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Abstract. We consider a stochastic control problem of beating a stochastic
benchmark. The problem is considered in an incomplete market setting with
external economic factors. The investor preferences are modelled in terms of
HARA-type utility functions and trading takes place in a finite time horizon.
The objective of the investor is to minimize his expected loss from the outper-
formance of the benchmark compared to the portfolio terminal wealth, and to
specify the optimal investment strategy. We prove that for considered loss func-
tions the corresponding Bellman equation possesses a unique solution. This solu-
tion guaranties the existence of a well defined investment strategy. We prove also
under which conditions the verification theorem for the obtained solution of the
Bellman equation holds.

Keywords: optimal portfolios, stochastic target, benchmark tracking.

1 Introduction

We analyze the optimal portfolio and investment policy for an investor who is concerned
about his wealth relative to the performance of a given benchmark. The benchmark
evolves stochastically over time and the investor’s objective is to minimize his loss
with respect to this benchmark by investing in a portfolio of stochastically evolving
financial instruments. Since the benchmark is not necessarily perfectly correlated with
the investment opportunities, we are in the framework of an incomplete market, and
there is no investment policy under which the investor can outperform the benchmark
with certainty.

The portfolio problem where the objective is to exceed the performance of a selected
target benchmark is sometimes called an active portfolio management. It is well known
that many professional investors apply this benchmarking procedure. However, many
small investors follow a benchmarking procedure as well, by trying to beat inflation,
exchange rates, or other market indices.

The problem of an investment portfolio which outperforms a given benchmark has
been studied for a long time. For objectives such as maximizing the probability that the
investor’s wealth achieves a certain performance goal relative to the benchmark, before
falling below to a predetermined shortfall, or minimizing the expected time to reach
the performance goal, the problem is studied by Browne [4], [5]. For the special case
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where the benchmark is perfectly correlated with the investment opportunities, these
problems over a finite-horizon are analyzed in [4], and for a more general model that
the benchmark is not perfectly correlated with the investment opportunity in [5]. The
problem of finding the minimal initial data of a controlled process which guarantees to
reach the benchmark with a given probability of success or, more generally, with a given
level of expected loss was first introduced by Föllmer and Leukert [7] in the context of
quantile hedging. This approach has been then extended to the stochastic target problem
studied by Soner and Touzi [9, 10], and in a number of papers by Bouchard et. al.
[1, 2, 3].

In opposition to the majority of previously mentioned papers, in this paper, we study
a loss minimization objective when the prices of financial instruments are functions of
external economic factors. A similar problem but without taking into account economic
factors is solved by Browne [5]. The absence of economic factors makes the problem
much simpler as the HJB equation is reduced in that case to an ODE. In the presence of
external factors the HJB equation becomes a multidimensional nonlinear PDE for which
the existence of solutions is a challenging problem. We solve this problem using the well
developed theory of quasilinear parabolic equations. We also show that under suitable
regularity assumptions the verification theorem holds. Hence, the obtained solution to
the HJB equation is a solution to the optimization problem. The plan of the paper is as
follows. In Section 2, we present the portfolio problem arising from the active portfolio
management. In Section 3, we show that, under additional assumptions on the loss
function, we can find a smooth solution to the HJB equation and construct effectively
an optimal investment strategy. Section 4 is devoted to the formulation and proof of the
verification theorem.

2 The Portfolio Problem

We consider the portfolio problem in which the prices of securities are functions of
external state variables (economic factors). Our goal is to construct a portfolio which
can outperform a stochastic benchmark. We consider a general setting of the problem. In
particular, the risk factors which define the dynamics of the benchmark can be different
from the risk factors in the dynamics of securities. Hence, the problem is an incomplete
market problem.

The setting of the market is as follows: we have a market defined on a probabil-
ity space (Ω,F ,P) with the filtration (Ft)t∈[0,T ] generated by d-dimensional standard
Wiener process W (t) = (W1, . . . ,Wd) (in what follows we treat W as a column vec-
tor). On that probability space we have N stochastic processes describing the prices of
securities with the dynamics

dSi(t)

Si(t)
= μi(t, R)dt+

d∑

j=1

σij(t, R)dWj(t), i = 1, 2, . . . , N, (1)

where μi and σij depend on an M -dimensional vector of economic factors R.
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We assume that the dynamics of factors R follow the Markovian diffusion process

dRm(t) = μr
m(t, R)dt+

d∑

i=1

bmi(t, R)dWi(t), m = 1, 2, . . . ,M. (2)

It is convenient to switch to vector notation and introduce the matrices σ = (σij),
B = (bij) and the column vectors μ = (μ1, . . . , μN )′, μr = (μr

1, . . . , μ
r
M )′. (Here and

in what follows x′ denotes the transpose of the matrix or vector x.)

Assumption 2.1. For the model of security prices we assume that coefficients μ(t, r)
and σ(t, r) are deterministic functions bounded and continuous for t ∈ [0, T ] and r ∈
R

M . For the model of economic factors we make typical assumptions which guarantee
the existence of strong solutions to equation (2), i.e., we assume that μr(t, r) andB(t, r)
are deterministic continuous functions of their arguments, which in addition fulfil the
estimates

‖μr(t, r1)− μr(t, r2)‖+ ‖B(t, r1)−B(t, r2)‖ ≤ c‖r1 − r2‖, (3)

‖μr(t, r)‖2 + ‖B(t, r)‖2 ≤ c2(1 + ‖r‖2), (4)

for t ∈ [0, T ], r, r1, r2 ∈ R
M , where c is a positive constant.

We analyze the stochastic target problem in an incomplete market assuming that the
dimension of risk factors is high, i.e. dimmension d of the Wiener process W is high,
and the number of securities and economic factors much lower. This means that d� N
and d�M . To guarantee well-posedness and solvability of the optimization problem,
we have to make additional assumptions.

Assumption 2.2. About the model of securities dynamics we assume a ”partial invert-
ibility” of the model, i.e., the matrix Σ = σσ′ is nonsingular andΣ−1(t, r) is bounded
for t ∈ [0, T ] and r ∈ R

M . This in fact means that securities are driven by N risk
factors and limited to these N dimensions the security market is complete.
About the model of dynamics of economic factors we assume that the matrix BB′ is
positive definite. Strictly speaking, we postulate that there exist positive constants ν1,
ν2 such that for any x ∈ R

M

0 < ν1‖x‖2 ≤ x′BB′x ≤ ν2‖x‖2.

The stochastic benchmark is modelled as a general log-normal stochastic process
H(t) which fulfils the equation

dH(t) := H(t)
(
μHdt+ ξdW (t)

)
,

where ξ = (ξ1, . . . , ξd)
′ is a column vector, and coefficients μH and ξ are deterministic

functions of t ∈ [0, T ] and r ∈ R
M .

We consider now a portfolio V (t) consisting of assets Si(t), i = 1, . . . , N . Denoting
by πi the fraction of the total wealth V (t) invested in the security Si, we can write

dV π(t) = V π(t)
(
μV dt+ θV dW (t)

)
, (5)
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where after introducing the column vector π = (π1, . . . , πN )′ we have μV = μ′π and
θV = σ′π.

We define now the new process

X(t) =
H(t)

V π(t)
. (6)

This approach enables us to consider in the same framework losses and gains. Such
an approach is not quite new in the financial literature. It is applied by Browne [4, 5].
A similar quotient is used by Dai Pra, Runggaldier and Tolotti [6] who optimize the
quadratic loss in the benchmark tracking problem.

For the process X(t) we obtain the following equation of evolution

dX

X
= μXdt+ θdW, (7)

where
θ = ξ − θV , μX = μH − μV − θ′θV .

We optimize the process X(t) with respect to the vector of strategies π. Admissible
strategies for our problem are defined as follows.

Definition 2.1. Let U be a complete, separable metric space and 0 < T < ∞. We
define the set of admissible strategies Π(t, x, r) as fulfilling the conditions:

1. π : [t, T ]×Ω → U ⊆ R
N is measurable, bounded and {Fτ}τ≥t-adapted, for each

π ∈ Π(t, x, r),
2. X(t) = x (budget constraint),
3. R(t) = r.

We consider the optimization problem in the framework of utility theory. This means
that we fix a utility function g and optimize the terminal value of process X measured
by g. The optimization problem is of the form

min
π∈Π(t,x,r)

E
[
g(X(T ))|X(t) = x,R(t) = r

]
. (8)

In fact, it is better to call g a loss function as our goal is to minimize losses and not to
maximize gains.

Under Assumptions 2.1, 2.2 and Definition 2.1, equation (7) admits the unique solu-
tion and the value function

u(t, x, r) := min
π∈Π(t,x,r)

E
[
g(X(T ))|X(t) = x,R(t) = r

]
(9)

is well defined.
With this value function we arrive at the following Hamilton-Jacobi-Bellman

equation

∂tu+ inf
π∈Π

(
μXx∂xu+ (μr)′∇ru+

1

2
θ′θx2∂xxu+

+
1

2
BB′(∇r ⊗∇ru) + xθ′B′∇r∂xu

)
= 0,

u(T, x, r) = g(x),

(10)
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where ∇r denotes the gradient operator with respect to vector variable r (a column
vector), ∂t and ∂x denote differential operator with respect to scalar variables t and x,
respectively. ∇r ⊗ ∇r has the following meaning: when x and y are n- dimensional
column vectors then x ⊗ y denotes the n× n matrix xy′, i.e. ∇r ⊗∇ru is a matrix of
all second order derivatives of u with respect to variables ri and rj , i, j = 1, . . . ,M .

3 Smooth Solutions of the HJB Equation

To obtain smooth solutions to the HJB equation (10), we make the following
assumption.

Assumption 3.1. The loss function g(x) is from the generalized HARA class and is
given by the expression g(x) = cxα, for α > 1 and x ∈ [0,∞).

Remark 3.1. In fact, from the technical point of view, we can assume only that g is
such that α �= −1. The assumption α > 1 is essential when we want to interpret g(x)
as a loss function.

Under the above assumption, we postulate that the value function can be factorized in
the form

u(t, x, r) = g(x)q(t, r). (11)

Substituting the above factorization into equation (10), we obtain the following PDE
problem for q:

∂tq + inf
π∈Π

(
αμXq + (μr)′∇rq +

α(α − 1)

2
θ′θq+

+
1

2
BB′(∇r ⊗∇rq) + αθ′B′∇rq

)
= 0,

q(T, r) = 1.

(12)

From equation (12) we can derive formally the optimal investment strategy

π∗ = π0 +
π1∇rq

q
, (13)

where

π0 =
1

1 + α
Σ−1(μ+ ασξ),

π1 =
1

1 + α
Σ−1σB′.

Substituting expression (13) into the HJB equation (12) we obtain

∂tq + αμ∗q + (μr)′∇rq +
α(α − 1)

2
(θ∗)′θ∗q+

+
1

2
BB′(∇r ⊗∇rq) + α(θ∗)′B′∇rq = 0.

(14)
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In this equation, μ∗ denotes the value of μX , and θ∗ the value of θ evaluated at the point
of the optimal strategy π∗.

After rearrangements, the HJB equation (14) takes the form

∂tq +A0(∇r ⊗∇rq) +A1
∇rq ⊗∇rq

q
+A2∇rq +A3q = 0, (15)

where

A0 =
1

2
BB′,

A1 =
1

2
α(α + 1)(π1)′Σπ1 − αBσ′π1,

A2 =μr + α(α + 1)(π1)′Σπ0 − α2(π1)′σξ + α
(
Bξ − (π1)′μ−Bσ′π0

)
,

A3 =
1

2
α2

(
(π0)′Σπ0 − 2(π0)′σξ + ξ′ξ

)
+ α

(
μH − μ′π0 − 1

2
ξ′ξ

)
.

Equation (15) has to be solved in the strip 0 ≤ t ≤ T with the terminal condition

q(T, r) = 1. (16)

Equation (15) is a quasilinear parabolic equation which possesses a solution provided
this solution is bounded away from zero. To find this solution we make the substitution

z = ln q.

For the new function z we obtain the equation

∂tz +A0(∇r ⊗∇rz) + (A0 +A1)∇rz ⊗∇rz +A2∇rz +A3 = 0, (17)

with the terminal condition
z(T, r) = 0. (18)

To solve equation (17) with condition (18), we use well known results in the theory of
quasilinear parabolic equations.

Let us consider a boundary value problem for a n-dimensional quasilinear parabolic
equation

∂tw −
n∑

i,j=1

aij(t, x)∂xixjw + a(t, x, w, ∂xw) = 0, for (t, x) ∈ OT ,

w(t, x) = ψ(t, x), for (t, x) ∈ ΓT ,

(19)

in a bounded domain OT = [0, T ]×O, where O is a bounded domain in R
n with the

boundary of class H2+β , and ΓT = ∂O × [0, T ] ∪O × {t = 0}.
Theorem 7.4 in Chapter 6 of the book by Ladyzhenskaya, Solonnikov and Uralt-

seva [8] guarantees that, under suitable assumptions on coefficients aij , a and bound-
ary function ψ, there exists a unique solution to the boundary value problem (19) in
H1+β/2,2+β(OT ).

To apply the above result to equation (17), we have to make additional assumptions.
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Assumption 3.2. Let functions μ, μr, μH , σ, B, ξ and Σ−1 be Hölder continuous
functions of t with the Hölder exponent β/2, and Hölder continuous functions of r with
the Hölder exponent β , for some β > 0.

Now we can prove our main theorem.

Theorem 3.1. Under Assumptions 2.1, 2.2, 3.1, 3.2 and the assumptions of Defini-
tion 2.1, there exists a unique solution z(t, r) to the terminal problem (17)-(18) and |z|,
|∂tz|, |∂xiz|, |∂xixjz| are bounded in [0, T ] × R

M . This solution belongs to
H1+β/2,2+β(OT ), where OT = [0, T ]×O and O is a bounded domain in R

M .

Proof: Let us consider the terminal problem (17)-(18) in OT = [0, T ]× O, where
O is a fixed bounded domain in R

M . To solve this problem, we supplement equation
(17) and terminal condition (18) with the boundary condition

z(t, r) = 0 for (t, r) ∈ ∂O × [0, T ]. (20)

The above defined augmented problem fulfils already the assumptions of Theorem 7.4
in Chapter 6 of [8]. Due to this theorem, there exists a unique solution of equation
(17) with terminal condition (18) and boundary condition (20). This solution together
with its derivatives can be estimated in OT with constants which depend only on con-
stants present in the Assumptions, and not on the size of domain O. Hence, the solution
which exists in any bounded domain OT belongs toH1+β/2,2+β(OT ) and is uniformly
bounded together with its derivatives independently of the size of the domain. Then
we can consider a increased sequence of bounded smooth domains On that fill in the
whole RM and solutions zn to problem (17), (18), (20) with O replaced by On. By the
standard Arzela-Ascoli theorem, we can choose a subsequence of zn which converges
to a function which is a solution to (17)-(18) on [0, T ]×R

M . �

Remark 3.2. In many situations, economic factors should be restricted to nonnegative
values only. In that cases, Theorem 3.1 is still applicable as we can construct a sequence
of bounded smooth domains On approximating the space RM

+ .

Corollary 3.1. Let us observe that due to Theorem 3.1 fuction z(t, r) and its deriva-
tives are bounded. Returning back to the original function q, we conclude that q(t, r)
is bounded away from zero and the quotient qrm/q is bounded. It follows than that
the optimal investment strategy given by expression (13) is bounded and admissible in
accordance with Definition 2.1.

4 Verification Theorem

Theorem 3.1 guaranties a smooth solution to the terminal problem (17)-(18). This solu-
tion is not necessarily a solution to the optimization problem. To prove the optimality,
we need some additional results. First, we have to show that the solution to problem
(17)-(18) is a function of class C1,2 on [0, T ]× R

M .
To this end, we can use Theorem 8.1 from Chapter 6 of [8] which guarantees the

existence of a unique solution in H1+β/2,2+β(QT ), where QT = [0, T ] × R
n, to the

Cauchy problem for a quasilinear parabolic equation
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∂tw −
n∑

i,j=1

aij(t, x)∂xixjw + a(t, x, w, ∂xw) = 0, in (0, T ]× R
n,

w(0, x) = ψ(x), in R
n,

(21)

if in addition to the assumptions of Theorem 7.4 from [8] the coefficients of the equation
can be uniformly estimated on every bounded set with the bound independent of the size
of this set.

To apply the above mentioned theorem, we make the following assumption

Assumption 4.1. Let functions μ, μr, μH , σ, B, ξ and Σ−1, in addition to being
Hölder continuous, be uniformly bounded for all (t, r), t ∈ [0, T ], r ∈ R

M .

Theorem 4.1. Under the assumptions of Theorem 3.1 and Assumption 4.1, there ex-
ists a unique solution to the terminal problem (17)-(18). This solution belongs to
H1+β,2+β/2([0, T ]× R

M ) and the estimates of Theorem 3.1 hold for (t, r) ∈ [0, T ]×
R

M . In particular, the solution is a C1,2 function on [0, T ]× R
M .

Proof: The proof follows straightforwardly from Theorem 8.1 in Chapter 6 of
[8]. That theorem states that the solution to problem (21) is unique and belongs to
H1+β/2,2+β([0, T ] × R

M ) for some β > 0. It is obvious that such a solution is a
function of class C1,2. �
To use the classical stochastic verification theorem (cf. Theorem 5.1 in Chapter 5 of the
book by Yong and Zhou [11]), we have to prove the following simple lemma.

Lemma 4.1. Let z(t, r) be the unique solution to the boundary value problem (17)-
(18), which exists due to Theorem 4.1 in [0, T ]× R

M . Let q(t, r) = exp
(
z(t, r)

)
and

π∗ be given by equation (13). Then

inf
π∈Π

(
αμXq + (μr)′∇rq +

α(α− 1)

2
θ′θq +

1

2
BB′(∇r ⊗∇rq) + αθ′B′∇rq

)
=

= αμ∗q + (μr)′∇rq +
α(α − 1)

2
(θ∗)′θ∗q +

1

2
BB′(∇r ⊗∇rq) + α(θ∗)′B′∇rq,

where μ∗ denotes the value of μX , and θ∗ the value of θ evaluated at the point of the
optimal strategy π∗.

Proof: The proof is straightforward as the left and right hand sides of the equation
in the Lemma are left hand sides of equations (12) and (14), respectively. But equation
(14) has been obtained from equation (12) upon substitution (13). The fact that π∗ is an
admissible investment strategy has been already stated in Corollary 3.1. �
From Theorem 4.1 and Lemma 4.1, we easily obtain the verification theorem.

Theorem 4.2. Under assumptions of Theorem 4.1, the function

u(t, x, r) = g(x)q(t, r)

is the value function to the optimization problem (9), where g(x) fulfils the conditions
of Assumption 3.1 and q(t, r) = exp

(
z(t, r)

)
with z(t, r) being the solution of the

boundary value problem (17)-(18), which exists due to Theorem 4.1.
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5 Conclusions

In this paper, we have solved the stochastic optimization problem for the loss minimiza-
tion with the state variable being the ratio of a stochastic benchmark to an investment
portfolio. The control parameter of this problem is the portfolio investment strategy.
The problem is solved in a market model of N securities being log-normal stochastic
processes and depending onM external economic factors. The stochastic benchmark is
also a log-normal process but the set of risk factors on which this benchmark depends
can be larger than the set of risk factors of the securities making the whole problem an
incomplete market problem.

The stochastic optimization problem has been reduced to the HJB equation which,
in this case, is a multidimensional quasilinear parabolic equation. Using the general
theory of such equations, we have proved that under suitable regularity conditions the
HJB equation possesses a unique solution which is sufficiently smooth to guarantee the
fulfilment of the stochastic verification theorem. Hence, the solution to the HJB equa-
tion is a unique solution to the initial optimization problem. This is a natural extention
of similar results obtained in a less general setting without the dependence of security
prices on external economic factors.

A natural question which arises is the extension of the obtained results to a market
with less restrictive assumpions. The most severe of these assumptions is the bounded-
ness of the coefficients in the whole domain and the lifting of these restrictions will be
the subject of future research.
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