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Abstract. Recently a new class of differential variational inequalities
has been introduced and investigated in finite dimensions as a new mod-
eling paradigm of variational analysis to treat many applied problems in
engineering, operations research, and physical sciences. This new subclass
of general differential inclusions unifies ordinary differential equations
with possibly discontinuous right-hand sides, differential algebraic sys-
tems with constraints, dynamic complementarity systems, and evolution-
ary variational systems. In this short note we lift this class of nonsmooth
dynamical systems to the level of a Hilbert space, but focus to linear
input/output systems. This covers in particular linear complementarity
systems where the underlying convex constraint set in the variational
inequality is specialized to an ordering cone.

The purpose of this note is two-fold. Firstly, we provide an existence
result based on maximal monotone operator theory. Secondly we are
concerned with stability of the solution set of linear differential varia-
tional inequalities. Here we present a novel upper set convergence result
with respect to perturbations in the data, including perturbations of the
associated linear maps and the constraint set.

1 Introduction

Recently Pang and Stewart [18] introduced and investigated a new class of differ-
ential variational inequalities in finite dimensions as a new modeling paradigm of
variational analysis to treat many applied problems in engineering, operations re-
search, and physical sciences. This new subclass of general differential inclusions
unifies ordinary differential equations with possibly discontinuous right-hand
sides, differential algebraic systems with constraints, dynamic complementarity
systems, and evolutionary variational systems.

Here we lift differential variational inequalities to the more general level of a
Hilbert space, but focus to the case of a linear input/output regime, where the
operators in the differential equation and in the additional constraint equation
are linear. This covers in particular linear complementarity systems, where the
underlying convex constraint set in the variational inequality is specialized to an
ordering cone. Linear complementarity systems are of much use in mechanical
end electrical engineering as well as in optimization [13, 20].
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In this note we provide an existence result that relies on maximal monotone
operator theory. Furthermore we are concerned with stability of the solution set
to differential variational inequalities. In this connection let us refer to [19], where
at first several sensitivity results are established for initial value problems of
ordinary differential equations with nonsmooth right hand sides and then applied
to treat differential variational inequalities. This has to be distinguished from
asymptotic Lyapunov stability that has been investigated in [1, 8, 9] for solutions
of evolution variational inequalities and nonsmooth dynamical systems. Here we
present a novel upper set convergence result with respect to perturbations in the
data, including perturbations of the associated linear maps and of the constraint
set.

2 Setting of Linear Differential Variational Inequalities

Let X,V be two real, separable Hilbert spaces that are endowed with norms
‖ · ‖X , ‖ · ‖V respectively and with scalar products denoted by 〈·, ·〉 , (·, ·) re-
spectively. Further let there be given T > 0, a convex closed subset K ⊂ V ,
some functions f, g on [0, T ] with values in X , respectively in V , and some fixed
x0 ∈ X . Then we consider the following problem: Find an X - valued function x
and an V - valued function u both defined on [0, T ] that satisfy for a.a. (almost
all) t ∈ [0, T ]

(LDVI)(A, f, g,K;x0)

⎧
⎨

⎩

(
ẋ(t)

q(t)

)

= A
(
x(t)

u(t)

)

+

(
f(t)

g(t)

)

u(t) ∈ K,
(
q(t), v − u(t)

) ≥ 0, ∀v ∈ K ,

(1)

complemented by the initial condition x(0) = x0. Here ẋ(t) denotes the time
derivative of x(t) and A : X × V → X × V is a given linear continuous operator
that is defined by

A =

(
A B
C D

)

with appropriate linear operators A,B,C,D.
For the closed convex subset K of V and for any w ∈ V , the tangent cone

(also support cone or contingent cone, see e.g. [3]) to K at w, denoted by TK(w),
is the closure of the convex cone

⋃{
λ(K − w) : λ > 0

}
. Then TK(w) is clearly

a closed convex cone with vertex 0 and is the smallest cone S whose translate
w + S has vertex w and contains K. Taking polars with respect to the scalar
product in V gives (TK(w))0 = (TK(w))− =: NK(w), the normal cone to K at
w, which is the subdifferential of the convex indicator function on K; for notions
of convex analysis see e.g. [14]. Thus the variational inequality in (1) writes as
the generalized equation −q(t) ∈ NK(u(t)).
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The fixed finite time interval [0, T ] gives rise to the Hilbert space L2(0, T ;V )
endowed with the scalar product

[u1, u2] :=

T∫

0

(
u1(t), u2(t)

)
dt, u1, u2 ∈ L2(0, T ;V ) .

Also we introduce the closed convex subset

K := L2(0, T ;K) := {w ∈ L2(0, T ;V ) | w(t) ∈ K, ∀a.a. t ∈ (0, T )} (2)

As in [18] we consider weak solutions of a LDVI in the sense of Caratheodory.
In particular, the X− valued function x has to be absolutely continuous with
derivative ẋ(t) defined almost everywhere. Moreover to define the initial condi-
tion, the trace x(0) is needed. Therefore (see [7], Theorem 1, p. 473) we are led
to the function space

W (0, T ;X) := {x | x ∈ L2(0, T ;X), ẋ ∈ L2(0, T ;X)} ,

a Hilbert space endowed with the scalar product

[x1, x2] + [ẋ1, ẋ2], x1, x2 ∈ W (0, T ;X) .

Note that W (0, T ;X) is continuously and densely embedded in the space
C[0, T ;X ] of X-valued continuous functions on [0, T ], where the latter space
is equipped with the norm of uniform convergence.

3 Solvability of Linear Differential Variational
Inequalities

In this section we provide an existence result for linear differential variational
inequalities based on maximal monotonicity theory [6, 16]. Here we assume that
the given function g is constant, so that shortly g ∈ V .

First we rewrite the variational inequality (LDV I)3 as −q ∈ NK(u). By
(LDV I)2, −Cx ∈ g+Du+NK(u) follows. Hence with the affine map Dg, Dgv =
g +Dv, we can insert u ∈ (Dg +NK)−1(−Cx) in (LDV I)1 and obtain

ẋ ∈ Ax+B(Dg +NK)−1(−Cx) + f. (3)

Now we adopt an argument due to Brogliato and Goeleven [5] from finite di-
mension to Hilbert space and assume there exists a coercive selfadjoint op-
erator P ∈ L(X,X) such that B = P C∗. Then P admits a square root
Q ∈ L(X,X), i.e. P = Q Q∗ with Q > 0 (coercive), hence invertible and
therefore Q∗ C∗ = Q−1 B. With x = −Qz (3) transforms to

ż ∈ Q−1AQ z −Q−1B(Dg +NK)−1(CQ z)−Q−1f. (4)
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Let us assume that D ≥ 0, i.e. (D v, v) ≥ 0. Then Dg+NK is maximal monotone
by [6, Proposition 2.4, Corollaire 2.7]. Clearly, also the inverse (Dg +NK)−1 is
maximal monotone.

Furthermore we use the notion of the relative interior denoted by rint and

assume the regularity condition 0 ∈ rint
[
im (C Q) − dom

(
(Dg + NK)−1

)]
.

Then by [17, Cor. 4.4], [21, Theorem 4], also Q−1B(Dg +NK)−1CQ is maximal
monotone in virtue of (C Q)∗ = Q−1B. Since Q−1AQ is a Lipschitz perturba-
tion, [6, Theorem 3.17; Corollaire 3.2], [16, Theorem 2.1, Remark 2.1] applies
to conclude the existence of a unique strong solution z ∈ W 1,∞(0, T ;X) to (4)
with z(0) = −Q−1x0, provided f ∈ W 1,1(0, T ;X) and z0 := −Q−1 x0 satisfies
CQz0 ∈ dom (Dg +NK)−1 = im (Dg +NK).

If moreover D > 0 with a coercivity constant δ > 0, then from the variational
inequality (LDV I)3 we get uniqueness of u and the estimate

‖u(s)− u(t)‖V ≤ ‖C‖
δ

‖x(s)− x(t)‖X s, t ∈ [0, T ] ,

that shows that u is W 1,∞ on (0, T ), too.
Thus we have proven the following existence result.

Theorem 1. Suppose D ≥ 0 and there exists P = P ∗ > 0 such that B = PC∗.
Moreover assume the regularity condition 0 ∈ rint

[
im (C Q) − dom

(
(D +

NK)−1
)]
, where P = Q Q∗. Then for any f ∈ W 1,1(0, T ;X), g ∈ V , and for

any x0 such that −Cx0 − g ∈ im (D + NK), (LDVI) is uniquely solvable with
x ∈ W 1,∞(0, T ;X) and x(0) = x0. - If moreover D > 0, then u is unique, too,
and u ∈ W 1,∞(0, T ;V ).

Remark. Let M be a general maximal monotone map that replaces the above
normal cone map NK . Then by a similar reasoning as above we obtain an exis-
tence result for the multivalued Luré dynamical system

{
ẋ(t) = Ax(t) +Bu(t) + f(t); x(0) = x0

u(t) ∈ M[
Cx(t) +Du(t)

]
.

Luré dynamical systems with M = ∂ϕ, ϕ a convex closed and proper function
have been recently studied by Brogliato and Goeleven [5] in finite dimensions
with applications in nonsmooth electronics.

4 Stability of Linear Differential Variational Inequalities

In this section we study stability of linear differential variational inequalities
formulated as LDVI and admit perturbations x0,n of x0 in the initial condi-
tion x(0) = x0, An = (An, Bn, Cn, Dn) of the linear map A = (A,B,C,D),
fn, gn of the functions f, g, and Kn of the convex closed subset K ⊂ V . Suppose
that (xn, un) solves (LDVI)(An, fn, gn,Kn;x0,n) and assume that (xn, un) →
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(x, u) with respect to an appropriate convergence for X-valued, respectively V -
valued functions on [0, T ]. Then we seek conditions on An → A, fn → f, gn →
g,Kn → K,x0,n → x0 that guarantee that (x, u) solves the limit problem
(LDVI)(A, f, g,K;x0). Such a stability result can be understood as a result of
upper set convergence for the solution set of the LDVI.

4.1 Preliminaries; Mosco Convergence of Sets

As the convergence of choice in variational analysis we employ Mosco set conver-
gence for a sequence {Kn} of closed convex subsets which is defined as follows.
A sequence {Kn} of closed convex subsets of the Hilbert space V is called Mosco

convergent to a closed convex subset K of V , written Kn
M−→ K, if and only if

σ − lim sup
n→∞

Kn ⊂ K ⊂ s− lim inf
n→∞ Kn.

Here the prefix σ means sequentially weak convergence in contrast to strong
convergence denoted by the prefix s; lim sup, respectively lim inf are in the
sense of Kuratowski upper, resp. lower limits of sequences of sets (see [2, 4] for
more information on Mosco convergence).

As a preliminary result we need that Mosco convergence of convex closed sets
Kn inherits to Mosco convergence of the associated sets Kn = L2(0, T ;Kn),
derived from Kn similar to (2).

Lemma 1. Let Kn
M−→ K. Then Kn

M−→ K in L2(0, T ;V ).

For the proof we refer to [10, 12].
As a further tool in our stability analysis we recall from [11] the following

technical result.

Lemma 2. Let H be a separable Hilbert space and let T > 0 be fixed. Then
for any sequence {zn}n∈N converging to some z in L1(0, T ;H) there exists a

subsequence {znk
}k∈N such that for some set N of zero measure, znk

(t)
s−→ z(t)

for all t ∈ [0, T ]\N .

4.2 The Stability Result

We need the following hypotheses on the convergence of the perturbations:

(H1) Convergence An → A holds in the operator norm topology. - All opera-
tors Dn are monotone, i.e. for any v ∈ V , (Dnv, v) ≥ 0 holds.

(H2) Convergence of the functions fn → f, gn → g holds in L2(0, T ;X),
respectively in L2(0, T ;V ).

Now we can state the following stability result.

Theorem 2. Let (xn, un) solve (LDVI)(An, fn, gn,Kn;x0,n). Suppose, An and
A satisfy (H1), and that fn, gn and f, g satisfy (H2). Let the convex closed sets

Kn Mosco-converge to K and let x0,n
s→ x0. Assume that xn s→ x in W (0, T ;X)
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and that un ∈ L2(0, T ;V ) converges weakly to u pointwise in V for a.a. t ∈ (0, T )
with ‖un(t)‖V ≤ m(t), ∀ a.a. t ∈ (0, T ) for some m ∈ L2(0, T ). Then (x, u) is a
solution to (LDVI)(A, f, g,K;x0).

Proof.
The proof consists of three parts.

1. Feasibility: u ∈ K, x(0) = x0.
First we observe that for any w ∈ L2(0, T ;V ), in virtue of Lebesgue’s theorem

of dominated convergence,

[un, w] =

T∫

0

(
un(t), w(t)

)
dt → [u,w] .

Thus un σ→ u and u ∈ L2(0, T ;V ). Moreover directly by Mosco convergence of
{Kn} or invoking lemma 1, u ∈ K follows. - Since by continuous embedding

xn s→ x in C[0, T ;X ], we conclude xn(0) = x0,n
s→ x(0) = x0.

2. u solves the variational inequality in (LDVI)(A, f, g,K;x0):
Fix an arbitrary w ∈ K. Then by lemma 1, there exist wn ∈ Kn such that

wn s→ w in L2(0, T ;V ). Moreover, by extracting eventually a subsequence, we
have by lemma 2 that wn(t), gn(t) strongly converges to w(t), g(t),respectively,
for a.a. t ∈ (0, T ). For any measureable set A ⊂ (0, T ) we can define wn

A ∈
L2(0, T ;V ) by wn

A = wn on A, wn
A = un on (0, T ) \ A. Hence wn

A ∈ Kn and by
construction, ∫

A

(
qn(t), wn(t)− un(t)

)
dt ≥ 0 ,

where qn(t) = Cn xn(t) + Dn un(t) + gn(t). Hence a contradiction argument
shows that we have pointwise for a.a. t ∈ (0, T ),

(
qn(t), wn(t) − un(t)

) ≥ 0 . By

(H1), monotonicity entails
(
Cn xn(t) + Dn wn(t) + gn(t), u

n(t) − wn(t)
) ≤ 0 .

By (H1) and (H2), in the limit
(
C x(t) + D w(t) + g(t), u(t) − w(t)

) ≤ 0 . In
virtue of the linear growth of the linear operators we arrive at

[G(x,w), u − w] :=

T∫

0

(
C x(t) +D w(t) + g(t), u(t)− w(t)

)
dt ≤ 0, ∀w ∈ K .

Hence by a well-known argument in monotone operator theory (see e.g. [22]) we
obtain that u ∈ K satisfies the variational inequality

[G(x, u), w − u] ≥ 0, ∀w ∈ K .

3. (x, u) solves the limit problem (LDVI)(A, f, g,K;x0):
By Lemma 2 applied to {fn}, {xn}, and {ẋn}, we can extract a subsequence

such that fn(t) → f(t), xn(t) → x(t), and ẋn(t) → ẋ(t) strongly in X point-
wise for all t ∈ (0, T )\N0, where N0 is a null set. Fix t ∈ (0, T )\N0. Then by
assumption, for all n ∈ N we have ẋn(t) = An xn(t)+Bn un(t)+ fn(t). Then in
virtue of (H1) and (H2), ẋ(t) = A x(t) +B u(t) + f(t) follows and (x, u) solves
(LDVI)(A, f, g,K;x0).
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