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Abstract. We introduce a method to combine the color channels of an
image to a scalar valued image. Linear combinations of the RGB chan-
nels are constructed using the Fisher-Trace-Information (FTI), defined
as the trace of the Fisher information matrix of the Weibull distribu-
tion, as a cost function. The FTI characterizes the local geometry of the
Weibull manifold independent of the parametrization of the distribution.
We show that minimizing the FTI leads to contrast enhanced images,
suitable for segmentation processes. The Riemann structure of the man-
ifold of Weibull distributions is used to design optimization methods for
finding optimal weight RGB vectors. Using a threshold procedure we
find good solutions even for images with limited content variation. Ex-
periments show how the method adapts to images with widely varying
visual content. Using these image dependent de-colorizations one can ob-
tain substantially improved segmentation results compared to a mapping
with pre-defined coefficients.

Keywords: Fisher information, Weibull distribution, information ge-
ometry, RGB2Gray mapping.

1 Introduction

Combining the information from several color channels into one scalar value is
one of the basic operations in color processing [1–3]. A typical example is the
separation of the color information into a scalar-valued intensity and a vector-
valued chromaticity component. Often the mapping is constructed such that the
resulting image takes into account the properties of human observers. Another
popular choice is to preserve certain characteristics of the color image, such as
gradient information, as far as possible in the scalar image.
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In this paper we use methods from information geometry to explore different
mappings based only on statistical properties of the image. We make no assump-
tions about the purpose of the conversion or the nature of the input images.
We only assume that the raw sensor data has undergone some basic process-
ing (in our example edge detection). We use the Fisher information framework
(for applications in different scientific fields see [4]) and introduce the Fisher-
Trace-Information (FTI) as the trace of the Fisher information matrix. The FTI
depends only on the geometry of the Weibull manifold and we will show that
minimizing the FTI leads to scalar images with good contrast which are also
suitable inputs to automatic segmentation procedures.

The processing steps are the following: We filter the R, G and B com-
ponents of the image separately with L filter functions resulting in the im-
ages R1, G1, B1, . . . RL, GL, BL. For a given weight vector x =

(
xR, xG, xB

)
we

combine the filter images obtaining Fl = xRRl+xGGl+xBBl. In the last step the
strength of the filter result in each pixel p, denoted by Y (p) = ‖F1(p), ..., FL(p)‖
is computed. As a result we have a set of non-negative values y, one for every
point in the image. We assume that they follow a parametrized probability dis-
tribution W (y; θ). The theory of information geometry shows how to provide the
set of probability distributions with the structure of a Riemann manifold where
the local geometry is described by the Fisher matrix. For the parameter θ, esti-
mated from the data, we define the value of the cost function C(θ) as a function
of the Fisher information matrix at W (y; θ). Compared to approaches based on
covariances, this has the advantage that the value of the cost function will only
depend on the intrinsic geometrical properties of the manifold but not on the
coordinate system used to describe the measurements. Since θ depends on the
weight vector x we also write C(x) instead of C(θ). Finally we select the optimal
weight vector x̂ such that C(x̂) has a minimum value and generate the scalar
image as the linear combination x̂RR+ x̂GG+ x̂BB.

The experiments show that the mapping takes into account the statistical
properties of the RGB image and lead to gray-value images with higher contrast
than those obtained by a weight vector with fixed coefficients. We also show how
the manifold structure of the Weibull distributions can be used in optimization
methods to estimate optimal weight vectors for a given image. The details of
this construction and some implementation issues will be described in Sec. 2.
Experiments illustrating some results obtained can be found in Sec. 3.

2 Theoretical Background and Implementation

In the previous section we introduced the non-negative magnitude values Y (p)
as descriptors of the visual content at pixel position p. We also assume that those
points p in the image where the value Y (p) differs significantly from its average
are visually most important. Here we consider only the case where the impor-
tant points are those with high magnitude values. We are therefore interested in
the probability distribution of the largest values. From probability theory it is
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known that the limit distribution of properly normalized maxima of a sequence
of independent and identically distributed random variables is given by the gen-
eralized extreme value distribution. This distribution is therefore often used to
model the maxima of long sequences of random variables. This motivates the
application of the Weibull distribution, which is a special type of the gener-
alized extreme value distribution, to describe the statistical properties of the
selected magnitude values (see also [5–8]). Here we choose to describe the statis-
tical distributions of the filter results by the 2-parameter Weibull distribution.
We use the notation and the results in [9] and define the (2-parameter) Weibull
distribution by its cumulative density function (CDF) as

W (y;λ, β) = 1− exp(− (y/β)
λ
) (1)

where λ is the shape and β is the scale parameter. It is defined for positive
values of y. There is also a 3-parameter version with an extra degree of freedom
(location parameter), which gives the flexibility of fitting to a larger range of
filtered images [10, 11]. The drawback is that the geometry of the 3-parameter
Weibull is more complicated and therefore we often fit a 3-parameter Weibull,
extract the location parameter and then subtract it from the data, effectively
removing that extra degree of freedom. The location is often of little interest and
as a result we have a 2-parameter Weibull, with the same properties (scale and
shape parameters) as the original distribution. The estimation of the location
parameter is computationally expensive and when execution time is important
we replace it with the minimum value of the samples.

The Weibull distributions defined in Eq.(1) depend on two parameters and
information geometry (see [12, 13]) shows how to equip this space of Weibull
distributions with a Riemannian geometry, in which properties such as distances,
angles and geodesics may be defined. The 2-parameter Weibull manifold looks
locally like a plane and the geometry is defined by a metric on the tangent space
at each point. This metric is given by the symmetric, positive-definite Fisher

matrix G with three elements gij(θ) =
∫ ∂ log p(x,θ)

∂θi

∂ log p(x,θ)
∂θj

p(x, θ)dx where x

is the stochastic variable and θ is the parameter vector. For the two-parameter
Weibull distribution given by the shape-scale pair (λ, β) we have θ = (λ, β) and
the matrix elements of the Fisher matrix are given as (see [9] and [14]):

g11 =
λ2

β2
; g12 =

γ − 1

β
; g22 =

1− 2γ + γ2 + π2/6

λ2
, (2)

where γ ≈0.577216 is Euler’s constant.
As a symmetric 2×2 matrix the Fisher matrix G is completely defined by the

determinant, the trace and the angle of the first eigenvector. Both the determi-
nant and the trace are parameters that are independent of the parametrization
of the manifold depending only on the local geometrical properties of the man-
ifold. We use the trace and refer to it as the Fisher-Trace-Information (FTI).
We select the minimum of the FTI as our cost function and the experiments
will show that this choice leads to gray-value images with good contrast which



Fisher Information and Combination of RGB Channels 253

are also suitable as input for segmentation procedures. The FTI defines the cost
function C:

C(λ, β) = tr(gij) = g11 + g22 =
6 + 6(γ − 2)γ + π2 + 6λ4/β2

6λ2
. (3)

A contour plot of the trace is shown in Fig. 1 which illustrates the relation
between the parameters of the distribution and the cost function.

Fig. 1. Weibull distribution: trace as function of (scale,shape) parameters

A major advantage of the fact that the Weibull distributions form a 2D man-
ifold is the possibility to compute derivatives. In applications two vector fields
are of importance: one that is defined through the cost function C and one that
describes the changes related to a change of parameters. For the cost function
we get the (negative) gradient field

dC =
(
−∂C

∂λ , −∂C
∂β

)
=

(
2(−1+(2−γ)γ−π2/6+λ4/β2)

λ3 , −2λ2/β3

)
(4)

For a path p given by weight vectors p(t) =
(
ρ(t), γ(t), 1− ρ(t)− γ(t)

)
we can

compute the vector field
dP =

(
∂λ
∂t ,

∂β
∂t

)
(5)

Assuming euclidean geometry we can use the chain-rule and combine them as

dC

dt
= −∂C

∂λ

∂λ

∂t
− ∂C

∂β

∂β

∂t
(6)

or, in the manifold framework, we can use the Fisher matrix G(λ, β) with the
elements defined in Eq. 2, as a metric which results in:

(
−∂C

∂λ −∂C
∂β

)
G(λ, β)

(
∂λ
∂t
∂β
∂t

)
(7)
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Standard optimization methods can then be used to find the weight vector with
the smallest trace value that minimizes the cost function.

In all our experiments we use the dihedral, edge-type filters on a 5×5 window.
These filters are constructed using the representation theory of the dihedral
group which is the symmetry group of the grid with quadratic pixels. Application
of these filters is similar to the FFT with the only difference that the group of the
discrete shift operators is replaced by the dihedral group D(4). From the general
theory it follows that there are six filter pairs that transform like common edge-

detection filters (e
(1)
x , e

(1)
y , . . . , e

(6)
x , e

(6)
y ). In the notation of the previous section

we thus have L = 12. These filters are applied for each of the R, G and B-
channels separately and they only need to be computed once for a given RGB-
image. Following the description in the previous section we have to apply the
weight vector and introduce a magnitude or length value for the result. In our
experiments we used two different variations of this construction. In the first
construction we first compute the linear combinations of the R,G and B-filter

results from one filter (say filter number l) to obtain the filter results g
(l)
x , g

(l)
y .

The magnitude value is then calculated as the sum of the norms of vectors with

the filter pairs y =
∑

l ‖(g(l)x , g
(l)
y )‖. This requires the availability of all 12 x 3

filter result images during the optimization process. We avoid this in the second
algorithm where we combine the raw filter results first for each band and then

we combine these results using the weight vectors. If yR =
∑

l ‖(e(l)x , e
(l)
y )‖ is the

result for the red channel and yg, yB the corresponding magnitude results for
the green and blue band then the final magnitude value is computed as linear
combination xRyR+xGyG+xByB. This requires only that the three magnitude
filter images are available during the optimization. In general both methods
lead to similar results and we usually use the 3-magnitude filter version in our
experiments. A detailed description of the dihedral filters can be found in [15–
17] but other choices of edge-detectors, or other derivative-type filters, such as
Gabor filters can also be used.

We mentioned above that we often fit a 3-parameter Weibull first, extract
the location parameter and then subtract it from the data. This first step is
computationally expensive when the location parameter is estimated with the
help of a maximum-likelihood fitting method. We therefore often replace the
location parameter with the minimum value. This gives slightly inferior but
acceptable results. In optimization experiments where the Weibull parameters
have to be estimated several times we often use this faster, minimum-based
estimation method to obtain better start values for the more accurate location-
based computation.

For images with very limited visual variations we introduce a threshold process
in which only the points with the highest edge magnitudes are included in the
fitting. Using such a threshold has several advantages: practically it speeds up
computation since only a fraction of the original data has to be processed and it
implements the intuitive requirement that points with low edge magnitude values
are visually less important. Finally we mention that we use an R2 goodness of
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fit test [18] to measure the goodness of fit of the Weibull distributions to the
data samples.

3 Experiments

In Fig. 2 we illustrate the constructions introduced in the previous section with
the help of a typical RGB-image. In this experiment we vary the parameter
vector along the line (t, 1/3, 2/3− t), 0 ≤ t ≤ 2/3. The blue arrows in the plot
show the (negative) gradient vectors dC defined in Eq. 4. They describe the
change of the trace of the Fisher matrix as a function of the scale and shape
parameters. The red arrows are samples of the vector field dP defined in Eq. 5 as
the weight vector varies along the line (t, 1/3, 2/3− t). The scalar image at the
beginning of the curve (with the highest trace value, located in the upper left
corner of the vector plot) and the scalar image with the lowest value of the trace
are (located in the lower right corner of the plot), together with the original
color image, are shown in the middle- and the right side of Figure 3. We see
that the resulting images clearly separate into areas with different dominating
colors whereas the fixed-coefficient conversion used by rgb2gray maps all objects
to relatively similar gray values.
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Fig. 2. Vector field for variations along the red/blue line and the trace gradients

Fig. 3. Original image, highest/lowest trace value (red/blue variation)
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In Figs. 4,5a and 5b we illustrate the effect of the threshold used to suppress
points with low magnitude filter values. In these experiments we used 50%,
20% and 5% of the pixels with the highest filter values (i.e. quantile values
q = 0.5, 0.8, 0.95). We then fitted a Weibull distribution to the remaining points
and finally we evaluate the goodness of the fit with the help of the R2-test. In
these figures the image in the upper left corner is the original color image, the
other three images (labeled (I), (II) and (III) in the figures) show the results for
different threshold settings arranged in increasing R2-values. The image (labeled
as (III)) in the lower right corner has the highest R2-value indicating the best fit.
The numerical values for the R2 measure and the corresponding threshold levels
are collected in Table 1 and the images obtained are shown in Figs. 4 and 5.
We see that in these examples the threshold values that resulted in the highest
R2 values also produced the best gray value image with a better discrimination
between the different color regions.

Table 1. R2 goodness of fit values for different threshold values

Fig.4
label (I) (II) (III)
q 0.95 0.5 0.8
R2 0.81 0.89 0.89

Fig.5a
(I) (II) (III)
0.5 0.8 0.95

0.924 0.945 0.98

Fig.5b
(I) (II) (III)
0.95 0.5 0.8
0.951 0.959 0.973

Fig. 4. Homogeneous squares

(a) Trafic Sign 1 (b) Trafic Sign 2

Fig. 5. Mapping of traffic signs
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Depending on the image content the path on the Weibull space can be much
more complicated than the situation illustrated in Fig. 2. This is illustrated in
Figs. 6,7 and 8. Fig. 6 corresponds to Fig. 2 showing the vector fields defined by
the trace and the parameter change. Fig. 7 shows 16 of the images generated by
varying the weight vectors along the line (t, 1/3, 2/3− t), 0 ≤ t ≤ 2/3. The varia-
tion of the trace values along the parameter curves (1/3, t, 2/3− t), (t, 1/3, 2/3−
t), (t, 2/3 − t, 1/3) is shown in Fig. 8. The trace values for the images in Fig.7
are those that follow the black solid curve in Fig. 8. Comparing this curve and
the images in Fig. 7 confirms the motivation behind the cost function is valid
since it shows that a low trace value (at the beginning and the end of the curve)
corresponds indeed to images with richer visual content.

0.4 0.5 0.6 0.7 0.8 0.9

1.2

1.3

1.4

1.5

1.6

3.64
4.5

5.4

7.5
13

17 12
7.1

4.5
3.2

Scale

Sh
ap

e

sign2

Fig. 6. Traffic Sign variation

Fig. 7. Traffic Sign variations; parameter interval (t, 1/3, 2/3− t), 0 ≤ t ≤ 2/3

In Eqs. 6 and 7 we described how the geometric structure of the Weibull
manifold can be used to compute changes of the cost function. We used this in a
simple implementation of an optimization method based on a line-search along
a color coordinate axis. We implemented it as follows: first we define a coordinate
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Fig. 8. Trace values for parameter variations along the coordinate axes

direction in RGB space by fixing one of the color components and varying the
RGB vectors along the remaining two colors. For a given starting point we
find first the direction with the highest initial decrease of the cost function and
then start a line-search along that direction until we find a minimum point.
The new point is then used as starting point in the next line-search iteration
along another color component. An illustration of the results obtained by such
an optimization is shown in Figs. 9a and 10. The change of the RGB weight
vectors during one such optimization (together with the corresponding trace
values) is shown in Fig. 9b. The number of search directions was limited to eight
in this case. Compared with Matlabs rgb2gray mapping one can see that the
optimization generated a similar image but with a slightly higher contrast. This
is a general property we observed in our experiments: When the color image
has a rich variation of colors then the optimization methods results usually in
weight vectors that are very similar to standard fixed vectors. When the color
distribution in the original image is more extreme, for example consisting mainly
of red/blue pixels, then the optimized weight vectors is very different and better
adapted to the properties of the original. In the experiments described here we
use Eq. 6 in the optimization. We compared results from both, Eqs. 6 and 7
and found that they almost always agree on the direction of the descent, what
differs is the length of the vectors which might be useful when more advanced
optimization methods are used.

In the beginning we mentioned that we used two different ways incorporat-
ing a third parameter into the Weibull fitting. In one approach we subtract
the location parameter of the three-parameter Weibull distribution before fit-
ting a two-parameter Weibull distribution. In the other method we subtract
the minimum value instead. The images in Fig 11 show that for some images
the Weibull-location solution leads to visibly different results with lower trace
values. Fig. 11a shows the original image, Fig. 11b the result of the optimiza-
tion incorporating the minimum subtraction and Fig. 11c starts with the weight
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(a) Original
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(b) RGB vectors

Fig. 9. Colorful image

(a) Result of optimization (b) Matlab rgb2gray

Fig. 10. Optimized mapping compared to Matlabs RGB2Gray

vector found in the minimum-based method and applies an additional optimiza-
tion step making use of the Weibull-location parameter. For comparison we show
the result of applying the RGB2Gray function provided by Matlab.

Our proposed mapping is not designed to optimize visual similarity to aid hu-
man observers but instead it attempts to increase the separation of the different
channels in the resulting grayscale image. This can be considered as a type of
contrast enhancement. As a result the Fisher-based mapping is well suited as in-
put to segmentation methods. We will illustrate this property with a superpixel
segmentation experiment on the two images in Fig 11c(c) and (d).

A superpixel is a perceptually meaningful collection of pixels, obtained from
some low-level grouping process. Given this definition, the elements (pixels) in-
side each superpixel form a consistent unit, e.g. in terms of color, texture, in-
tensity and so on. In this particular example we will use the relaxation labeling
superpixel method by [19], which works on grayscale intensity. In other words,
each superpixel is defined by the mean and variance of its constituent pixels’
intensities and it is adapting its shape towards strong intensity boundaries. This
is exactly the kind of information our proposed mapping enhances.
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(a) Original RGB image (b) Minimum-compensations

(c) Additional location estimate (d) Matlab RGB2Gray conversion

Fig. 11. The effect of minimum and location subtraction

(a) Grid element,100x100Pixels, Coarse (b) Grid element,80x80 Pixels

(c) Grid element,60x60 Pixels (d) Grid-element,40x40 Pixels,Fine

Fig. 12. Superpixel segmentation results of intensity mapped images (left Fisher trace
optimization, right Matlab rgb2gray) at different levels of detail
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The first stage to superpixel segmentation is initialization by a randomly
labeled square grid. The size of the grid (granularity) determines the level of
detail of the superpixel segmentation but also its speed. At coarser scales the
segmentation is very fast but a lot of the details are lost especially along weak
boundaries. It is obvious that we need a good mapping that will optimize the
trade off between speed and level of detail.

In Fig. 12 we see the superpixel segmentation applied to the mapping re-
sult images from Fig 11c(c) and (d) at different grid levels. At the finer levels
Fig. 12(d) both images produce similar boundaries (overlaid). However, as we in-
crease the coarseness the two segmentation results diverge. Notice how Matlab’s
RGB2Gray degenerates much faster (already from 60x60 pixel element grids) due

(a) 4000K illumination (b) 14000K illumination

(c) Mapping 4000K (d) Mapping 14000K
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Fig. 13. The effect illumination changes
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to the weak contrast boundaries it produces. By the coarsest grid where each
element has 100x100 pixels, the foreground figure has completely disappeared.
The Fisher-based mapping however conserves a lot of the boundary information
at much coarser levels due to the good contrast separation. As a result, we may
say that this type of mapping is ideal in cases where we wish to obtain a result
suitably for fast, intensity-driven segmentation.

In the last example we illustrate the effect of illumination changes. We start
with a multi-spectral image with 31 channels in 10nm steps from 410nm to
710nm. We then used a mathematical model of a digital camera to simulate
a (linear) raw RGB image. As illumination we selected black-body radiators
with temperatures from 4000K to 14000K in 500K steps. In Fig. 13 we see the
simulated raw images for the 4000K and 14000K illuminations and the optimized
scalar images. The curves that show the three components of the weight vectors
as a function of temperature of the illuminating radiator. These curves were
obtained by averaging the results over 100 different iterations with random start
points. The image variance in the scalar images for one Fisher trace mapping
and the fixed rgb2gray mapping are shown in Fig. 13f.

(a) Original

(b) Trace

(c) rgb2gray

Fig. 14. Example images with pure colors
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Note that the RGB images shown here are the linear RGB images without
gamma mapping. The high intensity for some points on the spoon leads to a
rather dark overall linear RGB image. The results obtained here, illustrate how
the weights change from a red-green combination for a reddish illumination to a
blue-green combination for the blueish illumination. It also shows that the image
variance for the trace-based conversion is always higher than the variance in the
images produced with rgb2gray. Some additional examples, using images with
only pure colors and demonstrating the flexibility of the method, are shown in
Fig. 14. They show that the mapping improves the separation between regions
with different color properties compared to the fixed-coefficient mapping imple-
mented in rgb2gray.

4 Summary and Conclusions

We introduced the trace of the Fisher matrix of the Weibull distribution as a cost
function that defines the quality of linear combinations of the RGB channels of
a color image. We also used the manifold structure of the Weibull distribution to
design optimization algorithms to find the minimum points of the cost function.
Our experiments show that for images with limited edge variations, such as traffic
signs, it is important to limit the distribution fitting to the most significant edge
pixels. We also showed that the trace measures visually significant appearance
changes where low trace values correspond to higher contrast images. We also
implemented different optimization algorithms and showed that they produce
mappings resulting in images with better contrast and separability properties.
Preliminary results show that the optimization methods produce weight vectors
that adapt to changing illumination conditions.

In this paper we selected the edge-like filters in the dihedral filter system but
other contrast filters, for example line-filters or any combination of them could
also be used. The framework can also be used to select the filter functions and
their optimal weights. The optimization used here consists of a simple line-search
along coordinate axes. More efficient optimization methods along general search
directions and with more advanced line-search methods can be used to improve
the performance of the method. The investigation of the illumination changes
are only an illustration of one experimental setup. A detailed investigation of the
influence of the different parameters (such as the camera model, quantization,
noise etc.) is outside the scope of this paper.
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