v(k-1), f(k-1), e(k))    (2)  

 
where, e(k) is an arbitrary error in the system at the execution instant k.  

The stability of whole system depends on the stability of equation (2). If f(k) is 
exponentially stable within a small neighborhood around k after some point  
b (k >> b), then [10],  

 
                              B(v(b-1), f(b)) = h(v(k)) + r(b)    (3) 

 
where, B(v(k-1), f(k)) = A1(v(k-1) + f(k)), h(v( )) = EB(v,⎯f(b)) and r(b) is a random 
variable with zero mean.  Thus, equation (1) can be represented as,  

 
                               v(k) = B(v(k-1), f(k))     (4) 

 
Hence, equation (4) can be approximately evaluated between k and k+a (a > 0) as,  

 
                             v(k+a) = v(k) + Σj = k+1, k+a B(v(j-1), f(j))  
                                        ≈ v(k) + Σj = k+1, k+a h(v(k)) + Σj = k+1, k+a r(j)  

                                     ≈ v(k) + a h(v(k))     (5) 
 

In equation (5), the random variable is eliminated as it has the zero mean. Hence, the 
differential equation at point a is given by,  

 
                                   lima→0[v(k+a) – v(k)]/a = dv(k)/da = h(v(k))  (6) 

 
Thus, the asymptotic properties of the equation (1) can be further derived from 
equation (6) in the form of derivative for any specific recursive algorithmic system.    

3.4.2   Stability in z-domain 
For the stability analysis in z-domain, it is assumed that A1(k) represents the gain 
factor of A1 at k-th instant of execution of the algorithm. Now, v(k) = (η(v(k-1)) + 
f(k))A1(k), where f(k) is a singular external input to A1 defined as, f(k) = m if k = 0 
and, f(k) = 0 otherwise. Hence, v(k) = ηA1(k)v(k-1) + f(k)A1(k). Initially at k = 0, v(0) 
= mA1(0). Hence, v(k) = ηA1(k)v(k-1) + mA1(0). If the system is purely recursive, 
then feedback gain is unity (η = 1) and, v(k) = A1(k)v(k-1) + mA1(0). Thus, in the  
z-domain the system will be represented as, v(z) = mA1(0)z/(z-1) + Σk = 2, ∞ A1(k) 
v(k-1)z-k. Deriving further one can get, 
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            v(z) = mA1(0)z/(z-1) + {A1(1)v(0)/z + A1(2) v(1)/z2 + ……..}  
                   = mA1(0)z/(z-1) + mA1(0) Σk = 1, ∞ A1(k) z-k +  
                       Σk = 2, ∞ {Πj = k, k-1 A1(j)}v(k-2) z-k   

                = mA1(0)z/(z-1) + mA1(0)[A1(z) – A1(0)] + Λz   (7) 
 

where, Λz = Σk = 2, ∞ {Πj = k, k-1 A1(j)}v(k-2) z-k.  
The system will be stable if Λz will minimize or converge for sufficiently large k.  

3.5 Functional Properties 

The functional properties of a generalized recursive algorithm with unit positive 
feedback analyze the stability of the overall system in the presence of oscillation, if 
any. In addition, the concept of biplane symmetry can be used to analyze the bounds 
of a recursive algorithmic system. The generalized recursive algorithmic model with 
positive transfer-gain is represented as v(k) = A1(A2(v(k-1)) + f(k)). Let, (A1οA2) = δ 
and f(k) is a singular external input to algorithm defined as, f(k) = m if k = 0 and, f(k) 
= 0 otherwise. Thus, the initial output value is v(0) = A1(m) and v(k) = δk(d), where d 
= A1(m). Now, if A2 is a unit gain factor, then the system reduces to a pure recursive 
algorithm such that, v(k) = A1

k(d), k > 0. The stability and behavioral properties of the 
recursive algorithmic system can be further analyzed as follows. 

3.5.1   Stability and Convergence 
Let, ƒ: R → R is a stochastic function defined on space R  such that, δ(d) ∈ ƒ(R) ⊂ R  
and | ƒ(R) | > 1. Now, for k > 0, the δk(d) ∈ ƒk(R) such that, either ƒk(R) ∩ ƒk+1(R) = 
{φ} or ƒk(R) ∩ ƒk+1(R) ≠ {φ} depending on the dynamics. A system is bounded if 
ƒk+1(R) ⊆ ƒk(R). The boundary of δk(d) is Δk = ∩i = 1, k ƒi(R). A ε-cut of ƒk(R) is defined 
as ƒkε ⊂ ƒk(R) such that, ∀a ∈ ƒkε the following condition is satisfied: ε ∈ ƒk(R) and  
a > ε. An instantaneous remainder of ƒk(R) is given by, ⎯ƒkε = (ƒk(R) - ƒkε). A system 
is stable at point N if the boundary ΔN ≠ {φ}, where 1 ≤ | ΔN | ≤ w and w << N. A 
converging system is a stable system at recursion level N with | ΔN | = 1.  

3.5.2   Divergence in Systems 
Let, in a system δk-1(d) ∈ ƒ(k-1)ε whereas δk(d) ∈ ƒkε and δk+1(d) ∈ ƒ(k+1)ε such that,  δk-

1(d) < δk(d) < δk+1(d). The system is divergent if ƒ(k-1)ε ∩ ƒkε ∩ ƒ(k+1)ε = {φ}. A 
divergent system is unstable if the limit of recursion k >> 1. 

3.5.3   Biplane Symmetries 
Let, in a system for k ≥ 1, ƒk(R) = ƒ(R) and, ƒ*: R → R  such that (ƒ*)k(R) = ƒ*(R) 
where, ƒ(R) ∩ ƒ*(R) = {φ}. Furthermore, ƒ*ε is the ε-cut of ƒ*(R) and ƒε is the ε-cut of 
ƒ(R), whereas the corresponding remainders are ⎯ƒ*ε and⎯ƒε , respectively. Let, δp(d) 
∈ ƒ(R) for p = 1, 3, 5, ….. and, δq(d) ∈ ƒ*(R) for q = p + 1. Now, if xp+j = δp+j(d) and 
yq+j =  δq+j(d), j = 0, 2, 4, 6……., then following set of predicates can occur in the 
system,  
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            P1  [(xp ∈ ⎯ƒε) ∧ (xp+2 ∈ ƒ*ε) ∧ (xp+4 ∈ ⎯ƒε) ∧ …………..]  
            P2  [(xp ∈ ⎯ƒε) ∧ (xp+2 ∈ ƒε) ∧ (xp+4 ∈ ⎯ƒε) ∧ ……………] 
            P3  [(yq ∈ ⎯ƒ*ε) ∧ (yq+2 ∈ ƒ*ε) ∧ (yq+4 ∈ ⎯ƒ*ε) ∧ …………]   
            P4  (xp+j ∈ ⎯ƒε) 
            P5  (xp+j ∈ ƒε) 
            P6  (yq+j ∈ ⎯ƒ*ε) 
            P7  (yq+j ∈ ƒ*ε) 
 

The possible combinatorial distributions of predicates in a recursive algorithmic 
system are, P13, P23, P46, P47, P56, P57 where, Pab = (Pa ∧ Pb). If distributions P46 and 
P57 are valid in a recursive algorithmic system, then it is a biplane-symmetric 
algorithmic system. Otherwise, if the distributions P47 and P56 are valid in a system, 
then the system is a biplane-asymmetric system. Furthermore, if the distribution P23 is 
satisfied in a recursive algorithmic system, then the system is having dual-symmetry 
between biplanes ƒ and ƒ* and the system is represented as, [ƒ/ƒ*]. On the other hand, 
if the distribution P13 is satisfied in a recursive algorithmic system, then the system is 
called Bounded-Periodic-Perturbed (BPP) system represented as (ƒ*ε|. In this case, the 
system is bounded within ƒ and ƒ* planes, however periodic perturbations occur 
within the domain ƒ*ε. 

3.5.4   Oscillation in Recursive Systems 
In a biplane-symmetric system if the following properties hold, then it is called the 
biplane-symmetric oscillatory recursive system, ∀p, q, | xp | = | yq | = | xp+j | = | yq+j | 
and xp +  yq = xp+j +  yq+j = 0. However, in a [ƒ/ƒ*] system if the following conditions 
hold, then the system is called asymmetrically oscillating between ƒ and ƒ* planes for 
values of s (s = 0, 4, 6……), ∀p, q, | xp+s | = | yq+s |, | xp+s+2 | = | yq+s+2 | and xp+s + yq+s = 
0, xp+s+2 + yq+s+2 = 0. If a recursive algorithmic system is oscillatory, then it is a 
deterministic but non-converging system.  

A recursive algorithmic system is deterministic and converging if there exists a 
constant C such that, p = 1, N (xp+yp+1) = p = 1, M (xp+yp+1) = C, where N ≠ M. This 
indicates that, a deterministic and converging recursive algorithmic system should be 
in damped oscillation (stable) and should contain idempotency. On the other hand, an 
oscillatory non-converging recursive algorithmic system is non-idempotent requiring 
strict consistency conditions.  

4 Discussion 

Traditionally, the recursive algorithmic systems are analyzed by using heuristics as 
well as asymptotic methods following difference equation. Often, the differential 
equation is formulated in place of difference equation in order to conduct analysis in 
continuous plane avoiding the complexity. However, the generalized z-domain 
analysis of algorithmic systems in a discrete plane offers an insight towards the 
understanding of the overall stability of the algorithmic systems.  
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The perturbation analysis of a system using biplane structure captures the inherent 
oscillation in the system. The determinism of convergence of the recursive 
algorithmic systems with stochastic input can be computed using the symmetry of 
biplane structure. As a result, the idempotent property of the recursive algorithmic 
systems becomes easily verifiable in case of complex systems. Thus, depending upon 
the idempotent property of the complex recursive algorithmic systems, the appropriate 
consistency conditions can be designed.  

5 Conclusion 

The analysis of stability and behaviour of any algorithmic systems can be 
accomplished by modeling such systems as a block having transfer functional 
properties. The z-domain analysis of algorithmic models captures the overall response 
trajectory and the stability of the algorithmic systems. The complex recursive 
algorithmic systems can be analyzed by modeling in view of z-domain and biplane 
structure. The heuristics and z-domain models of a generalized recursive algorithmic 
system with stochastic input reduce the overall system to the deferential equation 
presenting the dynamic behaviour of the recursive algorithm. On the other hand, the 
biplane structure determines the boundaries of the recursive algorithmic systems. In 
addition, the biplane structural model of recursive algorithmic systems serves as a tool 
to analyze the oscillatory nature of the recursions as well as the stability of the 
algorithmic systems. The biplane structural model helps to achieve periodic 
perturbation into the system dynamics and determining convergence conditions, 
which enables to design the appropriate consistency conditions.  
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