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Abstract. Given a set of points, a covering path is a directed polygonal
path that visits all the points. We show that for any n points in the plane,
there exists a (possibly self-crossing) covering path consisting of n/2 +
O(n/ log n) straight line segments. If no three points are collinear, any
covering path (self-crossing or non-crossing) needs at least n/2 segments.
If the path is required to be non-crossing, n − 1 straight line segments
obviously suffice and we exhibit n-element point sets which require at
least 5n/9 − O(1) segments in any such path. Further, we show that
computing a non-crossing covering path for n points in the plane requires
Ω(n log n) time in the worst case.

1 Introduction

In this paper we study polygonal paths visiting a finite set of points in general
position (we say that a point set is in general position if no three points are
collinear). A spanning path is a directed Hamiltonian path drawn with straight
line edges. Each edge in the path connects two of the points, so a spanning
path can only turn at one of the given points. Every spanning path of a set of n
points in general position consists of n−1 segments. A covering path is a directed
polygonal path in the plane that visits all the points. A covering path can make
a turn at any point, i.e., either at one of the given points or at a (chosen) Steiner
point. Obviously, a spanning path for a point set S is also a covering path for
S. If no three points are collinear, every covering path consists of at least n/2
segments. Given a set of points, a minimum-link covering path is one with the
smallest number of segments (links).

We study the following two questions concerning covering paths posed by
Morić [20] and (independently) B. Keszegh, both motivated by a problem about
separating a red and blue set of points [13]. A recent consideration of these
questions in retrospect appears in [9].

1. What is the minimum number, f(n), such that any set of n points in the
plane, no 3 collinear, can be covered by a (possibly self-intersecting) polyg-
onal path with f(n) segments?
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2. What is the minimum number, g(n), such that any set of n points in the
plane, no 3 collinear, can be covered by a non-crossing polygonal path with
g(n) segments?

Since no three points are collinear, each segment of a covering path contains
at most two points, thus n/2 is a trivial lower bound for both f(n) and g(n).
Morić conjectured that the answer to the first problem is n(1 + o(1))/2 while
the answer to the second is n(1 + o(1)). He only mentioned trivial bounds, n/2
as a lower bound, and respectively n− 1 as an upper bound for both problems.
We start by confirming his first conjecture1.

Theorem 1. For any set of n points in the plane there exists a (possibly self-
crossing) path consisting of n/2 + O(n/ logn) line segments that visits all the
points. Consequently, n/2 ≤ f(n) ≤ n/2 + O(n/ log n). A covering path with
n/2 +O(n/ logn) segments can be computed in O(n1+ε) time, for any ε > 0.

As expected, the non-crossing property is much harder to deal with. For any set
of n points in the plane, trivially there exists a non-crossing path consisting of
n− 1 straight line segments that visits all the points, e.g., by sorting the points
along some direction, and then connecting them in this order. On the other hand,
again trivially, any such covering path requires at least �n/2� segments, since no
three points are collinear. We provide the first non-trivial lower bound for g(n).

Theorem 2. There exist n-element point sets in general position that require
at least 5

9 (n − 4) segments in any non-crossing covering path. Consequently,
5
9 (n− 4) ≤ g(n) ≤ n− 1.

Bicolored Variant. Let S be a bicolored set of n points, with S = B∪R, where
B and R are the set of blue and red points, respectively. Two covering paths, πR

and πB , one for the red and one for the blue points, are mutually non-crossing
if each of πR and πB is non-crossing, and moreover, πR and πB do not cross
(intersect) each other. A natural extension of the monochromatic non-crossing
covering path problem is: What is the minimum number k(n), such that any
bicolored set of n points in the plane, can be covered by two monochromatic
mutually non-crossing polygonal paths with k(n) segments in total? Using the
construction in the proof of Theorem 2 we obtain the following corollary.

Corollary 1. Given a bicolored set of n points, one can find two mutually non-
crossing covering paths with a total of at most 3n/2 + O(1) segments. Such a
pair of paths can be computed in O(n log n) time. On the other hand, there exist
bicolored sets that require at least 5n/9−O(1) segments in any pair of mutually
non-crossing covering paths. Consequently, 5n/9−O(1) ≤ k(n) ≤ 3n/2 +O(1).

Computational Complexity.We establish an Ω(n logn) lower bound for com-
puting a non-crossing covering path with O(n) vertices for a set of n points in
the plane.

1 This was observed by the current authors during the conference CCCG 2010; it was
also communicated to the authors of [9].
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Theorem 3. The sorting problem for n numbers is linear-time reducible to the
problem of computing a noncrossing covering path for n points in the plane.
Therefore, computing a noncrossing covering path for a set of n points in the
plane requires Ω(n logn) time in the worst case in the algebraic decision tree
model of computation.

Related previous results. Given a set of points, the minimum-link covering
path problem asks for a covering path with the smallest number of segments
(links). Arkin et al. [2] proved that (the decision version of) this problem is NP-
complete. Stein and Wagner [22] gave a O(log z)-approximation where z is the
maximum number of collinear points.

Various upper and lower bounds on the minimum number of links needed in
an axis-aligned path traversing an n-element point set in R

d have been obtained
in [3,8,7,16]. Approximation algorithms with constant ratio (depending on the
dimension d) for this problem are developed in [3], while some NP-hardness
results have been claimed in [12], and further revised in [15]. Other variants of
Euclidean TSP can be found in the survey article by Mitchell [19].

2 Covering Paths with Possible Self-crossings

A set X of k points in general position in the plane, no two on a vertical line,
is a k-cap (k-cup, respectively) if X is in convex position and all points of X lie
above (below, respectively) the line connecting the leftmost and the rightmost
point of X . According to a classical result of Erdős and Szekeres [10], any set of
at least

(
2k−4
k−2

)
+ 1 points in general position in the plane, no two on a vertical

line, contains a k-cup or a k-cap. In particular, every such set contains k points
in convex position; see also [11,17]. They also showed that this bound is the best
possible, i.e., there exist sets of

(
2k−4
k−2

)
points containing no k-cup or k-cap. More

generally, there exist sets of
(
k+l−4
k−2

)
points containing no k-cup or l-cap.

Following the terminology coined by Welzl, a set S of n points in the plane,
no 3 of which are collinear, is called perfect if it can be covered by a (possibly
self-crossing) polygonal path consisting of at most �n/2� segments. It is easy
to see that a cup or a cap is perfect: indeed, a suitable covering path can be
obtained by extending the odd numbered edges of the x-monotone polygonal
chain connecting the points (note that since no two points lie on a vertical line,
any consecutive pair of these edges properly intersect).

Proof of Theorem 1. Let S be a set of n points in the plane, no three of which
are collinear. Choose an orthogonal coordinate system such that no two points
have the same x-coordinate. By the result of Erdős and Szekeres [10], every m-
element subset of S contains a k-cup or a k-cap for some k = Ω(logm). Since
any such subset is perfect, it can be covered by a path of �k/2� segments.

To construct a covering path, we partition S into caps and cups of size
Ω(log n) each, and a set of less than n/ logn “leftover” points. Set T = S.
While |T | ≥ n/ logn, repeatedly find a maximum-size cup or cap in T and
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delete those elements from T . Note that log(n/ logn) = Ω(log n), and we have
found a k-cup or k-cap for some k = Ω(log n) in each step. Therefore, we have
found O(n/ logn) pairwise disjoint caps and cups in S, and we are left with a
set T of less than n/ logn points.

For each k-cup (or k-cap), construct a covering sub-path with �k/2� segments.
Link these paths arbitrarily into one path, that is, append them one after another
in any order. Finally append to this path an arbitrary spanning path of the
remaining less than n/ logn points in T , with one point per turn.

A covering path for S is obtained in this way. It is easy to see that the total
number of segments in this path is n/2 + O(n/ logn), as required. Chvátal and
Klincsek [6] showed that a maximum-size cap (and cup) in a set of n points in the
plane, no 3 of which are collinear, can be found in O(n3) time. With O(n/ log n)
calls to their algorithm, a covering path with n/2 + O(n/ logn) segments can
be constructed in O(n4/ logn) time in the RAM model of computation. Now if
the problem can be solved in time O(n4/ logn), it can also be solved in time
O(n1+ε) for any ε > 0: arbitrarily partition the points into n1−ε/3 subsets of
nε/3 points each, solve each subset separately, move the leftover points to the
next subset, then link the paths together with one extra segment per path. ��

3 Noncrossing Covering Paths

Proof of Theorem 2 (outline). For every k ∈ N, we construct a set S of n = 2k
points in the plane in general position, where all points are very close to the
parabola x → x2. We then show that every noncrossing covering path γ consists
of at least 5

9 (n − 4) segments. The lower bound is based on a charging scheme:
we distinguish perfect and imperfect segments in γ, containing 2 and less than 2
points of S, respectively. We charge every perfect segment to a “nearby” endpoint
of an imperfect segment or an endpoint of γ, such that each of these endpoints
is charged at most twice. This implies that at most about 4

5 of the segments are
perfect, and the lower bound of 5

9 (n− 4) follows. We continue with the details.

A technical lemma. We start with a simple lemma, showing that certain segments
in a noncrossing covering path are almost parallel. We say that a line segment s
traverses a circular disk B if s intersects the boundary of B twice.

Lemma 1. Let ϕ ∈ (0, π2 ) be an angle. For every ε > 0, there is a δ ∈ (0, ε)
such that if two noncrossing line segments ab and cd both traverse two concentric
disks of radii ε and δ, then the supporting lines of the segments ab and cd meet
at an angle at most ϕ.

Proof. Let ab and cd be two noncrossing line segments that both traverse two
concentric disks of radii ε > δ > 0. Refer to Fig. 1. By translating the segments,
if necessary, we may assume that both are tangent to the disk of radius δ. Clip
the segments in the disk of radius ε to obtain two noncrossing chords. The angle
between two noncrossing chords is maximal if they have a common endpoint. In
this case, they meet at an angle 2 sin−1(δ/ε). For every ε > 0, there is a δ ∈ (0, ε)
such that 2 sin−1(δ/ε) < ϕ. ��
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Fig. 1. Left: Two noncrossing segments, ab and cd, traverse two concentric disks of
radii ε > δ > 0. Middle: The segments are translated to be tangent to the disk of
radius δ. Right: The angle between two adjacent chords is 2 sin−1(δ/ε).

Construction. For every k ∈ N, we define a set S = {a1, . . . , ak, b1, . . . , bk} of
n = 2k points. Initially, let A = {a1, . . . , ak} be a set of k points on the first-
quadrant part of the parabola α : x → x2 such that no two lines determined
by A are parallel. (To achieve strong general position, we shall slightly perturb
the points in S in the last step of the construction.) Label the points in A by
a1, . . . , ak in increasing order of x-coordinates. Each point bi will be in a small
δ-neighborhood of ai, for i = 1, . . . , k. The pairs {ai, bi} are called twins. The
value of δ > 0 is specified in the next paragraph.

For every r > 0, let Di(r) denote the disk of radius r centered at ai ∈ A. Since
the points in A are in strictly convex position, points in A determine

(
k
2

)
distinct

lines. Let (2ϕ) ∈ (0, π
2 ) be the minimum angle between two lines determined by

A (recall that no two such lines are parallel). Let ε > 0 be sufficiently small such
if two lines intersect two different pairs of disks from {D1(ε), . . . , Dk(ε)}, then
they meet at an angle at least ϕ. Observe that every line intersects at most two
disks D1(ε), . . . , Dk(ε) (i.e., the ε-neighborhoods of at most two points in A).
By Lemma 1, there exists δ0 > 0 such that if two noncrossing segments traverse
both Di(ε) and Di(δ0), then their supporting lines meet at an angle less than ϕ.
For i = 1, . . . , k−1, let δi > 0 be the maximum distance between the supporting
line of aiai+1 and points on the arc of the parabola α between ai and ai+1. We
are now ready to define δ > 0. Let δ = min{δi : i = 0, 1, . . . , k − 1}.

We now choose points bi ∈ Di(δ), for i = 1, . . . , k, in reverse order. Let 
k
be a line that passes through ak whose slope is larger than the tangent of the
parabola α at ak. Let bk be a point in 
k ∩Dk(δ) above the parabola α. Having
defined line 
j and point bj for all j > i, we choose 
i and bi ∈ 
i ∩ Di(δ) as
follows:

– let 
i be a line passing through ai whose slope is larger than that of 
i+1;
– let bi ∈ 
i ∩Di(δ) be above the parabola α; and
– let bi be so close to ai that for every j, i < j ≤ k, the supporting lines of

segments aiaj and bibj meet in the disk Di(ε).

We also ensure in each iteration that in the set A ∪ {bi, . . . , bk}, (1) no three
points are collinear; (2) no two lines determined by the points are parallel; and
(3) no three lines determined by disjoint pairs of points are concurrent.
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Note that S is not in strong general position: for instance, all points in A lie
on a parabola. (By strong general position it is meant here there is no nontrivial
algebraic relation between the coordinates of the points.) In the last step of our
construction, we slightly perturb the points in S. However, for the analysis of a
minimum link covering path, we may ignore the perturbation.

Let γ be a minimum-link noncrossing covering path for S. Since no three
points in S are collinear, we may assume that every point in S lies in the relative
interior of a segment of γ. Denote by s0, s1 and s1, resp., the number of segments
in γ that contain 0, 1, and 2 points from S. We establish the following inequality.

Lemma 2. s2 ≤ 4(s0 + s1 + 1).

Before the proof of Lemma 2, we show that it immediately implies Theorem 2.
Counting the number of points incident to the segments, we have n = s1 + 2s2.
The total number of segments in γ is

s0 + s1 + s2 =
4(s0 + s1 + 1) + 5s0 + 5s1 − 4

9
+ s2

≥ s2 + 5s0 + 5s1 − 4

9
+ s2

≥ 5(s1 + 2s2)− 4

9
=

5n− 4

9

For proving Lemma 2, we introduce a charging scheme, where each perfect seg-
ment is charged to either an endpoint of an imperfect segment, or to one of the
two endpoints of γ such that each such endpoint is charged at most twice. The
charges will be defined for maximal x-monotone chains of perfect segments. A
subpath γ′ ⊆ γ is called x-monotone, if the intersection of γ′ with any vertical
line is connected (i.e., the empty set, a point, or a vertical segment).

Recall that all points in A = {a1, . . . , ak} lie on the parabola α : x → x2.
Let β be the graph of a strictly convex function that passes through the points
b1, . . . , bk, and lies strictly above α and below the curve x → x2 + δ.

Properties of a minimum noncrossing covering path. We start by characterizing
the perfect segments in γ. Note that if pq is a perfect segment in γ, then pq
contains either a twin, or one point from of each of two twins. First we make a
few observations about perfect segments containing points from two twins.

Lemma 3. Let pq be a perfect segment in γ that contains one point from each of
the twins {ai, bi} and {aj, bj}, i < j. Then pq intersects both Di(δ) and Dj(δ),
and its endpoints lie below the curve β.

Proof. The distance between any two twin points is less than δ, so pq intersects
the δ-neighborhood of ai and aj (even if pq contains bi or bj). The line pq
intersects the parabolas α : x → x2 and x → x2 + δ twice each. It also intersects
β exactly twice: at least twice, since β is between the two parabolas; and at most
twice since the region above β is strictly convex. All points in {ai, bi} and {aj , bj}
are on or below β; but pq is above β at some point between its intersections with
{ai, bi} and {aj, bj}, since δ ≤ δi. Hence the endpoints of pq are below β. ��
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Lemma 4. Let pq be a perfect segment of γ that contains one point from each
of the twins {ai, bi} and {aj, bj}, with i < j. Assume that p is the left endpoint
of pq. Let s be the segment of γ containing the other point of the twin {ai, bi}.
Then one of the following four cases occurs.

Case 1: p is incident to an imperfect segment of γ, or it is an endpoint of γ;
Case 2: s is imperfect;
Case 3: s is perfect, one of its endpoints v lies in Di(ε), and v is either
incident to some imperfect segment or it is an endpoint of γ;
Case 4: s is perfect and p is the common left endpoint of segments pq and s.

p

q

ai

aj

bi

s

p

q

ai

bj
aj

bi

s

p

q

ai

bj
aj

bi

s

v
p

q

ai

bj
aj

s

(1)
(2)

(3) (4)

bi

Fig. 2. The four cases in Lemma 4 for a perfect segment pq that contains one point
from each of the twins {ai, bi} and {aj , bj}. The points ai, i = 1, . . . , k, lie on the
dotted parabola α.

Proof. If p is incident to an imperfect segment of γ, or it is an endpoint of γ,
then Case 1 occurs. Assume that p is incident to two perfect segments of γ, pq
and pr. If pr = s, then p is the common left endpoint of two perfect segments,
pq and s, and Case 4 occurs. If s is imperfect, then Case 2 occurs.

Assume now that pr 
= s and s is perfect. We need to show that Case 3
occurs. We claim that the segment pq traverses Di(ε). It is enough to show
that p and q lie outside of Di(ε). Note that pr does not contain any point from
the twin {ai, bi} (these points are covered by segments pq and s). Since pr is a
perfect segment, it contains two points from S \ {ai, bi}. By construction, any
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line determined by S \ {ai, bi} is disjoint from Di(ε), hence pr (including p) is
outside of Di(ε). Since pq contains a point from {aj , bj}, point q is also outside
of Di(ε). Hence pq traverses Di(ε).

We also claim that s cannot traverse Di(ε). Suppose, to the contrary, that
s traverses Di(ε). By Lemma 1, the supporting lines of pq and s meet at an
angle less than ϕ. By the choice of ε, the supporting line of s can intersect the
ε-neighborhoods of ai and aj only. However, by the choice of bi, if s contains one
point from each of {ai, bi} and {aj, bj}, then the supporting lines of s and pq
intersect in Di(ε). This contradict the fact that the segments of γ do not cross,
and proves the claim.

Since s does not traverse Di(ε), it has an endpoint v in Di(ε). If v is the
endpoint of γ, then Case 3 occurs. If v is incident to some other segment of γ,
this segment cannot be perfect since every line intersects the ε-neighborhoods
of at most two points in A. Hence v is incident to an imperfect segment, and
Case 3 occurs. ��
We continue with two simple observations about perfect segments containing
twins.

Lemma 5. The supporting lines of any two twins intersect below α.

Proof. By construction, the supporting line of every twin has positive slope; and
aibi has larger slope than ajbj if 1 ≤ i < j ≤ k. Furthermore, the line aibi has
larger slope than the tangent line of the parabola x → x2 at ai, hence ai lies
above the supporting line of ajbj for 1 ≤ i < j ≤ k. It follows that the supporting
lines of segments aibi and ajbj intersect below α. ��
Lemma 6. Let pq be a perfect segment of γ that contains a twin {ai, bi}, and
let q be the upper (i.e., right) endpoint of pq. Then either q is incident to an
imperfect segment of γ or q is an endpoint of γ.

Proof. Observe that q lies above β. If q is an endpoint of γ, then our proof is
complete. Suppose that q is incident to segments pq and qr of γ. By Lemma 5,
qr does not contain a twin. By Lemma 3, qr also cannot contain one point from
each of two twins. It follows that qr is an imperfect segment of γ, as required. ��
Proof (of Lemma 2). Let Γ ′ be the set of maximal x-monotone chains of perfect
segments in γ. Consider a chain γ′ ∈ Γ ′. Only the rightmost segment of γ′ may
contain a twin by Lemma 6. It is possible that the leftmost segment of γ′ does not
contain a twin, and its left endpoint is incident to some other perfect segment,
which is the leftmost segment of some other chain in Γ ′.

We charge each segment of γ′ to an endpoint of some imperfect segment or
to an endpoint of γ as follows. Let pq be a (perfect) segment of γ′. If pq con-
tains a twin, then charge pq to the top vertex of pq, which is the endpoint of
an imperfect segment or an endpoint of γ by Lemma 6. Assume now that pq does
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not contains a twin, its left endpoint is p, and it contains a point from each of
the twins {ai, bi} and {aj, bj}, with i < j. We consider the four cases presented
in Lemma 4.

In Case 1, charge pq to p, which is the endpoint of an imperfect segment or
an endpoint of γ. In Case 2, charge pq to the left endpoint of the imperfect
segment s containing a point of the twin {ai, bi}. In Case 3, charge pq to either
an endpoint an imperfect segment or an endpoint of γ located in Di(ε). So far,
every endpoint of an imperfect segment and every endpoint of γ is charged at
most once. Now, consider Case 4 of Lemma 4. In this case, pq is the leftmost
segment of γ′. If γ′ contains exactly one perfect segment, namely pq, then charge
pq to its right endpoint, which is the endpoint of some imperfect segment or the
endpoint of γ. If γ′ contains at least two perfect segments, then pick an arbitrary
perfect segment s, s 
= pq, from γ′. Since s is not the leftmost segment of γ′,
it has already been charged to some endpoint. Charge pq to the same endpoint
as s. Each endpoint of γ and each endpoint of every imperfect segment is now
charged at most twice. Since γ and every imperfect segment has two endpoints,
we have s2 ≤ 4(s0 + s1) + 4, as required. ��

b2

a1
a2

a5

a6

b1

b3 a4

a8

b7

b5

b6

a3

a7

b4

α

b8

Fig. 3. A sketch of our construction S with k = 8 twins. (The figure is not to scale).
It indicates how 5 consecutive segments of a noncrossing path can cover 4 consecutive
twins.

Remark. We do not know whether the lower bound 5(n − 4)/9 for the number
of segments in a minimum noncrossing covering path is tight for the n-element
point set S we have constructed. The set S certainly has a covering path with
5n/8 + O(1) segments. Such a path is indicated in Fig. 3, where 5 consecutive
segments (4 perfect and one imperfect) cover 4 consecutive twins.
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3.1 A Two-Colored Version: Proof of Corollary 1

For the upper bound, we proceed as follows. Assume without loss of generality
that no two points have the same x-coordinate (after a suitable rotation of
the point set, if needed). We have |B| + |R| = n, and assume w.l.o.g. that
|B| ≤ n/2 ≤ |R|. Cover the red points by an x-monotone spanning path πR,
which is clearly non-crossing. Let B = B1 ∪ B2 be the partition of the blue
points induced by πR into points above and below the red path (remaining
points are partitioned arbitrarily). Cover the points in B1 (above πR) by an
x-monotone covering path: for each consecutive pair of points in the x-order,
extend two almost vertical rays that meet far above πR without crossing πR.
Proceed similarly for covering the points in B2 (below πR). Connect the two
resulting blue covering paths for B1 and B2 by using at most O(1) additional
segments.

The number of segments in the red path is |R| − 1. The number of segments
in the blue path is 2|B|+O(1). Consequently, since |B| ≤ n/2, the two covering
paths comprise at most 3n/2 + O(1) segments. After sorting the red and blue
points along a suitable direction, a pair of mutually non-crossing covering paths
as above can be obtained in O(n) time. So the entire procedure takes O(n log n)
time.

For the lower bound, use a red and a blue copy of the point set constructed
in the proof of Theorem 2, each with n/2 points, so that no three points are
collinear. Since covering each copy requires at least (5n/9 − O(1))/2 segments
in any non-crossing covering path, the resulting n-element point set requires at
least 5n/9−O(1) segments in any pair of mutually non-crossing covering paths.

��

4 Computational Complexity

Proof of Theorem 3. We make a reduction from the sorting problem in the alge-
braic decision tree model of computation. Given n distinct numbers, x1, . . . , xn,
we map them in O(n) time to n points on the parabola y = x2: xi → (xi, x

2
i );

similar reductions can be found in [21]. Let S denote this n-element point set.
Since no 3 points are collinear, any covering path for S has at least �n/2�+1 ver-
tices. We show below that, given a noncrossing covering path of S withm = Ω(n)
vertices, the points in S can be sorted in left to right order in O(m) time; equiv-
alently, given a noncrossing covering path with m vertices, the n = O(m) input
numbers can be sorted in O(m) time. Consequently, the Ω(n log n) lower bound
is then implied. Thus it suffices to prove the following.

Given a noncrossing covering path γ of S with m vertices, the points in S can
be sorted in left to right order in O(m) time.

The boundary of the convex hull of γ is a closed polygonal curve, denoted
∂conv(γ). Melkman’s algorithm [18] computes ∂conv(γ) in O(m) time. (See [1]
for a thorough review of convex hull algorithms for simple polygons, and [4] for
space-efficient variants). Triangulate all faces of the plane graph γ ∪ ∂conv(γ)
within O(m) time [5], and let T denote the triangulation. The parabola y = x2
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intersects the boundary of each triangle at most 6 times (at most twice per
edge). The intersection points can be sorted in each triangle in O(1) time. So
we can trace the parabola y = x2 from triangle to triangle through the entire
triangulation, in O(1) time per triangle, thus in O(m) time overall. Since all
points of S are on the parabola, one can report the sorted order of the points
within the same time. ��

5 Conclusion

We conclude with a few (new or previously posed) questions and some remarks.

1. It seems unlikely that every point set with no three collinear points admits
a covering path with n/2 + O(1) segments. Can a lower bound of the form
f(n) = n/2 + ω(1) be established?

2. Recently, Gerbner and Keszegh [14] have shown that g(n) ≤ cn for some
positive constant c < 1, thereby disproving the conjectured relation g(n) =
n(1+o(1)). However, a sizable gap to the lower bound in Theorem 2 remains.

3. Let p(n) denote the maximum integer such that any set of n points in the
plane has a perfect subset of size p(n). As noticed by Welzl [9,23], p(n) =
Ω(log n) immediately follows from the theorem of Erdős and Szekeres [10].
Any improvement in this lower bound would lead to a better upper bound
in Theorem 1, and thus to a smaller gap versus the n/2 lower bound. It is
a challenging question whether Welzl’s lower bound p(n) = Ω(logn) can be
improved; see also [9].

4. It is known that the minimum-link covering path problem is NP-complete for
planar paths whose segments are unrestricted in orientation [2,16]. It is also
NP-complete for axis-parallel paths in R

10, as shown in [15]. Is the minimum-
link covering path problem still NP-complete for axis-aligned paths in R

d for
2 ≤ d ≤ 9? It is known [3] that a minimum-link axis-aligned covering path
in the plane can be approximated with ratio 2. Can the approximation ratio
of 2 be reduced?

5. Is the minimum-link covering path problem still NP-complete for points in
general position and arbitrary oriented paths?

6. Is the minimum-link covering path problem still NP-complete for points in
general position and arbitrary oriented non-crossing paths?

7. Given n points (n even), is it possible to compute a non-crossing perfect
matching in O(n) time? Observe that such a matching can be computed in
O(n log n) time by sorting the points along some direction. The same upper
bound O(n logn) holds for non-crossing covering paths and non-crossing
spanning paths, and this is asymptotically optimal by Theorem 3. Observe
finally that a non-crossing spanning tree can be computed in O(n) time:
indeed, just take a star rooted at an arbitrary point in the set.
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In: Proc. 22nd Canadian Conf. Comput. Geom., Winnipeg, MB, pp. 273–276 (2010)

14. Gerbner, D., Keszegh, B.: Personal Communication (July 2012)
15. Jiang, M.: On Covering Points with Minimum Turns. In: Snoeyink, J., Lu, P.,

Su, K., Wang, L. (eds.) FAW-AAIM 2012. LNCS, vol. 7285, pp. 58–69. Springer,
Heidelberg (2012)

16. Kranakis, E., Krizanc, D., Meertens, L.: Link length of rectilinear hamiltonian
tours in grids. Ars Combinatoria 38, 177–192 (1994)
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