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Abstract. We deal with initial-boundary value problems describing ver-
tical vibrations of viscoelastic von Karman-Donnell shells with a rigid
inner obstacle. The short memory (Kelvin-Voigt) material is considered.
A weak formulation of the problem is in the form of the hyperbolic vari-
ational inequality. We solve the problem using the penalization method.
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1 Introduction

Contact problems represent an important but complex topic of applied math-
ematics. Its complexity profounds if the dynamic character of the problem is
respected. For elastic problems there is only a very limited amount of results
available (cf. [3] and there cited literature). Viscosity makes possible to prove
the existence of solutions for a broader set of problems for membranes, bodies
as well as for linear models of plates. The presented results extend the research
made in [2], where the problem for a viscoelastic short memory von Karmén
plate in a dynamic contact with a rigid obstacle was considered. Our results also
extend the research made for the quasistatic contact problems for viscoelastic
shells (cf. [I]). A thin isotropic shallow shell occupies the domain

G={(x,2) ER®: x=(v1,12) €2, |2 — 2| <h/2},

where h > 0 is the thickness of the shell, 2 C R? is a bounded simply connected
domain in R with a sufficiently smooth boundary I'. We set I = (0,T") a bounded
time interval, @ = I x {2, S = I x I'. The unit outer normal vector is denoted
by n = (n1,n2), 7 = (—n2,n1) is the unit tangent vector. The displacement is
denoted by u = (u;). The strain tensor is defined as

1 .
eij(u) =, (Osuj + Ojui + Oyuzdjus) — kijus — x30;5us, 1,§ = 1,2
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with k12 = ko1 = 0 and the curvatures k; > 0, i =1, 2.
Further, we set

[u, U] = 011u0220 + Ogoud11v — 2012ud12v.

In the sequel, we denote by W;(M), k>0, p € [1,00] the Sobolev spaces defined
on a domain or an appropriate manifold M. By W]f (M) the spaces with zero

traces are denoted. If p = 2 we use the notation H*(M), H*(M). The duals
to H*(M) are denoted by H~*(M). For the anisotropic spaces WEM), k =
(k1,ke) € Ri, kq is related with the time variable while ko with the space
variables. We shall use also the Bochner-type spaces W; (I; X) for a time interval
I and a Banach space X. Let us remark that for & € (0, 1) their norm is defined
by the relation

p _ p lw(t) —w(s)l%
IIwHW;(z;X):/Illw(t)\lxdur/]/[ o gk 45t

By C'(M) we denote the spaces of continuous functions on a (possibly relatively)
compact manifold M. They are equipped with the max-norm. Analogously the
spaces C(M; X), are introduced for a Banach space X. The following general-
ization of the Aubin’s compactness lemma verified in [4] Theorem 3.1 will be
essentially used:

Lemma 1. Let By << B < By be Banach spaces, the first reflexive and
separable. Let 1 <p < oo, 1 <r < oco. Then

W ={v; ve L,(I;By), v € L.(I,B1)} —— Ly(I; B).

2 Short Memory Material

2.1 Problem Formulation

Employing the Einstein summation, the constitutional law has the form

BL o= ()b pdgen(w)+ |

L—p 1— p2 ((1*M)€ij(u)+u5ijskk(u)),

oij(u) =
The constants Ey, E; > 0 are the Young modulus of elasticity and the modulus
of viscosity, respectively. We shall use the abbreviation b = h?/(120(1 — p?)),
where h > 0 is the shell thickness and g is the density of the material. We in-
volve the rotation inertia expressed by the term a At in the first equation of the
considered system with a = 'f; It will play the crucial role in the deriving a
strong convergence of the sequence of velocities {#,,} in the appropriate space.
We assume the shell clamped on the boundary. We generalize the dynamic elas-
tic model due to the von Kérmén-Donnell theory mentioned in [6]. The classical
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formulation for the deflection ug = u and the Airy stress function v is then the
initial-value problem

i + a il + b(E1 A%+ EgA%u) — [u,v] — Ap v = f + g,
u—¥>0,¢g>0, (u—¥)g=0,

on@, (1)
A% + E10, (5 [u, u] + k11000u + kooOr1u)
+Eo(3[u,u] + Agu) =0
u=0,u=v=0,v=0o0nS, (2)
u(0, ) = ug, 4(0,-) =u; on 0. ®3)

The obstacle function ¥ € Lo (£2) is fulfilling 0 < Uy < up — ¥ in 2 and
Aru = 011 (kaou) + O22(k11u), (
ZU = kooO011v + k11022v. (5)

We define the operators L : H2(2) — H2(2), & : H2(02) x H2(2) — H2(1)
by uniquely solved equations

(ALu, Aw) = (Apu, w) Vw € H2(02), (6)
(AD(u, v), Aw) = ([u,v], w) Yw € H2(2). (7)

with the inner product (-,-) in the space La(§2). The operator L is linear and
compact. The bilinear operator @ is symmetric and compact. Moreover due to
Lemma 1 from [5] & : H?(2)> — W2(£2), 2 < p < oo and

19 (u, v)llwz o) < cllullazio)lvllwi) Yu € H2(2), ve Wy (2).  (8)
We have also L : H*(£2) — W2(2), 2 <p < oo and
I Lullwze) < cllullm(o) Yu € H*(£2). (9)
For u,y € Lo(I; H?(£2)) we define the bilinear form A by
Alu,y) = b(akkuakky + p(011uba2y + Oaoudi1y) + 2(1 — M)alzuamy)-
We introduce shifted cone IC by
K:={ye H"Q): § € Lo(I.H'(2); y 2 7). (10)
Then the variational formulation of the problem ([IH3]) has the form of

Problem P. Find u € K such that i € Ly(I; H2(£2)) and

Jo (B1A(t,y — u) + EgA(u,y — u)) dzdt
+ fQ[u, E10,(5®(u,u) + Lu) + Eo(3P(u, u) + Lu))(y — u) dz dt
+ fQ A (E10,(30(u,u) + Lu) 4+ Eo(3D(u, u) + Lu)) (y — u) dz dt
— Jo (V- V(G — @) +i(j — @) dedt (11)
+ [ (V- V(y —u) +a(y —w)) (T,-) dx
> o (aVur - V(y(0,-) —uo) + ur(y(0, ) — uo)) dx
+ Jo flyr —w) dzdt Vy € K.
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2.2 The Penalization

For any n > 0 we define the penalized problem ) )
Problem P,. Find u € H“?(Q) such that @ € Lo(I; H*($2)), ii € Lao(1; H(2)),

Jo iz +aVii- Vz + EA(i, z) + EoA(u, 2)) dz dt
+ Jolu, B10 (5 ®(u, u) + Lu) + Eo(3®(u,u) + Lu)]zdx dt
+ fQ Ay (E10,(3®(u,u) + Lu) 4+ Eo(5P(u, u) + Lu)) z dz dt
= Jo(Uf 07 (u— W) )zdxdt Vz € La(I; H*(2))

(12)

and the conditions (@) remain valid.

Lemma 2. Let f € Ly(Q), ug € H2(R2), and uy € H (). Then there exists a
solution u of the problem P,.

Proof. Let us denote by {w; € IfIZ(Q); i=1,2,...} abasis of HQ(Q) orthonormal
in H'(£2) with respect to the inner product

(u,v)q = / (wv + aVu - Vv)dz, u,v € H(12).
Q
We construct the Galerkin approximation u,, of a solution in a form

ZQZ w;, a;(t) €R, i =1,....,m, m € N, (13)

(i (t), w +f9 (E1 At (1), w;) JrEOA(um(t),wi)) dz+
JoA (Elat D (U, U + Luy,) + EO( D (U, Upy) + Lum))
X A(P (um,wl) + Lw;) dz

= [, (f®) + 0 (um(@t) —¥) wide, i =1,...,m,

(14)

Um (0) = Uom, T (0) = Utm, Uom — to in H2(82), Uty — uy in HY(2). (15)

After multiplying the equation (Id]) by ¢;(t), summing up with respect to 7 ,
taking in mind the definitions of the operators @, L and integrating we obtain
the a priori estimates not depending on m:

[ + [l 17

(1 E2(2)) Lo (I H(22)) + w7
+||6t (umvum)HLz(I;I_"Iz(Q)) + HatLumHL (I:H2(2))
A0 (=) pw(:22(02)) < € = e(fyu0,u).

oo (1:H(£2))
(16)
Moreover the estimates (), (@) imply

10eD (s, m )| Lo ;w2 (2)) + Ot Ltim || Lyrswz ) < ¢p Y >2. (17)

After multiplying the equation (I4) by ¢;(¢), summing up and integrating we
obtain the estimate of i,

HﬁmHLz(I;Hl(Q)) <cpy, meN. (18)
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Applying the estimates ([I6)-([I]), the compact imbedding theorem and the in-
terpolation, we obtain for any p € [1,00), a subsequence of {u,} (denoted again
by {um}), a function u and the convergences

il — 1 in Lo(1; HY(02)),
Gy —* 0 in Lo (I; HY(£2)),
U — @ in Lo(I; H2(£2)),
U, — 0 in Ly(1; H(2)) N Loo(I; H275(£2)) Ve > 0,

U, — u in C(1; W (£2),

8t(;@(um,um) + Lum) — (’9t(;@(u,u) + Lu) in Lo(I; WPZ(Q))

(19)

implying that a function u fulfils the identity (I2)). The initial conditions (B])
follow due to ([IH]) and the proof of the existence of a solution is complete.

2.3 Solving the Original Problem

We verify the existence theorem

Theorem 1. Let f € Lo(Q), u; € IfIQ(Q), i=0,1, 0< Uy <ug—Y. Then
there exists a solution of the Problem P.

Proof. We perform the limit process for n — 0. We write u,, for the solution of
the problem Py ,. The a priori estimates (I6]) imply the estimates

2 2
H 77HL2([ H2(Q)) + HuﬂH I Hl(.Q)) + || 77” I HQ(.Q))
+0:®(un, Un)HLQ(I,Wg(Q)) + HatLUnHLZ(I,Wg(Q)) (20)
0wy =) Lo (r:La(2)) < s P> 2.

To get the crucial estimate for the penalty, we put z = ug — u,(¢,-) in (I2) and
obtain the estimate

0<Uo Jon Huy —¥)~dxdt < [, In~" (uy — V)~ (uo — ¥)dz dt
N P
= I (42 + a|Viy > + A((E18yuy + Eouy), uo — uy)
+E10:(A(Luy + ;Q(unvun)))A(L(UO = up) + D(uy, uo — uy))
+EgA(Luy + 5P (ty, un))A(L(ug — uy) + P(uy, uo — uy))) dz dt
— Jo Fluo —uy)dadt + [ ((in(uo —uy) +aViy, - V(g — uy))(T,-)) da.

Applying the a priori estimates (20) we obtain

Hn_lu;HLMQ) < C(f’ uO,ulaw)' (21)

With respect to Dirichlet conditions we obtain from (I2) and (ZI) the dual
estimate
H 7aAﬁTl+ﬁTIHL1(I;H_2(Q)) <ec (22)
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We take the sequence {ug} = {un,}, m — 0+.
After applying the Lemma 1 with the spaces

By = Ly(2), B=H (), By = H%()

we obtain the relative compactness of the sequence {—aAduy + 4} in
Lo(I; H=1(£2) and with the help of the test function 7y — 1 the crucial strong
convergence )

U — U in Lo(I; H(2)). (23)

Simultaneously we have the convergences

iy, — @ in Lo(I; H2(£2)),
U — w in Lo (T Wpl((z)), (24)
é@té(uk, ug) + Oy Lug, — ;@@(u,u) + 0:Lu in Lo(T; WPZ(Q))

It can be verified after inserting the test function z = y — uy, in [I2) for y € K,
performing the integration by parts in the terms containing i, applying the
convergences ([23), ([24)), using the definitions of the operators L, @ in (@), ()
and the weak lower semicontinuity that the limit function w is a solution of the
original problem P.

Remark 1. The existence Theorem 1 can be after some modification verified also
for another types of boundary conditions.
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