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Abstract. In this paper we describe our efforts to create tangible imaging 
systems that provide rich virtual representations of real-world surfaces. 
Tangible imaging systems have three main properties: 1) the images produced 
must be visually realistic; 2) the images must be responsive to user interaction; 
and 3) the images must be situated, appearing to be integrated with their 
environments. Our current system, based on a computer, LCD display, light and 
position sensors, and graphics rendering tools meets all these requirements; 
supporting the accurate simulation of the appearances of surfaces with complex 
textures and material properties, and allowing users to interact with and 
experience these virtual surfaces as if they were real ones. We first describe the 
components of our current system and its implementation. We then illustrate the 
system’s capabilities for simulating the appearances and behaviors of real-world 
surfaces. Finally we describe some potential applications of tangible imaging 
systems and discuss limitations and future work. 
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1 Introduction 

Surfaces cover everything, and it is through the interaction of light with these surfaces 
and our eyes that we are able to visually perceive the properties of the world. We 
create images through graphics or photography to record the properties of these 
surfaces and to communicate them to others, and images can serve quite well as visual 
representations, but still the visual information provided by an image of a surface is 
not the same as that provided by the surface itself. 

We get a lot of information from interacting with surfaces, either through direct 
manipulation, or through observing a surface from different viewpoints, and 
conventional images do not support either of these behaviors. For this reason we have 
been working to create tangible imaging systems [1-4], that harness the power of 
digital modeling, computer graphics, and modern mobile computing platforms to 
produce new kinds of images that look and behave much more like the surfaces they 
represent.  

Figure 1 shows one implementation of a tangible imaging system, the tangiBook, 
based on an off-the-shelf laptop computer. Computer graphics hardware and custom 
software in the device allows a 3D model of an oil painting to be rendered to the 
screen in real-time, with realistic lighting. Orientation sensors and observer tracking 
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systems change the rendering as the device or observer move. The experience is 
similar to that of holding and observing a real painting.  

In this paper we describe our efforts to create tangible imaging systems like the one 
described above that serve as rich digital representations of real surfaces. We believe 
that to achieve this goal the systems must have three properties. First, the images 
produced by the systems must be realistic, accurately representing the shapes and 
material properties of the modeled surfaces. Second the images must be responsive, 
changing appearance appropriately with direct manipulation and changes in observer 
viewpoint. And finally, the images must be situated, appearing to be an integral part 
of the observer’s environment.  

In the following sections we first discuss prior efforts in this area by others and 
ourselves. We then describe the components of our current system that meets all of 
the above-mentioned requirements, and we illustrate its capabilities. Finally, we 
outline potential applications of tangible imaging systems and discuss ongoing and 
future work. 

2 Prior Work 

There has been strong interest in developing natural interfaces for interacting with 
virtual environments since the earliest days of computer graphics. Sutherland and 
colleagues, along with laying the foundations for 3D graphics rendering, did 
pioneering work on developing head-mounted display systems and 3D input devices 
[5,6] Significant advances have been made in both areas since that time [7-12]. 

An alternative approach that supports direct interaction with virtual environments 
is the CAVE system [13]. In this system, users are surrounded by projection screens 
that display computer graphics renderings. Stereoscopic eyewear, user position 
tracking, and gestural interfaces have all been added to different CAVE systems to 
increase feelings of immersion and support for direct interaction. Another projector-
based approach is represented by the shaderLamps and iLamps systems developed by 
Raskar et al. [14-17], as well as similar work by Bimber and colleagues. In these 
systems, warped CG images are projected onto real three-dimensional objects to give 
the observer the experience of real objects with surface properties that can be changed 
under computer control.  

A third major approach for supporting direct interaction with virtual environments 
incorporates spatially aware displays and tangible interfaces. In the Chameleon 
systems [18,19] computer monitors were fitted with 6 degree-of-freedom trackers to 
create spatially-situated displays whose virtual content changed depending on their 
real-world positions. The Virtual Mirror system [20] took the concept one step further 
by incorporating a video camera pointed toward the user to create the impression of a 
real mirror. This system also allowed interactive viewing of reflective daguerreotype 
images [21]. A significant feature of all these systems is their support for direct 
manipulation through tangible interfaces. The strength of tangible interfaces, is that 
the affordances of the systems (lifting, tilting, and rotating the display) support rich 
and natural modes of interaction with the virtual content [22,23]. 
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tablet device provides a more natural interface for the low relief surfaces we were 
interested in simulating. Figure 1 (bottom, left) shows the tangiPaint [3] system, 
developed on the same tablet platform that allows users to create their own 
“paintings” and view them using the tangible imaging platform. Sophisticated canvas, 
paint, and brush models produce paintings with realistic color mixing, gloss, and 
brushstroke texture. Finally, we have recently taken the tangible imaging concept into 
3D with the development of the phantoView [4] application shown in Figure 1 
(bottom, right). Rendering using anamorphic stereo projections and red/blue 
anaglyphs provides and the appearance of objects that sit on the tablet screen. Device 
tracking allows the user to view different sides of the object by rotating the tablet 
around its vertical axis.  

While the systems described above illustrate the capabilities and potential of 
tangible imaging systems, all the images produced by these systems are just pretty 
pictures.  To be useful in domains such as appearance design and communication, 
electronic commerce, or digital archiving, it is not enough that the images look good 
or produce compelling experiences, they must be measurably accurate representations 
of real surfaces. In the following sections we describe our efforts to develop a system 
that can meet these goals.  

3 System Design 

The goal in creating tangible imaging systems is to develop imaging technology that 
bridges the real and virtual worlds. To reach this goal we identified three 
requirements: 1) the images produced by the systems must be realistic, accurately 
representing the shapes and material properties of the modeled surfaces; 2) the images 
must be responsive, changing appearance appropriately with direct manipulation and 
changes in observer viewpoint; and 3) the images must be situated, appearing to be an 
integral part of the observer’s environment. In the following sections we describe how 
we have designed a system that meets each of these requirements. 

 

 

Fig. 2. Six channel multispectral rendering pipeline
implemented in the system. Described in detail in
[24].  

  Fig. 3. Metameric matches and failures 
under different illuminants as rendered 
by the six-channel pipeline 
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3.1 Realism 

To create displayed images that accurately represent the shapes and material 
properties of real surfaces we need to first model these properties, and then render 
these models using advanced computer graphics methods. Our surface models include 
information about surface color, gloss and texture.  

Representing Color: In the extreme, accurately modeling and rendering surface color 
requires representing the reflectance spectrum of the surface, the emission spectrum 
of the light source illuminating the surface, and the response properties of the display 
system. For the sake of performance, these full spectral calculations are typically 
reduced to products of normalized RGB values used to represent surface and source 
properties that are then scaled and sent as RGB digital counts to the display. While 
this approach is common, it can lead to gross errors in color rendering. 

In our system, to preserve color accuracy while also supporting real-time graphics 
performance, we have developed an abridged spectral rendering pipeline [24]. Figure 
2 shows the pipeline, where surface and source spectra are each coded into signals in 
six channels, which can then used for colorimetrically-accurate real-time rendering 
performed by commodity graphics hardware (GPUs).  Output of the system is 
illustrated in Figure 3, where the metameric colors of the teapots are correctly 
rendered under a variety of illumination conditions. 

 

 

Fig. 4. System representation of material 
properties a) full rendering, b) diffuse color, c)
specular lobe magnitude, d) specular lobe 
spread 

  Fig. 5. System representation of texture. a) 
full rendering, b) texture-only rendering 
showing shading and shadowing effects 

Representing Gloss: Real surfaces vary in gloss as well as color. Gloss is related to 
the directional reflectance properties of surfaces that can be measured with 
gonioreflectometers or similar instruments and represented by bi-directional 
reflectance distribution functions (BRDFs). BRDFs are often characterized in terms of 
their diffuse (uniform, Lambertian) and specular (directional) components. In our 
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color gamut, uniformity, and resolution. The monitor was mounted on a stand that 
allowed it to be easily grasped and tilted and rotated by a user. The monitor and stand 
were placed in a light booth with selectable luminaires and achromatic walls and 
floor. 

To track the orientation of the monitor we attached an Action XL 3DOF motion 
sensor to the case. To track the position of the user with respect to the monitor we 
used a Natural Point IR tracker. The information provided by these sensors was fed to 
our rendering engine and used to calculate the correct surface appearance given the 
pose of the monitor screen in the light booth and the viewpoint of the user. The 
sensing and rendering system operates at interactive rates to allow the user to actively 
manipulate the surface/image and dynamically change their viewpoint. 

3.3 Situatedness 

The third requirement we set for our system is that as with real reflective surfaces, the 
images should be situated, and appear to be an integral part of the environment. To 
meet this requirement the image needs to appear to be illuminated by the light sources 
in the environment and to change appropriately with changes in the illumination. To 
achieve this goal we used an Ocean Optics USB2000+ spectrometer to provide real-
time sensing of the spectra of the light booth illuminants. Figure 6 shows the device 
positioned behind the monitor in the light booth. Spectral measurements provided by 
the device were fed to the multi-spectral color rendering system described earlier to 
provide colorimetrically accurate renderings of the modeled surfaces under different 
illuminants.  

To provide the experience of a situated surface, the spatial properties of 
illumination and surface interaction must also be modeled and rendered. To achieve 
this goal we used HDR imaging techniques to characterize the spatial distributions of 
the light booth luminaires. Representative image are shown in Figure 6. Information 
about the illumination distributions was fed into the rendering engine and used to 
render images whose reflectance patterns are radio metrically accurate with respect to 
the real sources.  

4 System Capabilities 

The system described above meets the three requirements we set out for tangible 
imaging systems. First, the images produced by the system are realistic, and faithfully 
represent the shapes and material properties of modeled surfaces. Second, the images 
are responsive, and change appearance appropriately with direct manipulation and 
changes in user viewpoint. And third, the images are situated with respect to the scene 
illumination and the observer and appear to be an integral part of the user’s 
environment. In the following sections we describe and illustrate the capabilities of 
the system for simulating reflective surfaces. 
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Fig. 10. Simulating surface appearance. The real painting is on the left the image produced by 
the system is on the right. Note the realism of the color, gloss, and texture components. As 
noted in the text, the image also meets the responsiveness and situatedness requirements of 
tangible imaging systems. 

Texture: Figure 9 shows the ability of the system to simulate the shading and 
shadowing effects produced by surface textures. The images show renderings of the 
canvas and brushstroke texture of a scanned oil painting. Note that the surfaces show 
appropriate surface shading effects with surfaces elements oriented toward the light 
source appearing brighter than those facing other directions. Note also that regions 
that are occluded from direct illumination are appropriately shadowed. The two 
images show the effects of rotating the display monitor. Note that the shading and 
shadowing effects are different at the two orientations, correctly simulating the 
interactions of illumination and surface geometry. Because of the system’s orientation 
sensor, these effects change in real-time with user manipulation of the display. 

Finally, Figure 10 shows the capabilities of the system brought together in one 
simulation. On the left is a real oil painting with complex, spatially-varying color, 
gloss, and textural properties. On the right is the rendering produced by the system. 
Although it has been discussed earlier, it should be emphasized that rendering is 
interactive and dynamic, and responds as the real painting would to direct 
manipulation, changes in viewpoint, and changes in illumination.  

5 Applications 

The unique capabilities of tangible imaging systems could enable a wide variety of 
applications where natural interaction with virtual surfaces is desired. In the following  
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Fig. 11. Potential applications. (left) Soft-proofing of digital prints. (right) Visualization of 
artifacts for enhanced access to digital libraries and museums. 

section we provide examples of three potential application domains: material 
appearance research, soft-proofing and computer-aided appearance design, and 
enhanced access to digital libraries and museums. 

Material Appearance Research: Understanding the psychophysics of material 
appearance has important implications for both science and industry. A major 
impediment to material appearance research has been the difficulty of creating stimuli 
that vary systematically in the properties of interest. Another limitation is the inability 
to dynamically control material properties, which has prevented the use of adjustment 
and matching procedures in experiments. Realistic computer graphics modeling and 
rendering methods can facilitate this, however computer graphics images on a screen 
typically do not support the natural modes of interaction that one uses when 
evaluating real materials. All of these limitations can be overcome with tangible 
imaging systems. 

Computer-Aided Appearance Design: In printing it is valuable to be able to 
simulate the appearance of a hardcopy product before printing by soft-proofing on a 
computer display. Figure 11 shows a prototype of a soft-proofing application 
implemented on one of our systems [1]. With the application, users can select gloss 
and texture properties of papers real time, and directly manipulate the simulated print, 
and view it from different angles under different lighting conditions. The real-time 
control and natural interactivity provided by tangible imaging systems could greatly 
enhance the utility of the soft-proofing process. More broadly, tangible imaging 
systems could support computer-aided appearance design of materials like paints, 
coatings, and textiles. 

Access to Digital Libraries and Museums: Digitization has had an enormous impact 
on libraries and museums. Manuscripts, paintings, and other cultural heritage objects 
that were once only accessible by physical visit, are now documented and accessible 
worldwide though digital images. However for many of these objects, static digital 
images are not sufficient to convey their rich and complex properties.  
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Tangible imaging systems could be used to provide enhanced access to online 
digital collections. For example, Figure 11 shows a model of an illuminated 
manuscript created by Gardner et al. [26] rendered on one of our systems [1]. Using 
the system, a user can grasp the simulated manuscript, move it around to see the glints 
off the gold leaf and look at the surface from different angles to see the texture of the 
vellum. Tangible imaging systems provide a new interface paradigm for digital 
libraries and museums that could enhance access and enable advances in teaching and 
scholarship. 

6 Conclusion 

In this paper we have described our efforts to create tangible imaging systems that 
provide rich digital representations of real-world surfaces. Tangible imaging systems 
have three main properties: 1) the images produced by the systems are visually 
realistic; 2) the images are responsive to user interaction; and 3) the images are 
situated, appearing to be integrated with their environments. Our current system, 
based on a computer, LCD display, light and position sensors, and graphics rendering 
tools meets all these requirements; supporting the accurate simulation of the colors, 
glosses, and textures of surfaces with complex three-dimensional properties, and 
allowing users to interact with and experience these virtual surfaces as if they were 
real ones. 

We have illustrated how tangible imaging systems can be used to advantage in a 
wide range of applications including material appearance research, soft-proofing and 
appearance design, and enhanced access to digital collections.  

We are currently conducting experiments to validate the fidelity of the images 
produced by the system described in this paper both physically and perceptually [27]. 
The initial results verify the accuracy and the realism of the simulations, but the work 
is still in progress.  

Tangible display systems represent a powerful and meaningful new approach for 
bridging the real and virtual worlds. The work described in this paper has described 
some promising first steps in this effort.  
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