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Abstract. Time-varying discrete-time linear systems may be temporarily 
uncontrollable and unreconstructable. This is vital knowledge to both control 
engineers and system scientists. Describing and detecting the temporal loss of 
controllability and reconstructability requires considering discrete-time systems 
with variable dimensions and the j-step, k-step Kalman decomposition. In this 
note for linear discrete-time systems with variable dimensions measures of 
temporal and one-step stabilizability and detectability are developed. These 
measures indicate to what extent the temporal loss of controllability and 
reconstructability may lead to temporal instability of the closed loop system when 
designing a static state or dynamic output feedback controller. The measures are 
calculated by solving specific linear quadratic cheap control problems.  

Keywords: Temporal system properties, linear discrete-time systems, cheap 
LQ control problems, j-step k-step Kalman decomposition.  

1 Introduction 

Feedback control design and stability analysis of nonlinear systems along trajectories 
is often performed using the linearized dynamics about the trajectory [1], [2]. If the 
trajectory is time-varying the linearized model is time-varying. If in addition the 
nonlinear dynamics or the controls are non-smooth, i.e. in the case of bang-bang or 
digital control, the structure of the time-varying linearized system may change. Even 
if the nonlinear dynamics and the controls are smooth the structure of the time-
varying linearized system may almost change. For control system design this is vital 
information since this structure reveals the temporal loss of controllability and 
reconstructability of the linearized system. They in turn may lead to temporal 
instability of a closed-loop control system [3], [4]. Recently we investigated these 
issues for continuous-time systems assuming continuous-time control. This 
investigation lead to the introduction of the properties temporal and differential 
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stabilizability and detectability for continuous-time linear systems [5]. In addition 
measures of these properties were introduced and calculated by solving specific linear 
quadratic cheap control problems [5], [6], [7]. 

Associated with computer control are digital control problems (sampled-data control 
problems). They concern the control of continuous-time systems by means of piecewise 
constant controls using sampled measurements. A common approach is to transform 
such control problems into equivalent discrete-time control problems [8], [9], [10]. 
Following this approach feedback control system design is performed in discrete-time. 
This motivates the discrete-time development in this paper that on the one hand 
parallels, but on the other is also very different from the one in continuous-time. The 
fact that discrete-time is not dense, as opposed to continuous-time, causes some major 
differences. In continuous-time our investigation required the introduction of piecewise 
constant rank systems and the differential Kalman decomposition [3], [4]. In discrete-
time their counterparts are discrete-time linear systems with variable state dimensions 
and the j-step, k-step Kalman decomposition [11].  

This paper develops measures of temporal stability of time-varying linear discrete-
time systems over arbitrary finite time intervals, notably intervals where 
controllability or reconstructability is lost temporarily. Associated to this, measures of 
temporal and one-step stabilizability and detectability are developed. These measures 
can for instance be used to analyse temporal instability of a closed loop control 
system design using LQG output feedback. 

Temporal stability may sound as a contradiction because formally stability relates to 
behavior when time tends to infinity. However, in one of his early seminal papers [12] 
Kalman together with Bertram already proposed measures of stability over finite time 
intervals (page 386). Intuitively stability relates to growth of the system state. Intuitively 
over intervals where the state grows we call the system temporal unstable and over 
intervals where the state decays, we call the system temporal stable. This intuition is 
formalized by the temporal stability property proposed in this note. This property is 
derived from a measure of temporal stability also proposed in this note that measures 
the maximum growth of the state over an arbitrary interval. Our concept of stability over 
a finite time interval differs from what is called finite-time stability [13], [14]. The 
reason we make a different choice is that our measures, their computation and the 
associated control system designs, come down to solving standard LQ problems. The 
standard LQ problems are of a special type called cheap control LQ problems [6], [7] . 
They are characterized by a control penalty that tends to zero. Computations and control 
system design associated to finite-time stability concern matrix inequalities [13], [14]. 
Generally these are much more difficult to solve.  

2 Temporal and One-Step Stability, Stabilizability  
and Detectability 

Temporal uncontrollability/unreachability and temporal unreconstructability/ 
unobservability of linear time-varying systems was introduced and investigated in 
continuous-time [3], [4] and in discrete-time [11]. Intuitively, temporal stabilizability 



308 L.G. Van Willigenburg and W.L. De Koning 

and temporal detectability are associated properties that apply over intervals  
where the system is temporal uncontrollable/unreachable and temporal 
unreconstructable/unobservable respectively. In continuous-time this was formalized 
in [5]. In this section we formalize the discrete-time case. This requires considering 
variable dimension discrete-time linear systems (VDD systems) [11], [15], [16], [17] 
as well as j-step controllability, j-step reachability, k-step reconstructability, k-step 
observability and the associated j-step, k-step Kalman decomposition. All these are 
introduced in [11] that relies partly on [18]. In this section we consider VDD systems 

with a time domain  where  may tend to  and  may tend to . 

Intervals where the VDD system is temporal uncontrollable/unreachable or temporal 

unreconstructable/unobservable are denoted by . 
 

Definition 1. 

A VVD system is called j-step unreachable over the interval / j-step 

uncontrollable over the interval ,  if 

 the system is not j-step reachable at time  / not j-step 

controllable from time . 

Lemma 1. 

If  satisfy the conditions in Definition 1 then over the interval  the 

VDD system is 1) not j-step reachable at each time and 2) not j-step controllable from 
each time. 

 
Proof: 
Follows immediately from [11] and Definition 1.  

 

Definition 2. 

A VDD system that satisfies the conditions in Definition 1 is called j-step 

uncontrollable/unreachable over the interval .  
  

Definition 3 (Dual of Definition 1). 

A VVD system is called k-step unobservable over the interval / k-step 

unreconstructable over the interval ,  if 

 the system is not k-step observable at time  / not k-step 

reconstructable from time . 
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Lemma 2 (dual of Lemma 1). 

If  satisfy the conditions in Definition 3 then over the interval  the 

VDD system is 1) not k-step observable at each time and 2) not k-step reconstructable 
from each time.  

 

Definition 4 (dual of Definition 2). 

A VDD system that satisfies the conditions in Definition 3 is called k-step 

unreconstructable/unobservable over the interval . 
 

Application of the j-step k-step Kalman decomposition [11], [19] at each time 

, reveals all closed intervals (i.e. consisting of at least two consecutive 

discrete-time instants) where the system is j-step uncontrollable/unreachable and 
dually all closed intervals where the system is  k-step unreconstructable/unobservable. 

As in Definition 2 and Definition 4 such intervals will be denoted by . These 

closed intervals are precisely the intervals where stability of the closed loop system 
may be lost temporarily when designing static state and dynamic output feedback 
controllers.  

Stabilizability is a property that relates entirely to the uncontrollable part of a 
system. A general approach to determine stabilizability is to extract this 
uncontrollable part, that is autonomous, by means of a Kalman decomposition, and to 
determine its stability. It will become clear in this section that application of a state 
basis transformation changes temporal stability and stabilizability properties. To 
recover them we therefore need to transform back to the original state basis. As 
opposed to this general approach, the stabilizability analysis presented in this section 
is much more straightforward and simple. It does not require transformation of the 
state basis because it relies fully on well established standard LQ theory applied to the 
original system representation. Therefore the associated numerical computations are 
also very efficient.  

The stabilizability analysis in this section is unconventional in the sense that 
stability, stabilizability and detectability over finite time intervals is required. Stability 
over an interval relates to growth of the magnitude of the state over this interval. 

Throughout this paper  denotes the matrix 2 norm. For vectors this amounts to the 

L2 norm. In the next section we will demonstrate how to compute numerically the 
temporal and one-step stabilizability and detectability measures presented in this 
section, using only evaluations of the system matrices. 

Definition 5. 

An autonomous VVD system is called temporal stable over the interval   if 

for any , . 
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Loosely speaking, according to Definition 5 an autonomous VDD system is called 

temporal stable over  if for any initial state the magnitude of the associated 

terminal state is smaller than that of the initial state. An important difference between 
our definition and other finite-time stability concepts [13], [14] is that ours does not 
impose any restrictions on the magnitude of the state inside the interval. The 
advantage of Definition 5 is that it matches LQ control design as opposed to finite-
time stability that relates to control system design using matrix inequalities [13] that is 
generally much more complicated. 

  

Definition 6. 

Associate to Definition 5 the following temporal stability measure, 
 

.                                             (1) 

Observe that  in Definition 6 is the largest possible ratio . 

This ratio matches the largest possible ratio  in Definition 5. Therefore 

 is indeed a measure of temporal stability associated to Definition 5. The 

smaller  the larger temporal stability. It will become clear that the squares 

in equation (1) are needed to achieve compatibility with LQ control computations. 
 

Theorem 1. 

An autonomous VDD system is temporal stable over the time interval  if and 

only if, 
 

,                                      (2) 

 
where represents the state transition matrix of the associated autonomous 

system from time  to . 
 

Proof: 
Because Theorem 1 applies to autonomous systems, 

 
. (3) 

 
Using equation (3) the temporal stability measure (1) becomes, 
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 (4) 

 

The last equality in equation (4) holds because  is nonnegative symmetric. 

Theorem 1 now follows from (4), Definition 5 and Definition 6 and,  
 

 .                             (5) 

 
Stabilizability over a finite time-interval relates to the ability to stabilize the system 
over that interval by means of control. 

 

Definition 7. 

Associate to Definition 5 and Definition 6 the following temporal stabilizability 

measure that applies to VDD systems considered over the interval , 
 

,                                  (6) 

 
where  indicates a control law dependent on . 

 

Definition 8. 

A VDD system is called temporal stabilizable over  if  . 

Theorem 2. 

A VDD system is temporal controllable over     the 

VDD system is temporal stabilizable over  . 

Proof: 
If a VDD system is temporal controllable over , then according to Definition 1 

and [11], any state  can be controlled to . This implies  and, 

according to Definition 8, temporal stabilizability over .  
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Remark 1. 

As with ordinary controllability and stabilizability, temporal controllability is a 
stronger property than temporal stabilizability. 

To state the main theorem in this section consider the following parameterized 
discrete-time LQ problem. Given the system,  

 

,                                  (7) 
 

with initial state, 
 

, (8) 
 

find the control  that minimizes the cost function, 
 

,                            (9) 

 
with,  

 
 , , .                            (10) 

 
If  the Linear Quadratic control problem (7), (8)-(10) satisfies 

. In this standard case it is well known that the optimal 

control is given by, 
 

 ,                      (11) 
 

and the minimum cost by, 
 

 ,                                                (12) 
 

where  is the solution of the matrix Riccati difference equation, 
 

 .                (13) 

Theorem 3. 

,                                                         (14) 

 
exists, where  satisfies the matrix Riccati difference equation (13) with 

data as specified by equation (10). Furthermore, 
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.                                       (15) 
 

As a special case of (15), 
  

 .                                                     (16) 
 
Proof: 
First observe that in the parameterized LQ problem (7)-(10) we may replace the initial 

time  by . This also hold for the stabilizability measure . Next 

from equations (9), (10) observe that 
 

 
                                 

 (17) 

 
Now the key to proving (14), (15) is to prove that,  

 

                                    (18) 

 
Suppose equation (18) holds. Then from equations (6), (17), (18), 

 

                                       (19) 

 
The last equality in equation (19) holds because  is nonnegative symmetric. So we 

are left to prove equation (18). Consider the j-step, k-step Kalman decomposition at 

time  with . According to this decomposition the linear system (7) can 

be decomposed into a part that is j-step controllable from time  and a part that is 

autonomous. The contribution of the j-step controllable part to  is zero. 

The contribution to  tends to zero as . The contribution of the 

autonomous part to both  and  is fixed and independent of . 

Because the system matrices are bounded this contribution is also finite. This proves 
the existence of the limit (16) and the equality (18). 
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Remark 2. 

There are three reasons for considering  in equation (10), instead of 
. Taking ,  may be used to 1) keep the control within certain 

bounds that apply in practice and 2) as a numerical tolerance to prevent ill-

conditioning of the computation of equation (11) when  is not full rank and 

 as . In practice the selection of  will be a compromise 

and  will approximate , . As a result all computations in this 

paper involving  will be approximations, although generally very good ones. 

Thirdly  leads to a singular LQ problem that is generally much more difficult 
to solve and the solution of which need not be unique. 

 
When analyzing control systems the state behavior over the entire interval 

 is generally of interest, not just the behavior at the initial time  and the 

final time . This behavior is partly considered by equation (15) of Theorem 3 that 

determines the stabilizability measure for each sub interval . 

The following theorem introduces a one-step stabilizability measure that applies to 
individual time instants. 

 

Theorem 4. 

 is a one-step stabilizability measure (os-stabilizability measure) at time 

.  
 

Proof: 
From (15), 

 

                 

 (20) 

so ,  is the one-step contribution at time  to the 

temporal stabilizability measure . If this contribution is negative 

 decreases and temporal stabilizability increases.  

Definition 9. 

A VDD system is called one-step stabilizable (os-stabilizable) at time 

 if . 
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Because for a VDD system temporal and one-step detectability are dual to temporal 
and one-step stabilizability, the following definitions and theorems are stated without 
further explanation and proof. 

Theorem 5 (dual of Theorem 3). 

, (21) 

exists, where  satisfies the matrix Riccati difference equation that is dual 

to (13), 
 

 ,              (22) 
 
with, 
 

 ,                                         (23) 
 
with data as specified by equation (10). Furthermore,  
 

 .                                         (24) 
 

where  is a temporal detectability measure over the interval . As 

a special case, 
  

 .                                                   (25) 

Definition 10 (dual of Definition 8). 

A VDD system is called temporal detectable over  if . 

Theorem 6 (dual of Theorem 4). 

 is a one-step detectability measure (os-detectability measure) at time 

.  

Definition 11 (dual of Definition 9). 
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3 Conclusions 

New temporal properties and associated measures for control system design 
concerning time-varying linear discrete-time systems were introduced in this paper. 
The properties and associated measures concern temporal and one-step stabilizability 
and detectability. They indicate to what extent control system design is problematic 
when discrete-time linear time-varying systems are temporal uncontrollable or 
temporal unreconstructable. Temporal uncontrollability and unreconstructability are 
detected by the j-step, k-step Kalman decomposition. As demonstrated in this paper, 
after introduction of a suitable, simple stability property, that applies over finite time 
intervals, application of ordinary standard LQ theory and algorithms enables the 
computation of associated temporal and one-step stabilizability and detectability 
measures. These determine to what extent a static or dynamic feedback control 
system becomes temporal unstable. A major application concerns the temporal 
stability analysis of digital perturbation output feedback controllers for nonlinear 
systems tracking control and state trajectories that may be optimal [1], [10]. 

As an alternative to LQ theory, temporal stabilizability may be determined by 
extracting the temporal uncontrollable or temporal unreconstructable subsystems and 
analyzing their temporal stability. In principle, the j-step, k-step Kalman 
decomposition is able to extract these subsystems. The extraction employs state basis 
transformations that generally change temporal stability properties. The approach 
presented in this paper is more simple and direct because it applies standard LQ 
theory to the original, untransformed system. 

Although the LQ problems in this paper are singular in principle, it is advantageous 
to approximate them by non-singular LQ problems, as demonstrated in this paper. The 

interpretation of as a temporal stabilizability measure is new and highly 

interesting. The same applies to the interpretation of  as a one-step 

stabilizability measure that measures the contribution to stabilizability of each single 
time-step. 

Along the lines of this paper we are also currently exploring temporal properties of 
time-varying linear systems with white stochastic parameters [20]. Among others 
these enable robust digital optimal perturbation feedback design for nonlinear 
systems.  
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