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Abstract. A graph is Bk-VPG when it has an intersection representation by
paths in a rectangular grid with at most k bends (turns). It is known that all pla-
nar graphs are B3-VPG and this was conjectured to be tight. We disprove this
conjecture by showing that all planar graphs are B2-VPG. We also show that the
4-connected planar graphs are a subclass of the intersection graphs of Z-shapes
(i.e., a special case of B2-VPG). Additionally, we demonstrate that a B2-VPG
representation of a planar graph can be constructed in O(n3/2) time. We fur-
ther show that the triangle-free planar graphs are contact graphs of: L-shapes,
Γ-shapes, vertical segments, and horizontal segments (i.e., a special case of con-
tact B1-VPG). From this proof we gain a new proof that bipartite planar graphs
are a subclass of 2-DIR.

1 Introduction

Planar graphs have a long history of being described as geometric intersection (and
contact) graphs; i.e., for a planar graph G, each vertex can be mapped to a geometric
object Ov such that (u, v) is an edge of G iff Ov and Ou intersect.1 Two well-known
results of this variety are that: every planar graph is an intersection graph of curves in
the plane [7] (1978), and every planar graph is a contact graph of discs in the plane [19]
(1936).

In this paper we consider representations of planar graphs as the intersection and
contact graphs of restricted families of curves in the plane. The most general class of
intersection graphs of curves in the plane is the class of string graphs. Formally, a graph
G = (V,E) is STRING iff each v ∈ V can be associated with a curve cv in the plane
such that for every pair u, v ∈ V , (u, v) ∈ E iff cv and cu intersect. STRING was first
considered regarding thin film RC-circuits [23].

Perhaps the most significant result describing planar graphs as intersection graphs of
curves is the recent proof of Scheinerman’s conjecture that all planar graphs are segment
graphs (SEG); i.e., the intersection graphs of line segments in the plane. Scheinerman
conjectured this in his Ph.D. thesis (1984) [22], and it was proven in 2009 by Chalopin
and Gonçalves [6]. Leading up to this result were several partial results. Bipartite planar
graphs were the first subclass shown to be intersection graphs of line segments having
two distinct slopes (2-DIR) [10,3]. This was followed by triangle-free planar graphs
being shown to be the intersection graphs of line segments having three distinct slopes
(3-DIR) [4]. It has also been proven that segment graphs include every planar graph
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that can be 4-colored so that no separating cycle uses all four colors [9]. Planar graphs
were also shown to be representable by curves in the plane where each pair of curves
intersect in at most one point (i.e., only “simple” intersections are allowed) [5] – the
proof of Scheinerman’s conjecture was a strengthening of this result. The early work on
this topic led West to conjecture that every planar graph is an intersection graph of line
segments in four directions (4-DIR) [27].

Segment graphs have been generalized to k-segment graphs (k-SEG) where each
vertex is represented by a piecewise linear curve consisting of at most k segments [21].
Interestingly, a very recent result is that all planar graphs are contact 2-SEG [1]. In
this context one may now consider k-SEG where the segments of the piecewise linear
curves have a bounded number of slopes. Recently, Asinowski et al. [2] introduced the
class of vertex intersection graphs of paths in a rectangular grid (VPG); equivalently,
VPG is the set of intersection graphs of axis-aligned rectilinear curves in the plane
(or

⋃
k≥1 k-SEG where each segment is either vertical or horizontal). They prove that

VPG and STRING are the same graph class (this was known previously as a folklore
result). Also, they focus on the subclasses which are obtained when each path in the
representation has at most k bends (turns) and they refer to such a subclass as Bk-VPG
(i.e., this is (k+1)-SEG with two slopes). Several relationships between existing graph
classes and the Bk-VPG classes were observed. For example, every planar graph is B3-
VPG (this was also conjectured to be tight) and every circle graph is B1-VPG. In other
words, planar graphs are 4-SEG where the segments only have two distinct slopes. This
result follows from the fact that every planar graph has a representation by a T-contact
system [11] and each T-shape can be simulated by a rectilinear curve with three bends.

In this paper we present the following results. Our main contribution is that every
planar graph is B2-VPG (disproving the conjecture of Asinowski et al. [2]). This result
consists of the following interesting components. We first demonstrate that every 4-
connected planar graph is the intersection graph of Z-shapes (i.e., a special case of B2-
VPG). This result is extended to show that every planar graph is B2-VPG (this extension
involves the additional use of C-shapes – i.e., it uses the full capability of B2-VPG) and
that a B2-VPG representation of a planar graph can be constructed in O(n3/2) time.
The secondary contribution of this paper is that every triangle-free planar graph is a
contact graph of: L-shapes, Γ-shapes, vertical segments, and horizontal segments (i.e.,
it is a specialized contact B1-VPG graph). We show how to construct such a contact
representation in linear time. Moreover, if the input is bipartite then each path is a
horizontal or vertical segment. In particular, we obtain a new proof that planar bipartite
graphs are 2-DIR. Interestingly, the class of contact segment graphs has recently been
shown to be the same as the class of contact B1-VPG graphs [18].

2 Preliminaries

A grid path (a path in the plane square grid) consists of horizontal and vertical segments
that appear alternatingly along the path. Every horizontal segment has a left endpoint
and a right endpoint, and every vertical segment an upper and lower endpoint in the
obvious meaning. A path is a k-bend path if it has k bends, i.e., k points that are the
endpoint of a horizontal and a vertical segment. Equivalently, k-bend paths are those
with precisely k + 1 segments.
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A Bk-VPG representation of a graph G is a set of grid paths (one for each vertex)
with at most k bends such that two paths intersect if and only if the corresponding
vertices are adjacent in G. For every vertex v we denote the corresponding grid path
in a given Bk-VPG representation by v. Consequently a Bk-VPG representation of
a graph G is denoted by G. A graph is called a Bk-VPG graph if it has a Bk-VPG
representation.

3 Planar Graphs Are B2-VPG Graphs

In this section we show that every planar graph G has a B2-VPG representation. We fix
any plane embedding of G and assume w.l.o.g. that G is a maximally planar graph, i.e.,
all faces are triangular. To achieve this we may put a dummy vertex into each face of G
and triangulate it. In a B2-VPG representation of this graph the paths corresponding to
dummy vertices may be removed to obtain a B2-VPG representation of G.

Our construction of the B2-VPG representation of the maximally planar graph G
relies on two well-known concepts. Using the separation tree TG of G, we show in
Section 3.1 how to divide G into its 4-connected maximally planar subgraphs. Each
such subgraph, if we remove one outer edge, has a rectangular dual, i.e., a contact
representation with axis-aligned rectangles. In Section 3.2 we show how to construct
a B2-VPG representation from a rectangular dual. In particular we will convert each
rectangle to a Z-shaped path by choosing “part” of the top of it, the complementary
“part” of the bottom of it and connecting them via a vertical segment. In Section 3.3 we
put the obtained representations of all 4-connected maximally planar subgraphs of G
together to obtain a B2-VPG representation of our graph. The same method has been
used to prove that every planar graph is a B4-EPG graph, where EPG stands for edge-
intersecting paths in the grid [16].

3.1 Separation Tree

A triangle Δ in a graph is a triple of pairwise adjacent vertices. We say that a triangle is
separating when its removal disconnects the graph. Also, in a maximally planar graph
G a triangle Δ is said to be non-empty when at least one vertex of G lies inside the
bounded region inscribed by Δ. Notice that every separating triangle is non-empty. In
fact, each non-empty triangle is either the outer triangle or separating.

We say that a triangle Δ1 is contained in a triangle Δ2, denoted by Δ1 � Δ2, if
the bounded region enclosed by Δ1 is strictly contained in the one enclosed by Δ2. For
example, the outer triangle contains every triangle in the graph (except itself), and no
triangle in G is contained in an inner facial triangle.

Definition 1 ([24]). The separation tree of G is the rooted tree TG whose vertices are
the non-empty triangles in G, with Δ being a descendant of Δ′ if and only if Δ is
contained in Δ′.

The separation tree has been introduced by Sun and Sarrafzadeh [24]. The root of TG

is the outer triangle. For every non-empty triangle Δ we define HΔ to be the unique
4-connected maximally planar subgraph of G that contains Δ and at least one vertex
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of G that lies inside Δ. Equivalently, HΔ is the union of Δ and all triangles contained
in Δ but not contained in any triangle that itself is contained in Δ; i.e., HΔ = Δ ∪(⋃

Δ′�Δ and �Δ′′:Δ′�Δ′′�ΔΔ′).

Theorem 1 ([24]). The separation tree of G and all subgraphs HΔ can be computed
in O(n3/2).

3.2 Rectangular Duals

Throughout this section let H be a triangulation of the 4-gon, i.e., H is a plane graph
with quadrangular outer face and solely triangular inner faces. Such graphs are also
known as irreducible triangulations of the 4-gon. We denote the outer vertices by
T,R,B, L in this clockwise order around the outer face.

Definition 2. A rectangular dual of H is a set of |V (H)| non-overlapping axis-aligned
rectangles in the plane (one for each vertex) such that every edge of H corresponds to
a non-trivial overlap of the boundaries of the corresponding rectangles.

The rectangle corresponding to a vertex v is denoted by R(v). In every rectangular dual
the rectangles R(T ), R(B), R(L) and R(R) that correspond to the outer vertices of
H inscribe a rectangular hole that contains all the remaining rectangles. We assume
w.l.o.g. that R(T ), R(B), R(L) and R(R) are laid out as in Fig. 1 a), i.e., the bottom
side of R(T ) forms the top side of the hole, the left side of R(R) forms the right side
of the hole, and so on.

Rectangular duals have been considered several times independently in the litera-
ture [26,20,25]. In particular, the following theorem is well-known.

Theorem 2. A triangulation of a 4-gon admits a rectangular dual if and only if it is
4-connected, i.e., contains no non-empty triangle.

We define here transversal structures as introduced by Fusy [12], which were inde-
pendently considered by He [15] under the name regular edge labelings. For a nice
overview about regular edge labelings and their relations to geometric structures we
refer to the introductory article by D. Eppstein [8].

Definition 3. A transversal structure of a triangulationH with outer vertices T, L,B,R
is a coloring and orientation of the inner edges of H with colors red and blue such that:

(i) All edges at T are incoming and blue, all edges at B are outgoing and blue, all
edges at R are incoming and red, all edges at L are outgoing and red.

(ii) Around each inner vertex v the edges appear in the following clockwise cyclic or-
der: One or more incoming red edges, one or more outgoing blue edges, one or
more outgoing red edges, one or more incoming blue edges.

We denote a transversal structure by (Er , Eb), where Er and Eb is the set of red and
blue edges, respectively.

We obtain a transversal structure from any rectangular dual of H as follows. If the right
side of a rectangle R(u) has a non-trivial overlap with the left side of some rectangle
R(v), then we color the edge {u, v} in H red and orient it from u to v. Similarly,
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if the topside of R(u) overlaps with the bottom side of R(v) then {u, v} is colored
blue and oriented from u to v. Fig. 1 a) depicts the transversal structure obtained from
the rectangular dual). It is known that every transversal structure of H arises from a
rectangular dual of H in this way.

Theorem 3 ([17]). Every transversal structure maps to a rectangular dual.

If we identify combinatorially equivalent rectangular duals, i.e., those in which any two
rectangles touch with the same sides in both duals, then Theorem 3 actually states that
rectangular duals and transversal structures are in bijection. Transversal structures (and
hence combinatorially equivalent rectangular duals) can be endowed with a distributive
lattice structure [13]. For our purposes, we describe the minimal transversal structure
of H ; i.e., the minimum element in the distributive lattice of all transversal structures
of H .

Lemma 1 ([13]). Consider four vertices v, w, x, y in the minimal transversal structure
(Er, Eb), such that v → w ∈ Eb, x → y ∈ Eb, v → x ∈ Er, w → y ∈ Er. Then we
have neither x → w ∈ Eb nor v → y ∈ Er.

Moreover, the minimal transversal structure can be computed in linear time.

Fig. 1 d) shows the two configurations described in Lemma 1 that do not appear in
the minimal transversal structure. The rectangular dual that corresponds to the minimal
transversal structure is also called the minimal rectangular dual. Fig. 1 depicts a rectan-
gular dual and the corresponding minimal rectangular dual. We remark that if, besides
these two, a third certain configuration is forbidden in the transversal structure, then this
already characterizes the minimal transversal structure [13].

Let us call a rectangular dual non-degenerate if the top sides of two rectangles lie
on the same horizontal line only if there is a rectangle whose bottom side overlaps with
both of them. It is not difficult to see that there always exists a non-degenerate minimal
rectangular dual.

Given a rectangular dual and any inner vertex v we consider the rightmost rectangle
overlapping the top side of R(v). We denote the corresponding vertex of H by v•. In
other words, (v, v•) is the outgoing blue edge at v whose clockwise next edge is red (and
outgoing). Similarly, R(v•) is the bottommost rectangle overlapping the right side of
R(v), i.e., (v, v•) is the outgoing red edge at v whose clockwise next edge is blue (and
incoming). Moreover, R(•v) (R(•v)) is the leftmost (topmost) rectangle overlapping
the bottom side (left side) of R(v), which means that (•v, v) ((•v, v)) is the incoming
blue (red) edge at v whose clockwise next edge is red (blue). Note that if the transversal
structure is minimal then every inner edge of H can be written as (v, v•), (v, v•), (•v, v)
or (•v, v) for some inner vertex v.

From H and its fixed transversal structure (Er , Eb) we define a new graphH∗, called
the split graph, and its transversal structure (E∗

r , E
∗
b ) as follows.

– The outer vertices of H and H∗ are the same.
– For every inner vertex v of H there are two vertices v1 and v2 in H∗.

• There is a red edge v1 → v2 in E∗
r .

• There is a red edge v2 → w1 in E∗
r for every edge v → w ∈ Er.

• There are blue edges v1 → w1 and v1 → w2 inE∗
b for every edge v → w ∈ Eb.

• There is a blue edge v2 → v•2 in E∗
b .
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See Fig. 1 b) for an example of a split graph and its rectangular dual. Note that defining
R(v) := R(v1)∪R(v2) for every vertex v we obtain the transversal structure we started
with.

(a) (b)

(c)

v

w

x

y

v

w

x

y

(d)

Fig. 1. a) A rectangular dual with its transversal structure overlaid on it; b) the split minimal
rectangular dual of (a); c) the Z-shapes arising from the split graph; and d) two configurations
that do not appear in the minimal transversal structure.

3.3 VPG-Representation

We want to construct a B2-VPG representation for every maximally planar graph G.
To this end we split G into its 4-connected maximally planar subgraphs. The outer
face Δ of such a subgraph HΔ is either the outer face of G or an inner face of HΔ′ ,
where Δ′ is the father of Δ in the separation tree. We start by representing the outer
face of G as depicted in Fig. 2. The highlighted area in the figure is called the frame
for HΔ. Formally, the frame for HΔ is a rectangular area such that either: the paths
corresponding to two vertices of Δ pass through it vertically and the path for the third
vertex passes through it horizontally, or the paths corresponding to two vertices of Δ
pass through it horizontally and third passes through it vertically. When defining the
B2-VPG representation of any HΔ we assume that we have already constructed the
paths for the vertices in Δ and that there is a frame for HΔ.

We now describe how to obtain a B2-VPG representation of a 4-connected maxi-
mally planar graph HΔ given a frame F for it. Our construction is based on a non-
degenerate minimal rectangular dual and its split graph. Let u and w be the two vertices
of Δ whose paths do not intersect inside F and denote the third vertex in Δ by v.
Then we consider the graph H obtained from HΔ by removing the edge {u,w}. Notice
that H is a 4-connected triangulation of a 4-gon and we assume w.l.o.g. that u = L,
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Fig. 2. a) The VPG representation of the outer face of G and its frame. b) Placing a rectangular
dual inside a frame and constructing the path B.

v = T , and w = R. Consider the minimal transversal structure, a corresponding non-
degenerate minimal rectangular dual of H , and its split graph H∗ together with the
transversal structure (E∗

r , E
∗
b ). By rotating and stretching it appropriately we place the

non-degenerate rectangular dual of H∗ inside the frame F , such that the right side of
L, the bottom side of T and the left side of R is contained in u, v and w, respectively.

We define the 2-bend path B for the vertex B to be a C-shape path that is contained
in F and whose upper horizontal segment contains the top side of R(B). See Fig. 2 for
an illustration.

We define a 2-bend path v for every inner vertex v of H as follows. First, let v
be the union of the top side and right side of R(v1) and the bottom side of R(v2).
Now consider the vertex •v. We extend the left horizontal end of v to the right side of
R((•v)1). In case •v = L we do not extend the left end of v. Similarly we extend the
right horizontal end of v horizontally to the right side of R(v•1), unless v• = R. See
Fig. 3 for an illustration.

Lemma 2. The above construction gives a B2-representation of H .

Slightly changing the paths corresponding to outer vertices we can easily transform
them into Z-shapes and make L and R intersect. Thus we obtain the following corollary.

Corollary 1. Every 4-connected planar graph has a B2-representation where every
path has a Z-shape and no two paths cross.

We have shown so far how to define a B2-VPG representation of HΔ given a frame for
HΔ. It remains to identify a frame for each Δ′ � Δ that is a son of Δ in the separation
tree. We modify the representation for this purpose.

Consider a horizontal line � that supports horizontal sides of some rectangles dif-
ferent from R(T ). We partition the paths that have a horizontal segment on � into two
sets: A contains all paths whose vertical segment lies above � and B all paths whose
vertical segment lies below �. Next we extend the vertical segments of all paths in B by
some small amount, keeping all lower horizontal segments unchanged. The extension
is chosen small enough so that no unwanted intersections are created. See Fig. 3 for an
illustration. Since the underlying rectangular dual is minimal, it does not contain the
configuration in the left of Fig. 1d. It follows that all vertical segments of paths in A
lie to the left of the vertical segments of paths in B. Thus, if v ∈ A and w ∈ B were
touching before, then they are crossing after this operation.

Next we identify a frame for every inner face Δ′ of H . In case Δ′ is a non-empty
triangle of G this will be the frame for HΔ′ .

Lemma 3. One can find in HΔ a frame for every inner face of HΔ, such that each
frame is contained in F and all frames are pairwise disjoint.
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−→

Fig. 3. Left: The path v based on the rectangles R(v1) and R(v2) in the rectangular dual of the
split graph. Note: the wide edges indicate the boarder between split rectangles. Right: Extending
the vertical segments of all paths in B.

We give the proof of Lemma 3 in the appendix. The frame for the face {L,B,R} is
defined as shown in Fig. 2. For every remaining inner face f = {u, v, w} of HΔ we
consider to point pf where R(u), R(v) and R(w) meet. We then define the frame for f
near pf as illustrated in Fig. 4. The four cases in the figure correspond to whether pf is
contained in the top, bottom, left, or right side of a rectangle, respectively.

pf pf
pf pfp p p p

a) b) c) d)

Fig. 4. Identifying the frame for an inner face of HΔ

We end this section with its main theorem (proof in the appendix). It is not difficult
to see that this theorem follows from Theorem 1, and Lemmas 2 and 3.

Theorem 4. Every planar graph is a B2-VPG graph. Moreover, a B2-VPG represen-
tation can be found in O(n3/2), where n denotes the number of vertices in the graph.

4 Triangle-Free Planar Graphs Are B1-VPG

In this section we prove that every triangle-free planar graph is B1-VPG with a very
particular B1-VPG representation. Namely, every vertex is represented by either a 0-
bend path or a 1-bend path whose vertical segment is attached to the left end of its
horizontal segment. This means that we use only two out of the four possible shapes of
a grid path with exactly one bend. Moreover, whenever two paths intersect, it is at an
endpoint of exactly one of these paths; i.e., no two paths cross. We call an 1-bend path
an L if the left endpoint of the horizontal segment is the lower endpoint of its vertical
segment, and a Γ if the left endpoint of the horizontal segment is the upper endpoint of
its vertical segment. A VPG representation in which each path that has a bend is an L
or a Γ, and in which no two paths cross, is called a contact-L-Γ representation.

We say that two contact-L-Γ representations of the same graph G are equivalent
if the underlying combinatorics is the same. That means that paths corresponding to
the same vertex have the same type (either L, Γ, horizontal or vertical segment), the
inherited embedding of G is the same, and that the fashion in which two paths touch is
the same, e.g., the right endpoint of u is contained in the vertical segment of v in both
representations. However, it is convenient in our proofs to deal with actual contact-L-Γ
representations instead of equivalence classes of contact-L-Γ representations. Therefore
we need the following lemma.
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Lemma 4. Let G be a plane graph and v be a vertex of G. Let u and w be two paths in
G that touch v at the same segment but from different sides. Then there exists a contact-
L-Γ representation of G that is equivalent to G in which the touching points of u and
w with v come in the reversed order along v.

The main result of this section is the following.

Theorem 5. Every triangle-free planar graph has a contact-L-Γ representation.

Note that if some graph G admits a contact-L-Γ representation then so does every sub-
graph H of G it. Indeed every edge (u, v) in E(G) \ E(H) corresponds to a contact
point of u and v in the representation G. Moreover, this contact point is an endpoint
of one of the two paths. If we shorten this path a little bit (and do this for every edge
that is in G but not in H) then we obtain a contact-L-Γ representation of H . Thus we
assume for the remainder of the section w.l.o.g. that G is a maximally triangle-free pla-
nar graph, i.e., G is 2-connected and every face of G is a quadrangle or a pentagon.
Moreover, we can assume by adding one vertex (if necessary) that the outer face of G
is a quadrangle.

Consider a contact-L-Γ representation C of a cycle C on four vertices v1, v2, v3, v4
and assume w.l.o.g. that any two paths in C touch at most once. Then v1∪v2∪v3∪v4

inscribes a simple rectilinear polygon P . We call the parts of C that do not lie in the
interior of P the outside of C. See Fig. 5 for an example.

Fig. 5. A contact-L-Γ representation of a 4-cycle. Its outside is highlighted

We prove the following stronger version of Theorem 5.

Theorem 6. Let G be a maximally triangle-free planar graph with a fixed plane embed-
ding and a quadrangular outer face Cout. Let Cout be any contact-L-Γ representation
of Cout. Then there is a contact-L-Γ representation of G with the same underlying em-
bedding in which the outside of the induced representation of Cout is the equivalent to
that in Cout.

The full proof of Theorem 6 is given in the appendix. We sketch the general argument
here.

Proof Sketch: We proceed inductively on the number of vertices in G, distinguishing
the following three cases.

Case 1: G has a separating 4-cycle C. Let VC be the set of vertices interior to C. We
split G into G1 := G−VC and G2 := G[C∪VC ], apply induction to G1 and afterwards
to G2 w.r.t. the representation C of C induced by G1. Putting together G1 and G2 we
obtain a contact-L-Γ representation G of G that satisfies our requirements.

Case 2: G has a facial 4-cycle C = {v1, v2, v3, v4}. We identify two opposite vertices
on C, say v1 and v3, and denote by ṽ the new vertex in the obtained graph G̃. We apply
induction to G̃ and split the path ṽ into one for v1 and one for v3. To split ṽ we trace
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around it and consider the respective sub-traces containing all contacts for v1 and v3.
We will refer to each such sub-trace as a block. We define v1 and v3 to be the subpaths
of ṽ covered by the corresponding block and translate v1 by some small amount. See
Fig. 6 for an example.

v2
v4

ṽ v1

v3

v2
v4

v2

v3

v4
v1

ṽ
v4v2

→ → →

G G̃ G̃ G

Fig. 6. How to split a face in Case 2

Case 3: There is an edge (u, v) in G with interior vertices u and v. We contract the
edge (u, v) and denote by ṽ the new vertex in the resulting graph G̃. By induction we
find a contact-L-Γ representation G̃, in which we want to split ṽ into two paths u and
v. As in the previous case we trace the contour of ṽ and see two disjoint blocks Bu

and Bv containing the contacts corresponding to neighbors of u and v, respectively.
We distinguish four sub-cases. W.l.o.g. ṽ is not a Γ-shape and we denote its vertical
segment (if existent) by s.

In Case 3a either s is completely covered by one block, say Bu, or ṽ is only a
horizontal segment and Bu is the block that contains the left endpoint of it. We define
u and v to be the sub-paths of ṽ that are covered by Bu and Bv, respectively. We shift
v a little bit up or down and attach a short vertical segment to its left endpoint so as to
touch u. An example is given in Fig. 7.

v

u
ṽ→ →

G G̃ G̃ G

ṽ
v

u

→

Fig. 7. How to split an edge in Case 3a

In Case 3b the left side of s is completely covered by one block, say Bu. We define
u to be the sub-path of ṽ that is covered by Bu. We define v to be a short horizontal
segment touching the right side of s immediately below Bv , or immediately above
the bend of ṽ in case Bv intersects the horizontal segment of ṽ. For each path that
corresponds to a neighbor of v and makes the contact with ṽ with its left endpoint, we
shorten this endpoint a little bit and attach a vertical segment to it that touches v from
above. See the left of Fig. 8.

In Case 3c the horizontal segment of ṽ is completely covered by one block, say again
Bu. By Lemma 4 we can assume that no point of s is covered on the left by Bu and
on the right by Bv. We define u and v to be the sub-paths of ṽ that are covered by Bu
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ṽ

→ v

u ṽ

v

u
→

Case 3b Case 3c

ṽ

→ v

u

ṽ

→
v

u

Case 3d

ṽ
u

v
↓

Fig. 8. How to split an edge in Case 3b, Case 3c, and Case 3d

and Bv , respectively, and shift v a little bit to the left. See the middle of Fig. 8 for an
illustration.

In the remaining case, Case 3d, both blocks Bu and Bv appear on both sides of
the vertical and horizontal segment of ṽ. Let Bu be the block that contains the upper
end of ṽ. We define u and v to be the sub-paths of ṽ that are covered by Bu and
Bv, respectively. We shift the horizontal segment of u up to the upper endpoint of v.
Here an application of Lemma 4 ensures that no contact in Bu is lost. This completes
Case 3.

Finally, if neither of Case 1, Case 2 and Case 3 applies, then G consists only of the
outer cycle Cout, for which a Contact-L-Γ representation Cout is given by assumption.
This concludes the proof.

Theorem 5 can be easily transferred into a linear time algorithm to find a contact-L-Γ
representation of a triangle-free planar graph. Note that such an algorithm should first
construct the combinatorics of the representation, since slicing operation would have
to be done in O(1). The computation of the actual coordinates of each path can be
easily carried out afterwards in linear time. Moreover the constructed representation
can be placed into the n×n grid, since every path requires only one horizontal and one
vertical grid line. Here n denotes the number of vertices in G.

5 Future Work and Open Problems

We have disproven the conjecture of Asinowski et al. [2] that B3-VPG is the simplest
Bk-VPG graph class containing planar graphs. Specifically, we have demonstrated that
every planar graph is B2-VPG and that 4-connected planar graphs are the intersection
graphs of Z-shapes (i.e., a special subclass of B2-VPG). We have also shown that these
representations can be produced from a planar graph in O(n3/2) time. We have ad-
ditionally shown that every triangle-free planar graph is a contact graph of: L-shapes,
Γ-shapes, vertical segments, and horizontal segments (i.e., it is a specialized contact
B1-VPG graph). Furthermore, we demonstrated how to construct such a contact repre-
sentation in linear time. As an further consequence, we obtain a new proof that planar
bipartite graphs are 2-DIR.

Interestingly, there is no known planar graph which does not have an intersection
representation of L-shapes; i.e., even this very restricted form of B1-VPG is still a good
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candidate to contain all planar graphs. Further to this, a colleague of ours has observed
(via computer search) that all planar graphs on at most ten vertices are intersection
graphs of L-shapes [14]. Similarly, all small triangle-free planar graphs seem to be
contact graphs of L-shapes. These observations lead to the following two conjectures.

Conjecture 1. Every planar graph is the intersection graph of L-shapes.

Conjecture 2. Every triangle-free planar graph is the contact graph of L-shapes.
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6. Chalopin, J., Gonçalves, D.: Every planar graph is the intersection graph of segments in the
plane: extended abstract. In: 41st Annual ACM Symposium on Theory of Computing, STOC
2009, pp. 631–638 (2009)

7. Ehrlich, G., Even, S., Tarjan, R.: Intersection graphs of curves in the plane. J. Comb. Theory,
Ser. B 21(1), 8–20 (1976)

8. Eppstein, D.: Regular labelings and geometric structures. In: 22nd Canadian Conference on
Computational Geometry, CCCG 2010, pp. 125–130 (2010)

9. de Fraysseix, H., Ossona de Mendez, P.: Representations by contact and intersection of seg-
ments. Algorithmica 47(4), 453–463 (2007)

10. de Fraysseix, H., Ossona de Mendez, P., Pach, J.: Representation of planar graphs by seg-
ments. Intuitive Geometry 63, 109–117 (1991)

11. de Fraysseix, H., Ossona de Mendez, P., Rosenstiehl, P.: On triangle contact graphs. Combi-
natorics, Probability & Computing 3, 233–246 (1994)

12. Fusy, E.: Combinatoire des cartes planaires et applications algorithmiques. PhD Thesis
(2007)

13. Fusy, E.: Transversal structures on triangulations: A combinatorial study and straight-line
drawings. Discrete Math. 309(7), 1870–1894 (2009)
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