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Abstract. An optimal control problem to find the fastest collision-free
trajectory of a robot is presented. The dynamics of the robot is governed
by ordinary differential equations. The collision avoidance criterion is a
consequence of Farkas’s lemma and is included in the model as state
constraints. Finally an active set strategy based on backface culling is
added to the sequential quadratic programming which solves the optimal
control problem.
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1 Collision Avoidance

In automotive industry robots have to work simultaneously on the same work-
piece. The challenge is to find for each robot the fastest trajectory that avoids
any collision with the surrounding obstacles and the other robots. We start with
the establishment of the collision avoidance criterion.

For simplicity, we suppose that only one obstacle is present in the workspace.
As in [7,8] a collision detection can be obtained when the robot is approximated
by a union of convex polyhedra. This union is called P and it given by

P =

nP⋃

i=1

P (i), with P (i) = {y ∈ R
3|A(i)y ≤ b(i)}

where nP is the number of polyhedra in P . If pi denotes the number of faces in
P (i), then A(i) ∈ R

pi×3 and b(i) ∈ R
pi for i = 1, . . . , nP .

Similarly, the obstacle is approximated by the following union of convex poly-
hedra, called Q

Q =

nQ⋃

j=1

Q(j), with Q(j) = {y ∈ R
3|C(j)y ≤ d(j)}

where nQ is the number of polyhedra in Q. If qj is the number of faces in Q(j),
then C(j) ∈ R

qj×3 and d(j) ∈ R
qj for j = 1, . . . , nQ. In the following, nP , A, b
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and i are always associated with the robot, and nQ, C, d, and j are related to
the obstacle. Furthermore, the robot will be identified with its approximation P
and the obstacle with Q.

A first characterization of the collision-freeness between P and Q is given by

P (i) ∩Q(j) = ∅, ∀i = 1, . . . , nP and ∀j = 1, . . . , nQ.

The definition of the polyhedra P (i) and Q(j) implies that P (i) does not collide
with Q(j) if and only if there does not exist any point y(i,j) ∈ R

3 satisfying

(
A(i)

C(j)

)
y(i,j) ≤

(
b(i)

d(j)

)
.

According to Farkas’s lemma [1], this linear system does not have any solution
if and only if there exists a vector w(i,j) ∈ R

pi+qj such that

w(i,j) ≥ 0,

(
A(i)

C(j)

)�
w(i,j) = 0 and

(
b(i)

d(j)

)�
w(i,j) < 0.

In conclusion, the pair of polyhedra (P (i), Q(j)) is collision-free if and only if such
a vector w(i,j) exists. This forms the collision avoidance characterization between
a pair of polyhedra. Between the robot and the obstacle, the characterization
reads as follows:

Proposition 1. Two unions of convex polyhedra P =
⋃nP

i=1 P
(i) and Q =⋃nQ

j=1Q
(j) do not collide if and only if for each pair of polyhedra (P (i), Q(j)),

i = 1, . . . , nP , j = 1, . . . , nQ, there exists a vector w(i,j) ∈ R
pi+qj such that

w(i,j) ≥ 0,

(
A(i)

C(j)

)�
w(i,j) = 0 and

(
b(i)

d(j)

)�
w(i,j) < 0.

2 Optimal Control Problem

To express the dynamics of the robot, we need to describe P differently from the
previous section. As an industrial robot, P is composed bym links and is asked to
move from its current position to a desired point [12]. Let q = (q1, . . . , qm) denote
the vector of joint angles at the joints of the robot. The vector v = (v1, . . . , vm)
contains the joint angle velocities and u = (u1, . . . , um) describes the torques
applied at the center of gravity of each link. The Lagrangian form of the dynamics
of the robot depends on these three vectors as follows

q
′
(t) = v(t) and M(q(t)) v

′
(t) = G(q(t), v(t)) + F(q(t), u(t)), (1)

where M(q) is the symmetric and positive definite mass matrix, G(q, v) contains
the generalized Coriolis forces and F(q, u) is the vector of applied joint torques
and gravity forces [10,12].
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For the remainder of the paper, let us define the vector x = (q, v) ∈ R
nx

with nx := 2m. With the definition of x and the non-singularity of the matrix
M, we can define the function f : Rnx × R

m → R
nx as follows

f(x, u) =

(
v

M−1(q) (G(q, v) + F(q, u))

)
.

The fastest trajectory of a robot is the solution of an optimal control problem
where the system of ordinary differential equations (ODE) are given by (1), see
[3,6]. If an obstacle is present in the workspace, the collision-freeness is assured as
soon as the vector w(i,j) of Proposition 1 is found at each time t and for all pairs
of polyhedra. However, to be written as state constraints, the strict inequality in
Proposition 1 has to be relaxed. Furthermore, since the robot moves, the matrices
A(i) and the vectors b(i) evolves in time. Their evolution depends explicitly on
x(t). A complete formulation of A(i)(x(t)) and b(i)(x(t)) is given in [6].

Before writing down the model, let us define the index transformation I = (i−
1)nQ+j. Hence, to each pair (i, j) ∈ {1, . . . , nP }×{1, . . . , nQ} there corresponds
an index I in {1, . . . , nPnQ}, and reciprocally. In the sequel, the index I is used
instead of the pair (i, j). The variable w(i,j) is then numbered as wI . Let us
also define the functions GI : Rnx → R

(pi+qj)×3 and gI : Rnx → R
pi+qj for

I = 1, . . . , nPnQ as follows

GI(x) =

(
A(i)(x)

C(j)

)
and gI(x) =

(
b(i)(x)

d(j)

)
.

GI and gI allow us to write Proposition 1 as a function of time. Finally let
set M := nPnQ the number of indices I and nI := pi + qj the size of wI for
I = 1, . . . ,M , and let tf denote the travel time. Then, after transformation onto
the fixed time interval T := [0, 1] the optimal control problem reads as follows:

(OCP): minimize ϕ(x(0), x(1), tf )

with respect to the state variable x ∈Wnx
1,∞(T ), the control variables

u ∈ Lm
∞(T ) and wI ∈ LnI∞ (T ), I = 1, . . . ,M , and tf ≥ 0, subject to:

- ODE: x′(t)− tff(x(t), u(t)) = 0, a.e. in T,

- state constraints: GI(x(t))
�wI(t) = 0, I = 1, . . . ,M, a.e. in T, (2)

gI(x(t))
�wI(t) ≤ −ε, I = 1, . . . ,M, a.e. in T, (3)

- boundary conditions: ψ(x(0), x(1)) = 0,

- box constraints: wI(t) ≥ 0, I = 1, . . . ,M, a.e. in T,

u(t) ∈ U := {u ∈ R
m|umin ≤ u ≤ umax}.

where the function ψ : Rnx × R
nx → R

2nx is given as follows ψ(x(t0), x(tf )) =
(R(q(t0))−R0, 0, R(q(tf ))−Rf , 0) whereR(q) denotes the position of the barycen-
ter of the last link of the robot and R0, Rf ∈ R

m are given. The vectors umin

and umax are also given. The relaxation parameter ε is positive and small. As
usual Lm

∞(T ) denotes the Banach space of essentially bounded functions mapping
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from T into R
m andWnx

1,∞(T ) denotes the Banach space of absolutely continuous
functions with essentially bounded derivative that map from T into R

nx .
If multiple obstacles are present in the workspace, the anti-collision con-

straints (2)-(3) and the associated control variables wI are defined for each
obstacle.

Depending on the number M of anti-collision constraints, the problem is in-
herently sparse since the artificial control variables wI , I = 1, . . . ,M , do not
enter the dynamics, the boundary conditions, and the objective function of the
problem, but only appear linearly in the anti-collision constraints with one-sided
coupling through the state.

We attempt to solve the problem (OCP) numerically with a reduced dis-
cretization approach [4]. Let us consider the control grid GN := {tk = kh | k =
0, 1, . . . , N}, which, for simplicity, is chosen equidistantly with the fixed step-size
h = 1/N . We use B-spline of second order to approximate the control variables:

uh(t;u0, . . . , uN) :=
N∑

i=0

uiBi(t),

wI,h(t;wI,0, . . . , wI,N ) :=

N∑

i=0

wI,iBi(t), I = 1, . . . ,M

where (u0, . . . , uN)� ∈ R
m(N+1) and (wI,0, . . . , wI,N )� ∈ R

nI(N+1) are the vec-
tor of de Boor points, and Bi, i = 0, . . . , N , denote elementary B-splines. As the
elementary B-splines sum up to one for all t ∈ T , the box constraints uh(t) ∈ U
are satisfied, if ui ∈ U , i = 0, . . . , N. The choice of B-splines is convenient as it is
easy to create approximations with prescribed smoothness properties and, even
more important, the elementary B-splines Bi have a local support only.

We solve the differential equations for the initial value x0 and a given tf by the
classical explicit Runge-Kutta method of order 4. The state approximations at
the grid points tk, k = 0, . . . , N depend on the vector z := (x0, u0, . . . , uN , tf )

� ∈
R

nz with nz = nx + (N + 1)m+ 1.
Let us define J(z) := ϕ(x0, xN (z), tf), h(z) := ψ(x0, xN (z)), as well as

ḠI,k(z) := GI(xk(z)) and ḡI,k(z) := gI(xk(z)) for I = 1, . . . ,M, k = 0, . . . , N .
With these new notations the discretized form of (OCP) can be formulated as
follows

(DOCP): Minimize J(z) with respect to z ∈ R
nz and

w = (w1,0, . . . , w1,N , . . . , wM,0, . . . , wM,N )� ∈ R
(N+1)

∑M
I=1 nI

subject to: h(z) = 0,

wI,k ≥ 0, I = 1, . . . ,M, k = 0, . . . , N,

ḠI,k(z)
�wI,k = 0, I = 1, . . . ,M, k = 0, . . . , N,

ḡI,k(z)
�wI,k ≤ −ε, I = 1, . . . ,M, k = 0, . . . , N,

z ∈ Z := {z ∈ R
nz | z� ≤ z ≤ zu}.
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Herein, z� ≤ zu define box constraints for z, where the settings ±∞ are
permitted if a component of z is not restricted from above or below.

The above nonlinear optimization problem is solved by a sequential quadratic
programming (SQP) method [5,9]. As in [13] we use an Armijo type line-search
procedure for the augmented Lagrangian function in our implementation. How-
ever, (DOCP) contains a lot of constraints: at each time step tk, k = 0, . . . , N ,
and for every pair of polyhedra (P (i), Q(j)), four anti-collision constraints are de-
fined (compare (2)-(3)). To overcome this difficulty, we add an active set strategy
based on the following observation: the anti-collision constraints are superfluous
when the robot is far from the obstacle or moves in the opposite direction. The
establishment of the active set strategy is the purpose of the next section.

3 Backface Culling Active Set Strategy

Backface culling comes from computer graphics and consists of working only with
visible objects, see [14]. We apply here the same concept to define our active set
strategy and develop four criteria to determine which objects are visible.

In this section P , resp. Q, is a polyhedron belonging to the approximation
of the robot, resp. obstacle. The first criterion is similar to the broad phase in
[2,11] and consists of checking if P is far from Q. If this is the case, no collision
can occur and the anti-collision constraints are superfluous.

The distance between P and Q is roughly computed by defining the axis-
aligned bounding box of each polyhedron. Let (xPi , y

P
i , z

P
i ), i = 1, . . . , sP , denote

the vertices of P where sP is the number of vertices, and define

xPm = min
i=1,...,sP

xPi , yPm = min
i=1,...,sP

yPi , zPm = min
i=1,...,sP

zPi ,

xPM = max
i=1,...,sP

xPi , yPM = max
i=1,...,sP

yPi , zPM = max
i=1,...,sP

zPi .

Then, the tuple (xPm, y
P
m, z

P
m, x

P
M , y

P
M , z

P
M ) represents the smallest axis-aligned

bounding box around P . Similarly the tuple (xQm, y
Q
m, z

Q
m, x

Q
M , y

Q
M , z

Q
M ) denotes

the smallest bounding box of Q. Let δ > 0 and define slightly bigger boxes:

BP = [xPm − δ, xPM + δ]× [yPm − δ, yPM + δ]× [zPm − δ, zPM + δ]

BQ = [xQm − δ, xQM + δ]× [yQm − δ, yQM + δ]× [zQm − δ, zQM + δ].

With these definitions the first criterion reads

Criterion 1. If BP and BQ are separated, then P is far from Q and the asso-
ciated anti-collision constraints are superfluous.

The vertices of P evolve in time since they belong to the robot. Hence the box BP

has to be determined at each grid point tk, k = 0, . . . , N . Because the obstacle
does not move, the box BQ is computed only once.

Let us assume now that Q is close enough to P and consider the situation
depicted in Figure 2: P is moving downwards, vc indicates the velocity of the
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center of gravity and Q̃ is generated by the faces e1 and e2 of Q. According to
Proposition 1 Q̃ does not collide with P if and only if

∃w̃ > 0, such that

(
A
C1,2

)�
w̃ = 0 and

(
b
d1,2

)�
w̃ < 0, (4)

where C1,2 is the matrix composed of the first two rows of C and d1,2 is the
vector composed of the first two components of d.

x

y

P

Q
e2

e3
e4

e5
e1

vc

x

y

P

Q̃
e2

e3
e4

e5
e1

vc

(a) (b)

Fig. 1. (a) The polyhedron P is moving downwards. The faces of Q are denoted by
e1, . . . , e5. (b) The set Q̃ is generated by the faces of Q visible to P .

Suppose now that w̃ exists. By setting w = (w̃, 0, 0, 0), we obtain:

(
A
C

)�
w = 0 and

(
b
d

)�
w < 0.

Then, Proposition 1 implies that P and Q do not collide. In summary, if no
collision occurs between Q̃ and P , then Q and P do not collide. The dimension
of w̃ is always smaller than that of w, because the polyhedra are supposed to
be compact. Consequently, the problem of finding w̃ is always smaller and there
is an advantage in replacing the anti-collision constraints by (4). In (4) only the
faces visible to P are taken into consideration. The next criteria concern the
determination of the visible faces of Q relative to P .

The faces of Q which are located behind P , are invisible to P . P is always
looking towards its velocity, vc. Hence, all objects located in the lower halfspace
H generated by vc and SR, the vertex of P located furthest in the opposite
direction of vc, are behind P . Then, the second criterion reads

Criterion 2. A face e of Q is invisible to P if e ⊂ H = {y ∈ R
n|v�c (y−SR) < 0}.

An example is given in Figure 2-(a) where the faces e3 and e4 satisfy Criterion
2. The case where all faces are located behind P means that P is moving in the
opposite direction to Q. In this situation no collision can occur and we have:

Criterion 3. If all faces of Q are invisible to P according to Criterion 2, then
the anti-collision constraints are superfluous.
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Remark 1. If the velocity vc is zero, Criteria 2 and 3 are not applied.

Not all remaining faces of Q are visible to P . Some of them can be hidden by
other faces of Q. This is the case of the face e5 in Figure 2-(b). The vertex S,
which is the closest point of P to e5, cannot see e5 because e5 is hidden by e1.
The face e5 will be visible to S as soon as S is no more located in the halfspace
H5 = {y ∈ R

n |C5 y < d5}. This yields the last criterion

Criterion 4. The face ei of Q is invisible to P if P ⊂ Hi = {y ∈ R
n|Ciy < di}

with Ci, the i
th line of C, and di, the i

th component of d, in the definition of Q.

O

Q

P

He2

e3
e4

e5

e1

x

y

SR

vc

O

Q

P

H5

e2

e3
e4

e5

e1

x

y

S

(a) (b)

Fig. 2. (a) The faces e3 and e4 of Q are located behind P . (b) The face e5 of Q is
invisible to P .

A limit case exists with Criterion 4 when P is included in Q. In that case all
faces of Q are invisible to P according to Criterion 4. But in fact all these faces
must be considered in the anti-collision constraints. Hence, Criterion 4 must not
be applied in this particular case.

Criterion 4 can also be applied to detect which faces of P are visible to Q.
Then the anti-collision constraints defined for the pair (P,Q) can be reduced as
it was done in (4).

In this section criteria to determine the visible faces of Q were developed,
provided Q is visible. All criteria were depending on the position of P which
is given by the state variable q. In the next section we show how the backface
culling is included in the SQP algorithm to solve (DOCP).

4 Algorithm and Numerical Examples

Let us recall the index transformation that associates to each pair (i, j) the new
index I via the formula: I = (i− 1)nQ + j and define the set of indices

K := {(I, k) | the polyhedron Q(j) is visible to P (i) at tk}.

K is determined by applying Criteria 1, 2 and 3. Let us also recall that wI

belongs to R
pi+qj . The first pi components of wI are associated to the faces of
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P (i) and the next qj components are related to the faces of Q(j). Then, let us
define the following set of indices for each (I, k) ∈ K

JI,k := {c ∈ {1, . . . , pi} | the face c of P (i) is invisible to Q(j) at tk}∪
{c ∈ {pi + 1, . . . , pi + qj} | the face c− pi of Q

(j) is invisible to P (i) at tk}.

This set contains the index of the faces of the pair (P (i), Q(j)) which are invisible
at tk. The invisibility of a face is determined using Criteria 2 and 4.

Backface culling involves considering the anti-collision constraints whose pair
of indices (I, k) belongs to K and write these constraints according to (4). The
algorithm to solve (DOCP ) is the SQP method presented below in which the
backface culling is added as an active set strategy. This means that at each iter-
ation we update the set K and then build the quadratic problem by considering
only the constraints whose pair of indices belongs to K.

Backface Culling Active Set Strategy

(0) Choose ε > 0, z(0) ∈ Z and w(0) ≥ 0.

Determine the sets of indices K(0) and J (0)
I,k for all (I, k) ∈ K(0).

Set B0 := I, the identity matrix and � := 0.
(1) If (z(�), w(�)) is a KKT point of the optimization problem, STOP.
(2) Compute a KKT point of the following linear-quadratic optimization prob-

lem: Minimize 1
2d

�B�d+ J ′(z(�))dz

with respect to d = (dz , dwI,k
), (I, k) ∈ K(�), subject to the constraints

h(z(�)) + h′(z(�))dz = 0,

w
(�)
I,k + dwI,k

≥ 0, (I, k) ∈ K(�),

ḠI,k(z
(�))�w(�)

I,k + ḠI,k(z
(�))�dwI,k

+ Ḡ′
I,k(z

(�))�(w(�)
I,k, dz) = 0, (I, k) ∈ K(�),

ḡI,k(z
(�))�w(�)

I,k + ḡI,k(z
(�))�dwI,k

+ ḡ′I,k(z
(�))�(w(�)

I,k, dz) ≤ −ε, (I, k) ∈ K(�),

z(�) + dz ∈ Z,
dwI,k,c = 0, c ∈ J (�)

I,k , (I, k) ∈ K(�).

Note: The constraints dwI,k,c = 0 are only included for notational simplicity.
In practice these variables are actually eliminated.

(3) Set

z(�+1) := z(�) + d(�)z , w
(�+1)
I,k := w

(�)
I,k + d(�)wI,k

, (I, k) ∈ K(�).

(4) Update the sets of indices K(�+1) and J (�+1)
I,k for (I, k) ∈ K(�+1) according

to Criteria 1 to 4 which depend on z(�+1). Update B�+1 according to BFGS
update formulas, set � := � + 1 and go to (1).
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At the step (4), if a pair of indices (I, k) newly appears in K(�+1) (i.e. if (I, k) ∈
K(�+1) \ K(�)), then the variable w

(�+1)
I,k must be initialized. We choose to take

w
(�+1)
I,k as the solution of

min
w
ḡI,k(z

(�+1))�w such that ḠI,k(z
(�+1))�w = 0,

wc > 0, if c /∈ J (�+1)
I,k , and wc = 0, if c ∈ J (�+1)

I,k .

Thereby, we are assured to satisfy the state constraints as close as possible.
In our first example we consider an obstacle and a robot composed by a socket

and 3 links. A load is fixed at the end of the last link. A complete description of
the example is given in [6]. In this example, the collision avoidance needs to be
applied only between the load and the obstacle. The obstacle is always close to
the load. Consequently, the number of state contraints is not reduced with the
backface culling. For this example, we take 21 control grid points and ε = 10−5.
In Figure 3 the visible faces of the obstacle are in white. We can observe that
only 3 faces of the obstacle are visible. The computational time is 52 s. If we do
not use the backface culling, the computational time is equal to 3min 44. So,
with about half of the unknowns, the code runs about four times faster.

at t1 at t4 at t9 at t14 at t17

Fig. 3. Snapshots of the motion of the robot avoiding an obstacle. The visible faces of
the obstacle are in white.

Q
Q

Q

Q

1
2

3
4

P

F

at t1 at t14 at t33 at t39

Fig. 4. Snapshots of the motion of the robot P moving to F and avoiding four obstacles.
The visible obstacles are in white and their visible faces in gray.



Path-Planning with Collision Avoidance in Automotive Industry 111

The second example is in 2 dimensions and uses all criteria of the backface
culling. The robot P is a square and 4 obstacles, Q1 to Q4, are present in
the workspace. We take for this example 42 control grid points and ε = 10−2.
Snapshots of the motion of the robot, which must reach the point F , are given
in Figure 4. The visible obstacles are in white and their visible faces in gray.
The computational time is equal to 36min 50 when no backface culling is used.
With the backface culling strategy the CPU time is 27 s. Hence, Criteria 1 to 4
induce a large decrease in the computational time.
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