

G. Poels (Ed.): CONFENIS 2012, LNBIP 139, pp. 157–164, 2013.
© IFIP International Federation for Information Processing 2013

Towards More Flexible Enterprise Information Systems

Rogerio Atem de Carvalho1,2 and Björn Johansson3

1 Federal Fluminense Institute, NSI, R. Dr. Siqueira 273, Sala F104, Campos, Brazil
2 Federal Fluminense University, Latec, R. Passo da Patria 156, Bloco E, Niteroi, Brazil

ratem@iff.edu.br
3 Department of Informatics, School of Economics and Management,

Lund University, Sweden
bjorn.johansson@ics.lu.se

Abstract. The aim of this paper is to present the software development
techniques used to build the EIS Patterns development framework, which is a
testbed for a series of techniques that aim at giving more flexibility to EIS in
general. Some of these techniques are customizations or extensions of practices
created by the agile software development movement, while others represent
new proposals. This paper also aims at helping promoting more discussion
around the EIS development questions, since most of research papers in EIS
area focus on deployment, IT, or business related issues, leaving the discussion
on development techniques ill-treated.

Keywords: Enterprise Information Systems, Domain Specific Languages,
Design Patterns, Statechart Diagrams, Natural Language Processing.

1 Introduction

In Information Systems, flexibility can be understood as the quality of a given system
to be adaptable in a cost and effort effective and efficient way. Although it is usual to
hear from Enterprise Information Systems (EIS) vendors that their systems are highly
flexible, the practice has shown that customizing this type of system is still a costly
task, mainly because there are still based on relatively old software development
practices and tools. In this context, the EIS Patterns framework1 is a research project
which aims at providing a testbed for a series of relatively recent techniques nurtured
at the Agile methods communities, and ported to the EIS arena.

The idea of suggesting and testing new ways for developing EIS was born from
accumulated research and experience on more traditional methods, such as Model
Driven Development (MDD), on top of the open source ERP5 system [1]. ERP5
represents a fully featured and complex EIS core, making it hard to test the ideas here
presented in their pure form, thus it was decided to develop a simpler framework to
serve as a proof of concept of proposed techniques.

1 Initially discussed at the EIS Development blog through a series of posts entitled EIS Patterns,

starting in December 2010 (http://eis-development.blogspot.com).

158 R.A. de Carvalho and B. Johansson

This paper is organized as follows: the next topic summarizes the series of papers
that forms the timeline of research done on top of ERP5; following this, the proposed
techniques are presented, and finally some conclusions and possible directions are
listed.

2 Background

In order to understand this proposal, it is necessary to know the basis from where it
was developed, which is formed by a series of approaches developed on top of ERP5.
Following the dominant tendency of the past decade, which was using MDD, the first
approach towards a formalization of a deployment process for ERP5 was to develop a
high-level modeling architecture and a set of reference models [2], as well as the core
of a development process [3]. This process evolved to the point of providing a
complete set of integrated activities, covering the different abstraction levels involved
by supplying, according to the Geram [4] framework, workflows for Enterprise,
Requirements, Analysis, Design, and Implementation tasks [5].

Since programming is the task that provides the “real” asset in EIS development,
which is the source code that reflects the business requirements, programming
activities must also be covered. Therefore, in “ERP5: Designing for Maximum
Adaptability”[6] it is presented how to develop on top of the ERP5’s document-
centric approach, while in “Using Design Patterns for Creating Highly Flexible
EIS”[7], the specific design patterns used to derive concepts from the system’s core
are presented. Complimentary, in “Development Support Tools for ERP” [8] two
comprehensive sets of ERP5’s development support tools are presented: (i) Product-
related tools that support code creation, testing, configuration, and change
management, and (ii) Process-related tools that support project management and team
collaboration activities. Finally, in “ERP System Implementation from the Ground up:
The ERP5 Development Process and Tools”[9], the whole picture of developing on
top of ERP5 is presented, locating usage of the tools in each development workflow,
and defining its domain-specific development environment (DSDE).

Although it was possible to develop a comprehensive MDD-based development
process for the ERP5 framework, the research and development team responsible for
proposing this process developed at the same time an Enterprise Content Management
solution [10] and experimented with Agile techniques for both managing the project
and constructing the software. Porting this experimentation to the EIS development
arena lead to the customization of a series of agile techniques, as presented in “Agile
Software Development for Customizing ERPs”[11].

The work on top of ERP5 provided a strong background, on both research and
practice matters, enough to identify the types of relatively new software development
techniques that could be used on other EIS development projects. Even more, this
exploration of a real-world, complex system, has shown that some other advances
could be obtained by going deeper into some of the techniques used, as well as by
applying them in a lighter framework, where experimentations results could be
quickly obtained.

 Towards More Flexible Enterprise Information Systems 159

3 Enters EIS Patterns

EIS Patterns is a simple framework focused on testing new techniques for developing
flexible EIS. It was conceived having the Lego sets in mind: very basic building
blocks that can be combined to form different business entities. Therefore, it was built
around three very abstract concepts, each one with three subclasses, representing two
“opposite” derived concepts and an aggregator of these first two, forming the
structure presented in Fig. 1.

Fig. 1. Ontology representing the EIS Patterns core

Fig 1 is interpreted as follows:

Resource: is anything that is used for production.
-Material: product, component, tool, document, raw material etc.
-Operation: human operation and machine operation, as well as their derivatives.
-Kit: a collective of material and/or immaterial resources. Ex.: bundled services and
components for manufacturing.
Node: is an active business entity that transforms resources.
-Person: employee, supplier's contact person, drill operator etc.
-Machine: hardware, software, drill machine, bank account etc.
-Organization: a collective of machines and/or persons, such as manufacturing cell,
department, company, government.
Movement: is a movement of a Resource between two Nodes.
-Transformation: is a movement inside a node, in other words, the source and
destination are the same node, it represents the transformation by machine or human
work of a resource, such as drilling a metal plate or writing a report.

160 R.A. de Carvalho and B. Johansson

-Transportation: is a movement of resources between two nodes, for example, moving
a component from one workstation to another, sending an order from the supplier to
the customer.
-Process: a collective of transformations and/or transportations, in other words, a
business process.

Besides the obvious “is a” and “is composed by” relationships presented in the
ontology in Fig. 1, a chain of relationships denote how business processes are
implemented: “a Process coordinates Node(s) to perform Operation(s) that operates
on Work Item(s)”. The semantic meaning of this chain is that process objects control
under which conditions node objects perform operations in order to transform or
transport resources. This leads to another special relationship which is “a Movement
encapsulates an Operation”, which means that a movement object will encapsulate
the execution of an operation. In practical terms, an operation is the abstract
description of a production operation, which is implemented by one or more node
objects’ methods. When this operation is trigged by a process object, it defers the
actual execution to a pre-configured node object’s method, and this execution is
logged by a movement object, which stores all parameters, date and time, and results
of this execution. Therefore, an operation is an abstract concept which can be
configured to defer execution to different methods, from different objects, in
accordance to the intents of a specific business process instance. In other words, a
business process abstraction keeps its logic, while specific results can be obtained by
configuration.

Although this execution deference can appear to be complex, it is a powerful
mechanism which allows that a given business process model may be implemented in
different ways, according to different modeling-time or even runtime contexts. In
other words, the same process logic can be implemented in different ways, for
different applications, thus leveraging the power of reuse.

It is important to note that in this environment, Processes control the active
elements, the Nodes, which in turn operate on top of the passive ones, the Resources.
In programming terms, this means that processes are configurable, nodes are
extended, and resources are typically “data bag” classes. Therefore, extending the
nodes for complying with new business requirements becomes the next point where
flexibility must take place.

3.1 Using Decorators to Create a Dynamic System

Usually, class behavior is extended by creating subclasses, however, this basic
technique can lead to complex, hard to maintain, and even worse, hard-coded class
hierarchies. One of the solutions to avoid this is to use the Decorator design pattern
[12], taking into account the following matters:

- While subclassing adds behavior to all instances of the original class, decorating can
provide new behavior, at runtime, for individual objects. At runtime means that
decoration is a “pay-as-you-go” approach to adding responsibilities.

 Towards More Flexible Enterprise Information Systems 161

- Using decorators allows mix-and-matching of responsibilities.
- Decorator classes are free to add operations for specific functionalities.
- Using decorators facilitates system configuration, however, typically, it is necessary
to deal with lots of small objects.

Hence, by using decorators it is possible, during a business process realization, to
associate and/or dissociate different responsibilities to node objects - in accordance to
the process logic, and providing two main benefits: (i) the same object, with the same
identifier, is used during the whole business process, there is no need for creating
different objects of different classes, and (ii) given (i), auditing is facilitated, since it
is not necessary to follow different objects, instead, the decoration of the same object
is logged. Moreover, it is possible to follow the same object during all its life-cycle,
including through different business processes: after an object is created and validated
- meaning that it reflects a real-world business entity - it will keep its identity forever2.

An important remark is that decorators must keep a set of rules of association,
which is responsible for allowing or prohibiting objects to be assigned to new
responsibilities. If a given object respects the rules of association of a given decorator,
it can be decorated by it. At this point, defining a flexible way of ensuring contracts
between decorators and decorated objects is of interest.

Should-dsl: a language for contract checking
Although Should-dsl was originally created as a domain specific language for

checking expectations in automated tests [13], in the EIS Patterns framework it is also
used to provide highly readable contract verifiers, such as:

associated |should| be_decorated_by(EmployeeDecorator)

In the case above the rule is auto-explanative: “the associated object should be
decorated by the Employee Decorator”, meaning that for someone to get manager’s
skills he or she should have the basic employee’s skills first. Besides being human
readable, these rules are queryable, for a given decorator it is possible to obtain its
rules, as well as the symmetric: for a given node object, it is possible to identify
which decorators it can use. Query results, together with the analysis of textual
requirements using Natural Language Processing, are used to help configuring
applications built on top of the framework.

Using Natural Language Processing to Find Candidate Decorators
It is also possible to parse textual requirements, find the significant terms and use

them to query decorators’ documentation, so the framework can suggest possible
decorators to be used in accordance to the requirements. Decorators’ methods that
represent business operations - the components of business processes - are specially

2 A more complete discussion on using decorators, with examples, can be found at
http://eis-development.blogspot.com.br/2011/03/enterprise-
information-systems-patterns_09.html

162 R.A. de Carvalho and B. Johansson

tagged, making it possible to query their documentation as well as obtain their
category. Categories are used to classify these operations, for instance, it is possible to
have categories such as “financial”, “logistics”, “manufacturing” and so on. In that
way, the framework can suggest, from its base of decorators, candidates to the users’
requirements.

3.2 A Domain-Specific and Ubiquitous Language for Modeling Business
Process

The ontology presented in Fig. 1, although simple, is abstract enough to represent
entities involved in any business process. Moreover, by appropriately using a
statechart diagram, it is possible to use a single model to describe a business process,
define active entities, as well as to simulate the process.

In order to better describe this proposal, Fig. 2 shows a simple quotation process.
Taking into account that a class diagram was used to represent the structural part of
the business process3, by explicitly declaring the objects responsible for the
transitions, it is possible to identify the active elements of the process, all of the
Person type: sales_rep, verifier, approver, and contractor; as well as how they
collaborate to perform the business process, by attaching the appropriate methods
calls. Additionally, in some states, a method is declared with the “/do” tag, to indicate
that a simulation can be ran when the process enters these states.

To run these state machine models, Yakindu (www.yakindu.org) could be used. By
adapting the statechart execution engine, it is possible to run the model while making
external calls to automated tests, giving the user the view of the live system running,
as proposed by Carvalho et al. [14].

Fig. 2. A simple quotation process using the proposed concepts

3 Not shown here due to the lack of space.

 Towards More Flexible Enterprise Information Systems 163

3.3 An Inoculable Workflow Engine

Workflow engines provide the basis for the computational realization of business
processes. Basically, there are two types of workflow engines: (i) associated to
application development platforms or (ii) implemented as software libraries.

EIS patterns uses Extreme Fluidity (xFluidity), a variation of the type (ii) workflow
engine, developed as part of the framework. xFluidity is an inoculable (and
expellable) engine that can be injected into any Python object, turning it workflow-
aware. Symmetrically, it can be expelled from the object, turning the object back to its
initial structure when necessary. It was developed in this way because type (i) engines
forces you to use a given environment to develop your applications, while type (ii)
forces you to use specific objects to implement workflows, most of times creating a
mix of application specific code and workflow specific statements. With xFluidity it
is possible to define a template workflow and insert the code necessary to make it run
inside the business objects, while keeping the programming style, standards, naming
conventions, and patterns of the development team. In EIS Patterns, xFluidity is used
to configure Process objects, making them behave as business processes templates.

Currently xFluidity is a state-based machine, however, it can be implemented using
other notations, such as Petri Nets. In that case, no changes are necessary in the
inoculated objects, given that these objects do not need to know which notation is in
use, they simple follow the template.

4 Conclusions and Further Directions

This paper briefly presents a series of techniques that can be applied to turn EIS more
flexible, including the use of dynamic languages4. Although the EIS Patterns
framework is a work in progress, it is developed on top of research and practical
experience obtained on the development of the ERP5 framework.

This experience led to the use of an abstract core to represent all concepts, while
providing flexibility through the use of the Decorator pattern. On top of this
technique, Natural Language Processing (NLP) and automated contract checking is
used to improve reuse even more and, as a side effect, enhance system
documentation, given that developers are forced to provide code documentation as
well as to define association contracts through should-dsl, which is a formal way of
defining the requirements for the use of decorators to expand the functionality of
Node objects.

The integrated use of an inoculable workflow engine, a domain-specific and
ubiquitous language, and should-dsl to check association contracts, is innovative and
provides more expressiveness to the models and the source code, by the use of a
single language for all abstraction levels, which reduces the occurrence of translation
errors through these levels. This is an important point: more expressive code
facilitates change and reuse, thus increasing flexibility.

4 For a discussion on this see http://eis-development.blogspot.com.br/2010/
09/is-java-better-choice-for-developing.html

164 R.A. de Carvalho and B. Johansson

Further improvements include the development of a workflow engine based on
BPMN, in order to make the proposal more adherent to current tendencies, and
provide advances on the use of NLP algorithms to ease identification and reuse of
concepts.

References

1. Smets-Solanes, J.-P., Carvalho, R.A.: ERP5: A Next-Generation, Open-Source ERP
Architecture. IEEE IT Professional 5, 38–44 (2003)

2. Campos, R., Carvalho, R.A., Ferreira, A.S.: Modeling Architecture and Reference Models
for the ERP5 Project. In: Confenis 2006. Research and Practical Issues of Enterprise
Information Systems, pp. 677–682. Springer, New York (2006)

3. Carvalho, R.A., Campos, R.: A Development Process Proposal for the ERP5 System. In:
IEEE International Conference on Systems, Man, and Cybernetics. IEEE Press, New York
(2006)

4. IFIP – IFAC GERAM: Generalized Enterprise Reference Architecture and Methodology,
IFIP – IFAC Task Force on Architectures for Enterprise Integration (1999)

5. Monnerat, R.M., Carvalho, R.A., Campos, R.: Enterprise Systems Modeling: the ERP5
Development Process. In: 23rd Annual ACM Symposium on Applied Computing, vol. II,
pp. 1062–1068. ACM, New York (2008)

6. Carvalho, R.A., Monnerat, R.M.: ERP5: Designing for Maximum Adaptability. In:
Wilson, G., Oram, A. (orgs.) Beautiful Code: Leading Programmers Explain How They
Think, pp. 339–351. O’Reilly Media, Sebastopol (2007)

7. Carvalho, R.A., Monnerat, R.M.: Using Design Patterns for Creating Highly Flexible
Enterprise Information Systems. In: The III IFIP International Conference on Research and
Practical Issues of Enterprise Information Systems. IFIP Series (2009)

8. Carvalho, R.A., Monnerat, R.M.: Development Support Tools for Enterprise Resource
Planning. IEEE IT Professional 10, 39–45 (2008)

9. Carvalho, R.A., Campos, R., Monnerat, R.M.: ERP System Implementation from the
Ground up: The ERP5 Development Process and Tools. In: Handbook of Research on
Software Engineering and Productivity Technologies: Implications of Globalization, pp.
423–438. IGI Global (2009)

10. Carvalho, R.A.: An Enterprise Content Management Solution Based on Open Source. In:
Research and Practical Issues of Enterprise Information Systems II, vol. 1, pp. 173–184.
Springer, New York (2007)

11. Carvalho, R.A., Johansson, B., Manhaes, R.S.: Agile Software Development for
Customizing ERPs. In: Enterprise Information Systems and Implementing IT
Infrastructures: Challenges and Issues, pp. 20–39. Information Science Reference, IGI
Global, Hershey (2010)

12. Gamma, E., et al.: Design Patterns – Elements of Reusable Object-Oriented Software.
Addison-Wesley, Reading (1995)

13. Tavares, H.L., Rezende, G.G., Mota, V., Manhaes, R.S., Carvalho, R.A.: A tool stack for
implementing Behavior-Driven Development in Python Language,
arXiv:1007.1722v1(cs.SE)

14. Carvalho, R.A., Carvalho e Silva, F.L., Manhaes, R.S.: Business Language Driven
Development: Joining Business Process Models to Automated Tests. In: V IFIP
International Conference on Research and Practical Issues of Enterprise Information
Systems. LNBIP (2011)

	Towards More Flexible Enterprise Information Systems

	Introduction
	Background
	Enters EIS Patterns
	Using Decorators to Create a Dynamic System
	A Domain-Specific and Ubiquitous Language for Modeling Business Process
	An Inoculable Workflow Engine

	Conclusions and Further Directions
	References

