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Abstract. Time-space maps show travel time as distances on a map. We discuss
the case of time-space maps with a single center; here the travel times from a
single source location to a number of destinations are shown by their distances.
To accomplish this while maintaining recognizability, the input map must be de-
formed in a suitable manner. We present three different methods and analyze them
experimentally.

1 Introduction

Thematic maps are ways to visualize geographic data in alternative ways. For example,
metro maps show connectivity of metro lines while abstracting from geographic real-
ity (correct location) [11], and cartograms may show countries by using size (area) to
depict total population [15]. Cartograms come in different types: contiguous area [7,9],
non-contiguous area [12], rectangular [10], rectilinear [4], circle [6], and linear car-
tograms [5]. Except for the linear cartogram, all types use the area to show a variable of
interest (often population). Linear cartograms do not try to get areas of regions correct,
but distances between locations. Distance could represent travel time or travel cost, or
any other variable that typically increases with distance. All types of cartogram deform
geographic space to achieve the visualization, but attempt to keep correct locations or
relative locations in some way.

Fig. 1. Time-space map

Time-space maps are linear cartograms
where distances correspond to travel time
[1,8,14]. They are also called distance-by-
time cartograms. Two types of time-space
maps exist: centered and non-centered. The
centered version has one specific location
(city) as the center, and the map shows
travel times from this city to other cities
by distances. Its visualization can be en-
hanced by circles depicting increments of
e.g. 30 min. travel time, see Fig. 1. The
non-centered version shows travel times be-
tween all pairs of cities by distances. The
centered version can be error-free, but non-
centered time-space maps can seldom be
error-free: four points with six pairwise dis-
tances can typically not be embedded in the
plane.
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In this paper we focus on centered time-space maps. Let c be the central point and
let S be a set of points whose travel time from c is given. Then the relative distances
from all points in S to c are known on the time-space map. We can also maintain the
direction from c to each point in S. This specifies the precise location of each point of
S on the time-space map after choosing a global conversion that states what distance
from c represents how much travel time. Fig. 1 has radial segments to show where cities
originated in the input map.

Fig. 2. Collapse of the grey triangles
in the Delaunay triangulation when its
vertices move

In order to ensure that a deformation does not
put cities outside the borders of a country, it is
common to define a homeomorphism from the
plane to the plane. This homeomorphism maps
the points with known travel time to the correct
location, and defines where all other points in the
region are mapped. One way to define such home-
omorphisms is by triangulations [13]. The vertices
are the points ofS, which move radially to the cor-
rect distance from c. The homeomorphism defines
any point inside a triangle pqr to be mapped inside
the deformed triangle using its barycentric coordi-
nates. This defines a continuous mapping over the
whole plane, but it may not be a homeomorphism:
the deformation may collapse triangles, and some parts of the time-space map become
multiply-covered. See Fig. 2 for an example.

Our work is related to embedding graphs with specified edge lengths, but we are
concerned with star graphs only, start out with an embedding, and need to extend the
implied transformation to the whole plane.

We present three triangulation-based methods to compute a homeomorphism that
gives a correct time-space map in Section 2. Then we show the results of an imple-
mentation using data based on train travel time between stations in the Netherlands in
Section 3. We also quantify the results by defining angle and distance deformation and
applying it to the output of our implementations.

2 Three Methods for Computing Time-Space Maps

While a triangulation of the points of S can define a mapping for all points inside
the convex hull of S, we typically want to deform the borders of a region as well.
When coastal cities are well reachable from c, the coastline near these cities should also
deform towards c. This means that we need to extrapolate the deformation function.
This is done by a bounding box B that is sufficiently much larger than the convex hull
of S∪{c}. The bounding box has extra vertices that are used in the triangulation as well,
but their deformation is zero (they don’t move). This will mean that the deformation dies
out gradually, close to the bounding box. All three methods described in this section use
bounding boxes.

Radial Triangulation. We have seen that the Delaunay triangulation can lead to over-
lap and hence may not give a homeomorphism. But we can triangulate S, c and the
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bounding box vertices such that any travel time specification gives a homeomorphism.
The idea is to triangulate “as radial as possible”.

Assume no two points of S are at the same angle from c.
Add edges between the points of S in angular order around
c, forming a polygon. Add an edge cp for any p ∈ S. Extend
this edge outward to the bounding box. Add a new vertex p′

on B and an extra edge pp′. Then triangulate the remaining
non-triangular faces.

It is easy to see that any travel time specification of the
points of S gives homeomorphism (assuming the global scaling factor is chosen such
that all points of S remain inside B); in this sense the triangulation is universal. It is
also easy to see that the efficiency of computing the deformation is O(n log n) time,
if S has n points. To compute a time-space map, we need to deform all map features
(borders, rivers, lakes, etc.). Assuming we transform the m vertices defining the map
features, we can compute the time-space map in O((n + m) logn) time using planar
point location. So the method is correct and efficient, but later we will see that the poor
shapes of the triangles lead to poor time-space maps.

Quasi-Delaunay Triangulation. Since the radial triangulation has poorly-shaped tri-
angles, but the Delaunay triangulation may not give a homeomorphism, we can try to
find a triangulation that is “as much Delaunay as possible” while ensuring a homeomor-
phism for the given travel time data. If we denote by S(0) the points of S in the input
and by S(1) the points of S at their output location, we can imagine the process of mov-
ing the points of S(0) to S(1). Let S(12 ) denote the locations half-way: we will attempt
to make S(12 ) as Delaunay as possible, but its structure should be valid for S(z) for all
0 ≤ z ≤ 1. The concept is akin to joint or compatible triangulations (see e.g. [3,13]):

We begin with the radial triangulation of S(12 ). Then we incrementally flip edges if
two conditions hold: (i) the flip gives two triangles that do not collapse when transform-
ing S(0) into S(1); (ii) the flip is a standard Lawson flip in S(12 ). To determine whether
a collapse takes place, we parametrize the positions of the four points involved with a
parameter z that increases from 0 to 1. The expression for a collapse (collinearity) is
quadratic in z; if it has solutions in [0, 1], then the flip will not be done.

The order in which flips take place is important. Suppose that pq is an edge that we
may flip to rs. If s lies inside the circumcircle of pqr, then it is a Lawson flip, and the
closer s lies to the center of the circumcircle of pqr, the more eager we are to flip pq.
The flip priority is based on this distance. We continue flipping in decreasing order of
priority until no more flips satisfy (i) and (ii).

The algorithm to construct the deformation takes O(n2 logn) time because there
can be at most quadratically many flips until a Delaunay triangulation is obtained. The
logarithmic factor comes from heap operations based on the priority. The total time-
space map construction is O((n2 +m) logn).

Dynamic Delaunay Triangulation. It is not necessary to use one single triangulation
to define the homeomorphism. We present a method that maintains the Delaunay trian-
gulation for moving points, starting with S(0) and ending with S(1). Each point moves
with constant speed on its ray. When the movement causes an empty-circumcircle test to
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be violated, we flip and continue with the new Delaunay triangulation that is valid until
the next empty-circumcircle violation. It is known that the process causes O(n3 ·2α(n))
flips [2],1 although a tight bound for the maximum number of flips for moving points is
not known.2

To transform a map feature vertex through the sequence of triangulations that make
the homeomorphism, we simply trace the vertex using its barycentric coordinates. When
a flip puts it in a new triangle, we compute its barycentric coordinates with respect to
the new triangle and trace it further.

Computing the deformation takes O(n3 ·2α(n) logn) time, and tracing the m vertices
of map features through the deformation takes O(n3 · 2α(n)m) time.

3 Experimental Results

We implemented the three methods to determine how the results compare visually. We
also defined two deformation measures to quantify which of the methods score better.
Thirdly, the implementation gives an indication of how many flips are done in the dy-
namic Delaunay method. An input map and the time-space maps produced by the three
methods is shown in Fig. 3.

Data and Output Maps. Our data set consists of the country border of the Netherlands
from the Dutch cadastre, the Dutch train schedule, 68 InterCity stations of the Dutch
Railways (NS), and 204 regular stations. We took twelve InterCity stations spread over
the country as central location, and computed the time-space map for the InterCity
stations only as destinations, or for all 271 other stations. This resulted in 72 time-space
maps. Visually, it appears that the radial method has many artifacts, the quasi-Delaunay
method has fewer artifacts, and the dynamic Delaunay method has some artifacts, but
these can always be explained from the input data. The dynamic Delaunay method
always gives the visually best maps. The maps appear good even for the situation with
all 272 train stations, a larger and more difficult scenario than reported before in the
literature [1,8,14].

Deformation Measures. The distance deformation (DD) captures how long a straight
line segment on the input map becomes in the output map (where it will not be straight
anymore). We sampled 500 pairs of points, each giving a line segment with a certain
length on the input map. The line segment becomes a polygonal line on the time-space
map, which also has a length. The ratio of the latter length and the former length is the
distance deformation, and we compute the average of the ratios. The input line segment
lengths are in five classes: 0–10 km, ..., 40–50 km, and there are 100 pairs in each class.

The angle deformation (AD) definition is based on a triple of randomly chosen points
pqr on the input map, where the angle �pqr = 60◦. We transform pqr and measure
the same angle on the time-space map. The absolute difference in angle is the angle
distortion. We only take triples of points that are relatively close together (at most 10
km) to respect the fact that angle deformation should be a local measure. We average
over 500 triples.

1 α(n) is the extremely slowly growing functional inverse of Ackermann’s function.
2 The lower bound is Ω(n2), which also holds for radially moving points.
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input radial

quasi-Delaunay dynamic Delaunay

Fig. 3. Input map and output time-space maps produced by the three different methods. Amster-
dam is the center, distances to other InterCity stations are used, and the circles correspond to 30
min., 60 min., 90 min., etc., travel time.

Table 1. Average deformations for the three methods (standard deviation in brackets). The num-
ber of flips shows either the number of flips to get from radial to quasi-Delaunay, or the flips to
maintain the Delaunay triangulation during movement.

Avg. DD in km Avg. AD in deg. no. of flips

InterCity, radial 58.8 (24.6) 37.0 (4.45) N/A
InterCity, quasi-D 27.3 (24.4) 26.3 (5.02) 468 (56)
InterCity, dyn-D 7.0 (2.88) 19.6 (4.16) 130 (56)

All stations, radial 217.1 (66.4) 45.6 (3.06) N/A
All stations, quasi-D 74.4 (49.1) 36.5 (2.16) 1572 (154)
All stations, dyn-D 10.2 (2.5) 25.3 (2.74) 921 (200)
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Table 1 shows clearly that the dynamic Delaunay method produces the best results.
For example, line segment of average length 25 km on the InterCity stations only data
set becomes on the average about 7 km longer on the time space-map, whereas this
is 27.3 km for Quasi-Delaunay and 58.8 km for radial triangulations. The average an-
gle deformation is also smaller for the dynamic Delaunay method. These quantitative
results support the visual findings that time-space maps produced by the dynamic De-
launay method are best.
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