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Abstract. In order to achieve prescribed drug release kinetics over long
therapeutic periods, bi-phasic and possibly multi-phasic releases from
blends of biodegradable polymers are currently envisioned. The mod-
elling of drug release in the presence of degradation of the polymer
matrix and surface erosion is quite complex. Yet, simple reliable mathe-
matical models validated against experimental data are now available to
help in classifying neat polymers and in predicting the release dynamics
from polymer blends. In this paper, we survey a two-parameter quadratic
ODE model that has been validated against experimental data for the
release of paclitaxel from a broad range of biodegradable polymers and a
quadratic semi-permeable membrane PDE model that mimics the ODE
model and could readily be extended to drug eluding stents.
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1 Introduction

Stents are used in interventional cardiology to keep a diseased vessel open after
angioplasty. This procedure is known to damage the endothelium at the insertion
site and thus to favour the occurrence of in-stent restenosis through the prolif-
eration of smooth muscle cells (SMC) within the vessel lumen. To control the
abnormal behaviour of SMC, stents are coated with polymers that slowly release
drug through diffusion into the vessel wall (drug-eluting stents or DES). These
drugs are designed to control the rate of mitosis of SMC until the regeneration
of the endothelium. The reader is referred to T. Kataoka et als [15] in 2002 and
Joner et als [14] in 2006 for a fairly well-documented account of DES for the
prevention of neointimal growth (see, for instance, [15, Figure 1, p. 1791]).

If endothelial cells do not recover to effectively control the proliferation of
SMC’s, a sustained dose will be required over the therapeutic period and even
forever. In order to achieve prescribed drug release kinetics the current design
strategies focus on bi-phasic and possibly multi-phasic releases from blends of
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biodegrable polymers (see, for instance, Batycky et al [1] in 1997) to achieve
specific drug release kinetics profiles over long therapeutic windows.

Recently, Lao and Venkatraman [16] and Lao, Venkatraman, and Peppas [18]
have proposed a semi-empirical model to predict the release profile of paclitaxel
from three neat polymer matrices: PCL (Polycaprolactone), PLGA (dl-lactide-
co-glycolide) and PLGAPEG (PLGA with polyethylene glycol). They are repre-
sentative of a broad family of biodegradable polymers ranging from hydrophobic
to hydrophilic. In hydrophilic polymers the internal bounds between the chains
are weakened and this adds to the surface erosion phenomenon. The drug re-
lease mechanism within a polymer matrix depends on many factors such as the
affinity of the drug with the surrounding medium (water). Specifically, paclitaxel
is hydrophobic and this might explain the fact that some of the drug blended
into the polymer matrix is not released and cannot participate to the treatment
of the disease wall. This is a difficult subject. The main criticism expressed in
[18] of available models for drug release from eroding surfaces is that they fail
to faithfully reproduce experimental data for highly degradable polymers (the
S-curve behaviour). The reader is referred to the introduction of the paper of
Lao et als [18] for a comprehensive review of the literature.

A quick look at the paclitaxel release profiles suggests two types of release:
S-curve type and exponential type. S-curve behaviours are similar to the ones
encountered in the study of the logistic equation of populations. In [2] we in-
troduced a simple two-parameter Ordinary Differential Equation (ODE) model
that completely describes the paclitaxel release profiles from neat PCL, PLGA
PEG, and PLGA polymer matrices. This model describes with greater accuracy
the drug-release than the semi-empirical model of Lao et als [18] using 5 to 8
parameters.

The simplicity of our model for such a broad range of polymers indicates
that somehow the quadratic structure captures the complex microphysics and
chemistry of the release and degradation processes. Using a purely mathematical
intuition to modelling, we have introduced in [6] a time-space three dimensional
partial differential equation (PDE) model of the paclitaxel release that mimics
the ODE model. The film of neat polymer is modelled as a thin flat domain
whose polymer/medium interface is a quadratic semi-permeable membrane with
a concentration jump at the interface.

In this approach, the diffusion process through a semi-permeable membrane is
modelled as a diffusion through an interface with cracks (not to be confused with
holes) where the rate of transfer of the product is proportional to the size of the
concentration jump across the interface. Since the cracks have zero surface, their
size is measured in terms of the mathematical notion of capacity. What is very
nice about this approach is that it is based on a mathematically well documented
linear model coming from the study of the Neumann sieve by Damlamian [5]
in 1985. It provides a variational formulation and a mathematically tractable
approach to the asymptotic analysis of a punctured membrane as the size of the
holes goes to zero while preserving a strictly positive capacity that accounts for
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the diffusion of the drug through the cracks1 Adding the non-linearity captures
the effect of the internal degradation of the polymer by making the rate of mass
transfer proportional to the size of the concentration jump across the interface.

Our approach is different from others in the literature since it deals with the
nonlinearity through a quadratic condition at the interface between the polymer
and the surrounding medium instead of using a time-dependent or a nonlinear
diffusion. This model can be seen as a first step towards a three dimensional mod-
elling of the release of paclitaxel from drug eluding stents coated with biodegrad-
able polymers. It is capable of covering a wide range of biodegradable polymers
potentially including the ones for which an incomplete release is experimentally
observed (recall that the paclitaxel is hydrophobic).

To complete the experimental approach to this modelling, the next step would
be to set up an experimental benchmark to check if the model and the mathe-
matical assumptions on the coefficients of the model are realistic. The validation
of such a model would improve the modelling of the drug release part of the
global three-dimensional model of a blood vessel incorporating the lumen, the
blood, the aggregated wall, and the coated stent (cf. for instance, [8]) and the
subsequent studies of the effect of the pattern of the stent in [3] and the effect
of the pulsative nature of the blood in [7]. Such global studies are important to
determine the set of features in the modelling of the blood vessel and of the stent
that should be retained in the design of the stent and the drug release dynamics.

2 ODE Model and Gradient Flow Interpretation

In the previous paper [2] we have shown an excellent fit between experimental
release data [16] of paclitaxel from biodegradable neat polymers and a two-
parameter quadratic ODE model of the Riccati type. We briefly recall this model.

Given an initial mass M0 > 0 of drug uniformly impregnated into a polymeric
matrix, denote by M(t) > 0 the mass of drug released outside the polymer as a
function of the time t > 0. Denote by M∞, 0 ≤ M∞ ≤ M0, the asymptotic mass
of the drug released. The ODE model was chosen of the form

dM

dt
(t) = h(M(t)), t > 0, M(0) = 0, (2.1)

for some quadratic right-hand side

h(M)
def
= A1 (M∞ −M(t)) +A2 (M∞ −M(t))

2
(2.2)

such that M ′(0) = (A1 + A2M∞)M∞ > 0. By introducing the normalized
released mass

m(t)
def
= M(t)/M0, (2.3)

1 See also the more recent comprehensive paper [4, Theorem 5.5] using the very nice
theory of periodic unfolding.
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we get the following quadratic ODE model

dm

dt
(t) =

[
A1 +A2 M0

(
M∞
M0

−m(t)

)] (
M∞
M0

−m(t)

)
, m(0) = 0. (2.4)

Assuming that the ratio 0 < M∞/M0 ≤ 1 is known, the model is completely
specified by the two parameters A1 and A2M∞. When A2 = 0, the model is
linear; when A2 �= 0, the right-hand side is of the form

h(m)
def
= A2 M0 (m2 −m)(m1 −m), m1

def
=

M∞
M0

, m2
def
=

A1 +A2 M∞
A2 M0

.

It was shown in [2] that the following four cases can occur under the conditions
m(0) = 0 and m′(0) = A1 +A2 M∞ > 0:

Case 1) (True S type)

A1 > 0, A2 < 0, and −m1 <
1

2

A1

A2 M0
(that is, −m1 < m2 < 0), (2.5)

with solution

m(t) = m1 m2
1− e−A1 t

m2 −m1 e−A1 t

for which the point of inflexion occurs at time tc = −(log(−m2/m1))/A1 > 0;
Case 2) (S type)

A1 > 0, A2 < 0, and
1

2

A1

A2 M0
≤ −m1 (that is, m2 ≤ −m1), (2.6)

with the solution and the point of inflexion

m(t) = m1 m2
1− e−A1 t

m2 −m1 e−A1 t
, tc = −(log(−m2/m1))/A1 ≤ 0;

Case 3) (Exponential type)

A1 ≥ 0 and A2 > 0 (that is, m2 ≥ 1), (2.7)

with the solution and the blow up time

⎧⎪⎪⎨
⎪⎪⎩

m(t) = m1 m2
1− e−A1 t

m2 −m1 e−A1 t
,

tc = − log(m2/m1)

A1
< 0,

for A1 > 0 since m2 > m1,

⎧⎪⎪⎨
⎪⎪⎩

m(t) = m1
A2 M∞ t

1 +A2 M∞ t
,

tc = − 1

A2 M∞
< 0,

for A1 = 0 since m2 = m1;

(2.8)
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Case 4) (True exponential) A1 > 0 and A2 = 0 with the solution

m(t) =
M∞
M0

(
1− e−A1 t

)
, tc = −∞.

The generic behaviours of the solution m(t) in the above cases are illustrated in
Figures 1 and 2 and the parameters tabulated in Table 1 of [6].

The ODE model has an interesting gradient flow interpretation by introducing
the function

E(m)
def
=

1

2
A1

(
M∞
M0

−m

)2

+
1

3
A2 M0

(
M∞
M0

−m

)3

(2.9)

with gradient (derivative)

E′(m) = −A1

(
M∞
M0

−m

)
−A2 M0

(
M∞
M0

−m

)2

(2.10)

and Hessian (second order derivative)

E′′(m) = A1 + 2A2 M0

(
M∞
M0

−m

)
. (2.11)

The ODE can now be rewritten in the form of a gradient flow equation

dm

dt
(t) + E′(m(t)) = 0, m(0) = 0. (2.12)

This is the continuous version of a steepest descent method to minimize the
functional E. So, it is expected that starting from m(0) = 0 with m′(0) > 0 the
asymptotic value m1 of the solution of the ODE (2.12) would achieve a local
minimum of E(m). To do that, we compute the second derivative of E under
the assumption that A1 ≥ 0 and m′(0) > 0 which is equivalent to E′(0) =
−(M∞/M0)[A1 + A2M∞] < 0. It turns out that in all cases except the second
part of case 3), m1 is a local minimum of E(m). The exception corresponds to
a point of inflection that can be changed into a global minimum by modifying
the function E to E(m) = (A2 M0/3) |M∞/M0 −m|3.

3 PDE Model of Quadratic Semi-permeable Membranes

3.1 Equations in the Polymer and the Surrounding Medium

The experimental benchmark of [16] is contained in a vial. The polymer film
is deposited flat at the bottom of the vial and the vial is filled with a fluid
that we shall call the surrounding medium (see Figure 1). The vial is closed
without circulation of the fluid. Denote by Ωp the open domain occupied by the
polymer and by Ωm the open domain occupied by the surrounding medium. Let
Γp and Γm be the respective boundaries of Ωp and Ωm. The polymer occupies
a thin square parallelepipedic region at the bottom of the vial. Its boundary is
made up of the interface Γint = Γp ∩ Γm between the polymer and the medium
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polymer film

Fig. 1. The polymer film and the surrounding fluid in the vial

(top boundary and lateral boundary of Ωp) and the bottom square boundary of
Ωp that we shall denote Γ0.

The vial is closed without circulation of the fluid filling the vial (the medium).
Within the (surrounding) medium only linear diffusion is expected with zero
Neumann boundary conditions at the boundary of the vial Γext = (Γp∪Γm)\Γint.

At time t, denote by cp(x, t) the concentration of the drug at the point x ∈ Ωp

and by cm(x, t) the concentration of the drug at point x ∈ Ωm. Assume linear
diffusion equations in the polymer and the surrounding medium

∂cp
∂t

= div (Dp∇cp) in Ωp (3.1)

∂cm
∂t

= div (Dm∇cm) in Ωm (3.2)

with constant diffusion constants Dp and Dm and initial conditions

cp(x, 0) = c0(x) = M0/|Ωp| in Ωp, cm(x, 0) = 0 in Ωm, (3.3)

where |Ωp| is the volume of Ωp. Assume that the experimental set up is closed:

Dp
∂cp
∂np

= 0eq.constriantΓp\Γint Dm
∂cm
∂nm

= 0 on Γm\Γint, (3.4)

where the unit normals np and nm are exterior to the respective domains Ωp and
Ωm. Assume that there is no loss of product : this yields the (affine) constraint

∀t ≥ 0, M0
def
=

∫
Ωp

c0(x) dx =

∫
Ωp

cp(x, t) dx +

∫
Ωm

cm(x, t) dx, (3.5)

where M0 is the total mass of product. By integrating (3.1) over Ωp and (3.2)
over Ωm and by using the constraint (3.5), we get

⇒ 0 =

∫
Ωp

∂cp
∂t

(x, t) dx +

∫
Ωm

∂cm
∂t

(x, t) dx

=

∫
Ωp

div (Dp∇cp)(x, t) dx +

∫
Ωm

div (Dm∇cm)(x, t) dx

=

∫
Γp

Dp
∂cp
∂np

(x, t) dΓ +

∫
Γm

Dm
∂cm
∂nm

(x, t) dΓ.

(3.6)
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Finally, by using the boundary conditions (3.4) we get∫
Γint

[
Dp

∂cp
∂np

(x, t) +Dm
∂cm
∂nm

(x, t)

]
dΓ = 0. (3.7)

It remains to specify the conditions at the interface Γint.

3.2 Conditions at the Interface

In order to incorporate the microphysics taking place in the thin film of polymer,
it is assumed that the interface behaves as a semi-permeable membrane with
micro fissures through which the drug diffuses into the surrounding medium.
Many empirical and theoretical models of such membranes have been studied in
the literature and in different contexts. One mathematically interesting model
of a semi-permeable membrane is to assume that the interface is a membrane
punctured with small holes whose size goes to zero while preserving a strictly
positive capacity2 in the limiting process. In other words the membrane is fissured
or cracked and the drug diffuses through the cracks. This problem has been
studied from the mathematical point of view under the name of the Neumann
sieve by A. Damlamian [5] in 1985. From the physical point of view, it can be
assimilated with a semi-permeable membrane.

In this section we consider an evolution equation of the form

∂c

∂t
(t) +A(c(t)) = 0, c(0) = M0/|Ωp|χΩp , (3.8)

where the operator A is now quadratic in c(t). Since the domain Ωp is thin, it
is reasonable to put the nonlinearity at the interface Γint rather than on Ωp via
a diffusion coefficient Dp(c) that depends on c:

− d

dt

∫
Ωp

cp(t) dx =
d

dt

∫
Ωm

cm(t) dx

=

∫
Γint

[
k1 + k2

|Ωp|
M0

|cp(t)− cm(t)|
]
(cp(t)− cm(t)) dΓ

(3.9)

for some constant k2. Note that we have introduced a scaling by the initial
concentration of product M0/|Ωp| of the drug so that k1 and k2 are parameters
of the same physical dimension.

Now consider the (cubic) functional

E(v)
def
=

1

2

∫
Ωp

Dp |∇vp|2 dx+
1

2

∫
Ωm

Dm |∇vm|2 dx

+

∫
Γint

1

2
k1 |vp − vm|2 + 1

3
k2

|Ωp|
M0

|vp − vm|3 dΓ
(3.10)

vp
def
= v|Ωp , vm

def
= v|Ωm (3.11)

2 The capacity of a set is a mathematical notion. For instance a finite segment in the
plane has zero area but finite capacity. Roughly speaking, the capacity is a “measure”
of the cracks.
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defined on the space H1(Ωp ∪ Ωm) with a crack Γint = Γp ∩ Γm in Ωp ∪ Ωm

along which the function v can have a jump discontinuity [v] = vm − vp. This
convex non quadratic variational formulation is similar to the T 4 radiation law
for the temperature T of a radiating body in free space (cf., for instance, [9]).

We do not impose the continuity of the concentrations at the interface. Taking
into account the constraint on the total mass of product, we look for a solution
c(t) at time t > 0 in the affine subspace

V pm
M0

def
=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

{
c ∈ H1(Ωp ∪Ωm) :

∫
Ωp∪Ωm

c(x) dx = M0

}
, if k2 = 0, k1 > 0,

⎧⎪⎨
⎪⎩c ∈ H1(Ωp ∪Ωm) :

∫
Ωp∪Ωm

c(x) dx = M0

vp − vm ∈ L3(Γint)

⎫⎪⎬
⎪⎭ , if k2 > 0,

of H1(Ωp ∪Ωm). In the first case[ ∫
Ωp

|∇vp|2 dx+

∫
Ωm

|∇vm|2 dx+

∫
Γint

|vp − vm|2 dΓ
]1/2

(3.12)

is an equivalent norm on V pm
M0

; in the second case

[∫
Ωp

|∇vp|2 dx+

∫
Ωm

|∇vm|2 dx

]1/2

+

[∫
Γint

|vp − vm|3 dΓ
]1/3

(3.13)

is an equivalent norm on V pm
M0

(cf., for instance, [9] with the T 4 radiation law
for the temperature T in free space).

The directional derivative of E is

dE(u; v) =

∫
Ωp

Dp∇u · ∇v dx+

∫
Ωm

Dm∇u · ∇v dx

+

∫
Γint

k2
|Ωp|
M0

|up − um| (up − um) (vp − vm)

+ k1 (up − um) (vp − vm) dΓ

(3.14)

up
def
= u|Ωp , um

def
= u|Ωm , vp

def
= v|Ωp , vm

def
= v|Ωm . (3.15)

We are interested in the stationary points c = (cp, cm) ∈ VM0 of E that are the
solutions of the variational equation

∃c ∈ V pm
M0

, dE(c; v) = 0, ∀v ∈ V pm
0 , (3.16)

V pm
0

def
=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

{
c ∈ H1(Ωp ∪Ωm) :

∫
Ωp∪Ωm

c(x) dx = 0

}
, if k2 = 0, k1 > 0,

⎧⎪⎨
⎪⎩c ∈ H1(Ωp ∪Ωm) :

∫
Ωp∪Ωm

c(x) dx = 0

vp − vm ∈ L3(Γint)

⎫⎪⎬
⎪⎭ , if k2 > 0.

(3.17)
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Again dE(c; v) = 0 for all constant functions v and V pm
0 can be replaced by

H1(Ωp ∪Ωm):

∃c ∈ V pm
M0

, dE(c; v) = 0, ∀v ∈ H1(Ωp ∪Ωm).

It yields a complete set of conditions at the interface and the following system
of equations

div (Dp∇cp) = 0 in Ωp, div (Dp∇cm) = 0 in Ωm (3.18)

Dp
∂cp
∂np

+ k2
|Ωp|
M0

|cp − cm| (cp − cm) + k1 (cp − cm) = 0 on Γint (3.19)

Dm
∂cm
∂nm

−
[
k2

|Ωp|
M0

|cp − cm| (cp − cm) + k1 (cp − cm)

]
= 0 on Γint (3.20)

Dp
∂cp
∂np

= 0 on Γp\Γint, Dm
∂cm
∂nm

= 0 on Γm\Γint (3.21)

∫
Ωp

cp dx+

∫
Ωm

cm dx = M0. (3.22)

From the mathematical viewpoint, the condition involving |cp − cm| (cp − cm) is
the analogue of the condition |T − Tm|3 (T − Tm) (usually written (T − Tm)4)
on the temperature of a radiating body (cf., for instance, [9]). The thin layer of
polymer behaves as a nonlinear semi-permeable membrane. The second order
directional derivative of E is

d2E(u; v;w) =

∫
Ωp

Dp∇w · ∇v dx+

∫
Ωm

Dm∇w · ∇v dx

+

∫
Γint

[
2 k2

|Ωp|
M0

|up − um|+ k1

]
(wp − wm) (vp − vm) dΓ

(3.23)

⇒ d2E(u; v; v) =

∫
Ωp

Dp|∇v|2 dx+

∫
Ωm

Dm|∇v|2 dx

+

∫
Γint

[
2 k2

|Ωp|
M0

|up − um|+ k1

]
|vp − vm|2 dΓ.

(3.24)

Since E is a cubic functional, local minima and local maxima can both occur
depending on the signs and magnitudes of the constants k1 and k2. A local
minimum u ∈ V pm

M0
is characterized by

∀v ∈ V pm
0 dE(u; v) = 0 and ∀0 �= v ∈ V pm

0 d2E(u; v; v) > 0

and a local maximum u ∈ V pm
M0

by

∀v ∈ V pm
0 dE(u; v) = 0 and ∀0 �= v ∈ V pm

0 d2E(u; v; v) < 0.
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Going back to the evolution equation (3.8) using the above conditions at the
interface, we get the following system of equations

∂cp
∂t

= div (Dp∇cp) in Ωp,
∂cm
∂t

= div (Dm∇cm) in Ωm

cp(x, 0) = M0/|Ωp|χΩp(x) in Ωp, cm(x, 0) = 0 in Ωm

Dp
∂cp
∂np

+ k2
|Ωp|
M0

|cp − cm| (cp − cm) + k1 (cp − cm) = 0 on Γint

Dm
∂cm
∂nm

−
[
k2

|Ωp|
M0

|cp − cm| (cp − cm) + k1 (cp − cm)

]
= 0 on Γint

Dp
∂cp
∂np

= 0 on Γp\Γint, Dm
∂cm
∂nm

= 0 on Γm\Γint

∫
Ωp

cp dx+

∫
Ωm

cm dx = M0.

(3.25)

The nonlinear condition on Γint

Dm
∂cm
∂nm

= k2
|Ωp|
M0

|cp − cm| (cp − cm) + k1 (cp − cm)

=

(
k2

|Ωp|
M0

|cp − cm|+ k1

)
︸ ︷︷ ︸

k(c)

(cp − cm)

says that k(c) is an affine function of the size of the jump. This means that the
rate of transfer of the product across the interface is large when the absolute
value of the concentration jump is large. Assuming that k1 ≥ 0, when k2 > 0 it
decreases to k1 when the size of the jump goes to zero; when k2 < 0 it increases
to k1 when the size of the jump goes to zero.

Remark 1. When k2 > 0, it would not be appropriate to remove the absolute
value on cp − cm in the term k′ of the previous identity. This would give the
expression

Dm
∂cm
∂nm

=

(
k2

|Ωp|
M0

(cp − cm) + k1

)
︸ ︷︷ ︸

k′(c)

(cp − cm),

where, if the size of the jump is large, k′(c) > 0 is large, ∂cm/∂nm > 0 is large,
and the diffusion of product would be from the medium to the polymer even when
cp > cm, that is, when the concentration in the polymer is larger than the one
in the medium. However, it is interesting to note that various behaviours can
be modelled by replacing |cp − cm| by the plus [cp − cm]+ = max{0, cp − cm} or
the minus [cp − cm]− = max{0,−(cp− cm)} functions or introducing a threshold
θ > 0 max{|cp − cm| − τ, θ}.



Drug Release Kinetics from Biodegradable Polymers 23

3.3 Relation between the PDE and the ODE Models

Since |Ωp| is much smaller than |Ωm|, this last equation is related to the quadratic
ODE model by making the same assumptions on the concentrations on Γint as
in the previous section:

cp(x, t) 
 1

|Ωp|
∫
Ωp

cp(x, t) dx and cm(x, t) 
 1

|Ωm|
∫
Ωm

cm(x, t) dx (3.26)

⇒ cp(x, t)− cm(x, t) 
 1

|Ωp| [M0 −Mm(t)] ,

where

Mm(t)
def
=

∫
Ωm

cm(x, t) dx (3.27)

is the mass released at time t in the medium and

dMm

dt
(t) =

|Γint|
|Ωp|

[
k1 +

k2
M0

|M0 −Mm(t)|
]
(M0 −Mm(t)) (3.28)

⇒ dmm

dt
(t) =

1

h
[k1 + k2 |1−mm(t)|] (1−mm(t)), mm(t)

def
=

Mm(t)

M0
, (3.29)

where h = |Ωp|/|Γint| is the thickness of the polymer. This would correspond
to A1 = k1/h and A2 = k2/h in the ODE model. The thickness h is an impor-
tant parameter : the thinner the polymer the faster the release. If k1 and k2 are
constants, mm can be normalized through the change of variable t �→ τ = t/h.
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