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Abstract. Diffusion layers with maximum branch numbers are widely
used in block ciphers and hash functions. In this paper, we construct
recursive diffusion layers using Linear Feedback Shift Registers (LFSRs).
Unlike the MDS matrix used in AES, whose elements are limited in a
finite field, a diffusion layer in this paper is a square matrix composed
of linear transformations over a vector space. Perfect diffusion layers
with branch numbers from 5 to 9 are constructed. On the one hand, we
revisit the design strategy of PHOTON lightweight hash family and the
work of FSE 2012, in which perfect diffusion layers are constructed by
one bundle-based LFSR. We get better results and they can be used to
replace those of PHOTON to gain smaller hardware implementations.
On the other hand, we investigate new strategies to construct perfect
diffusion layers using more than one bundle-based LFSRs. Finally, we
construct perfect diffusion layers by increasing the number of iterations
and using bit-level LFSRs. Since most of our proposals have lightweight
examples corresponding to 4-bit and 8-bit Sboxes, we expect that they
will be useful in designing (lightweight) block ciphers and (lightweight)
hash functions.

Keywords: Recursive diffusion Layers, linear transformation, branch
number, MDS matrix, Linear Feedback Shift Register (LFSR).

1 Introduction

Diffusion layer is one of the core components in a block cipher with confusion
layer. And it is also widely used in many other block cipher-based primitives,
for instance, hash functions. The choice of a diffusion layer influences both the
security and the efficiency of a cryptographic primitive. On the one hand, it plays
an important role in providing security against differential cryptanalysis [2] and
linear cryptanalysis [12], which are the two most important cryptanalysis of
block ciphers. On the other hand, with the same security, an elaborate diffusion
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layer may lead to a better performance of a cryptographic primitive on hardware
or/and software implementation.

The strength of a diffusion layer is usually measured by the notation of branch
number. A block cipher using a diffusion layer with a small branch number may
suffer unexpected attacks. Therefore, how to construct diffusion layers with big
branch numbers and low-cost implementations is a challenge for designers.

The most attractive diffusion layers are those with maximum branch numbers,
which are also called perfect or MDS diffusion layers. The common approach to
construct them is to extract MDS matrices from MDS codes [11]. Thus, these
diffusion layers have matrix representations over F2n , where n is usually consis-
tent to the bit length of Sbox used in the confusion layer. Many block ciphers
[1,14,6,7], especially AES, use this design strategy to construct their diffusion
layers.

A problem using MDS matrices as that in AES is that they cannot be im-
plemented in an extremely compact way on hardware. Thus, they are unfitted
in resource constrained environments, such as RFID systems and sensor net-
works. To conquer this drawback while maintain the maximum branch number,
a new design strategy was proposed in the document of PHOTON lightweight
hash family [9] and then used in designing the diffusion layer of LED lightweight
block cipher [8]. Without extracting an MDS matrix in one step, the new strat-
egy constructs a diffusion layer with a bundle-based linear feedback shift register
(LFSR)(see Fig.1). That is, in each step, only the last bundle is updated by a
linear combination of all of the bundles while other bundles are obtained by
shifting the state vector by one position to the left. Each Li is chosen as a multi-
plication with an element in F2n . The LFSR will iterate s times and output the
final state. Suppose A is the state transition matrix of LFSR, then the diffusion
layer obtained by this strategy is the matrix As over F2n .

Fig. 1. LFSR for constructing diffusion layers in PHOTON

As mentioned in [9], this design is very compact in hardware implementa-
tion because it only needs to realize the LFSR and allows to re-use the existing
memory with neither temporary storage nor additional control logic required.
Of course, designers would like the final matrix (i.e., As) to be MDS, so as to
maintain as much diffusion as for the previous strategies. On the other hand,
AES-based method (i.e., lookup tables) can be used to implement such crypto-
graphic primitives in software without suffering their efficiency.
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In FSE 2012, Sajadieh et.al [13] extended this design strategy and proposed
a list of perfect diffusion layers. They considered a linear transformation L of

vector space F
n
2 and chose Li =

�2
j=−1 a

(j)
i · Lj, where a

(j)
i ∈ F2 and 1 ≤ i ≤ s.

The final matrix (i.e., As) obtained from this strategy can be treated as an
sn × sn matrix over F2 or an s × s matrix composed of linear transformations

over Fn
2 . To make it perfect, L and a

(j)
i s should satisfy some conditions. In [13],

firstly, the authors studied the sufficient conditions that make a specific diffusion
layer with s = 4 prefect and then investigated the conditions of other proposals
with a necessary statement.

As multiplications with elements in F2n are specific linear transformations of
vector space Fn

2 , the new strategy provides more choices in constructing diffusion
layers. Thus, designers may obtain perfect diffusion layers with smaller hardware
implementations.

Our Contributions. In this paper, we focus on constructing recursive diffusion
layers using LFSRs, following and extending the design strategy of PHOTON
and [13]. We construct a list of lightweight perfect diffusion layers with maximum
branch numbers from 5 to 9. They mainly distribute in two classes — one class
of them are generated by one bundle-based LFSR, using the design strategy of
PHOTON and [13], while another class of them are constructed by new strategies
using more than one bundle-based LFSRs. Our proposals have smaller hardware
implementations than diffusion layers given in PHOTON lightweight hash fam-
ily and [13]. And they can be used to replace those of PHOTON lightweight
hash family. The best replacement can save 22.3% gate equivalents (GE) in the
diffusion layer. Finally, we construct perfect diffusion layers by increasing the
number of iterations and using bit-level LFSRs.

Outline of This paper. In Section 2, we introduce the definitions of linear trans-
formation, determinant of a matrix over commutative rings and branch number.
Previous results on judging perfect diffusion layers are also discussed. Our strategy
and some criteria for constructing perfect diffusion layers are described in Section
3. In Section 4 and Section 5, we illustrate our results generated by bundle-based
LFSRs.Then,we compare our resultswith knownperfect diffusion layers in Section
6. In Section 7, we investigate some possible manners of constructing new perfect
diffusion layers using LFSRs. Finally, we conclude this paper.

2 Preliminaries

In this section, we first introduce the definitions of linear transformation and
determinant of a matrix over commutative rings. Then, we introduce the notation
of branch number and several statements for constructing prefect diffusion layers.

2.1 Linear Transformation

If V is a vector space over F2, then a linear transformation of V is a map
L : V → V such that
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L(u⊕ v) = L(u)⊕ L(v) (1)

holds for any u,v in V . L is invertible if it is injective and surjective. If linear
transformation L3 = L2 ◦ L1, that is, L3(v) = L2(L1(v)), then L3 is invertible
if and only if L1 and L2 are invertible.

Since there is a square matrix M over F2 such that L(v) = M · v, the invert-
ibility of L is equivalent to the non-singularity of M . Thus, in the subsequent
discussions, we directly use a matrix to represent a linear transformation. One
familiar class of linear transformations is the multiplication with an element in
F2n , that is, L(v) = a · v, where a,v ∈ F2n . Notice that a can be represented as
an n× n matrix over F2 if we treat v as a vector in F

n
2 .

2.2 Matrix over Commutative Rings

In this section, we first review several statements of matrix theorem which are
true over any commutative ring R. More information is advised to [4]. Then, we
introduce a specific commutative ring which is used in this work.

Similar to the classical definition of the determinant, we have

Definition 1. [4] Let A = (Ai,j)1≤i≤s,1≤j≤s be an s×s matrix with entries in a
commutative ring R. The determinant of A, denoted by det(A), is the following
element of R:

det(A) =
�

σ∈P (s)

sgn(σ)A1,σ(1)A2,σ(2) · · ·As,σ(s),

where P (s) denotes the set of all permutations on s letters and sgn(σ) ∈ {1,−1}
is the sign of σ ∈ P (s).

Then, det(AB) = det(A)det(B) and det(AT ) = det(A). Here, AT is the trans-
position of A. Similarly, we have

Theorem 1. [4] Let A = (Ai,j)1≤i≤s,1≤j≤s, then A is invertible if and only if
det(A) ∈ U(R), where U(R) is the set of all invertible elements in ring R.

Now, suppose L is an n× n non-singular matrix over F2 and

S = {
�

a−iL
−i + a0 +

�
ajL

j : i, j ∈ Z
+, a−i, a0, aj ∈ F2}

is a set which includes all polynomials of L and L−1. Then, the set S together
with the addition of F2 and the multiplication of polynomials, form a commuta-
tive ring. We denote it by F2[L,L

−1]. Then, we have

Proposition 1. Let B be an element of F2[L,L
−1], then B ∈ U(F2[L,L

−1]) if
and only if B is a n× n non-singular matrix over F2.

Proof. If B ∈ U(F2[L,L
−1]), then there is a C ∈ F2[L,L

−1] such that BC = I.
Thus, when treat B,C and I as matrices over F2, the determinant |B| = 1,
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i.e, B is non-singular. On the contrary, if B is non-singular over F2, then there
is a positive integer m such that Bm = I (Notice that m ≤ 2n − 1 is a finite
integer). The smallest m is called the order of B and can be efficiently computed
by methods introduced in [5]. Since B ∈ F2[L,L

−1], then Bn−1 ∈ F2[L,L
−1]

and it is the inverse of B in F2[L,L
−1]. Thus, B is invertible.

2.3 Branch Number

Suppose v is a vector with s bundles, i.e., v = (v1, v2, . . . , vs), where each vi ∈ F
n
2

is a vector over a finite field F2 with length n. The bundle weight of a vector v,
denoted by wb(v), is equal to the number of non-zero bundles. Then, we have

Definition 2. [7] The differential branch number of a linear diffusion layer D
is given by

Bd(D) = min
v �=0

(wb(v) + wb(D(v))), (2)

where D can be represented as an sn × sn matrix over F2 or an s × s matrix
consisting of linear transformations of Fn

2 .

Similarly, we can define the linear branch number.

Definition 3. [7] The linear branch number of a linear diffusion layer D is
given by

Bl(D) = min
v �=0

(wb(v) + wb(D
T (v))), (3)

where DT is the transposition of D.

Theorem 2. [7] A linear diffusion layer D has a maximum differential branch
number if and only if it has a maximum linear branch number.

For a diffusion layer acting on s bundles, the maximal Bd and Bl is s+1, known
as the singleton bound [11]. And D is called a perfect or MDS diffusion layer if
it takes its maximal Bd and Bl.

2.4 Linear Diffusion Layers with Maximum Branch Numbers

In MDS codes, the most widely used property for constructing an MDS matrix
is

Theorem 3. [11] An [m, s, d] code with generator matrix G = [Is×sDs×(m−s)]
is an MDS code if and only if every square submatrix of D is non-singular, where
D is a matrix over F2n .

In the Proposition 3.1 and Proposition 3.2 of [3], Blaum et.al showed that The-
orem 3 is also valid even we substitute every element of D as a linear transfor-
mation of vector space F

n
2 . Notice that now

D =

�
D1,1 D1,2 · · · D1,m−s

D2,1 D2,2 · · · D2,m−s

...
...

. . .
...

Ds,1 Ds,2 · · · Ds,m−s

�
(4)
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is a block matrix with s rows and m − s columns, where each Di,j is an n × n
matrix over F2.

We denote by Di×j a submatrix obtained from D by deleting (s − i) block
rows and (m−s−j) block columns while maintaining the order of other elements
in D. When considering a linear diffusion layer, D is a square matrix, that is,
m = 2s. Then, the results of [3] can be re-described as the following statement.

Theorem 4. A linear diffusion layer D has a maximum branch number if and
only if every square submatrix of D, i.e., Dk×k for 1 ≤ k ≤ s, is non-singular.

To detect a perfect linear diffusion layer, we need to judge whether all�s
k=1

�s
k

��s
k

�
=
�2s
s

� − 1 submatrices of D are non-singular according to The-
orem 4.

Remark 1. In the paper [13], Sajadieh et. al used the necessary part of this
statement to describe the conditions of some perfect diffusion layers. Now, we
know that they are enough to make those diffusion layers perfect.

3 Our Strategy for Constructing Diffusion Layers

In this paper, we will construct perfect diffusion layers using different kinds of
LFSRs. The strategy introduced in this section are suitable for bundle-based
LFSRs, that is, one or several bundles are updated in each step while others are
obtained by the shift operation. The procedure has four steps.

1. Construct an s× s matrix A = (Ai,j)1≤i,j≤s with each Ai,j =
�

a
(i,j)
k ·Lk ∈

F2[L,L
−1]. Of course, matrix A will be chosen with some structures for low-

cost hardware implementations and reducing the search space.
2. Choose an integer d and compute D = Ad (d ≥ 1) as the final diffusion

layer. Since D is a matrix over F2[L,L
−1], from Theorem 1 and Theorem 4,

we deduce that D is perfect if and only if the determinant of each square
submatrix of D is an invertible element in F2[L,L

−1].
3. Generate the determinants of all square submatrices of D (i.e., Dk×k for

1 ≤ k ≤ s) as the conditions, which is a set of polynomials in F2[L,L
−1].

Notice that if zero is in the condition set, we know D can not be MDS. In
this case, we will change the choice of A or d.

4. Search whether there exists any L such that all polynomials obtained in step
3 are invertible elements in F2[L,L

−1]. Based on Proposition 1, we need to
check whether all conditions are non-singular matrix over F2.

The procedure above can be performed systematically on a computer. To find
perfect diffusion layers with low-cost faster, several criteria are used in this paper.

1. Choose Ai,j with few terms. That is, the number of 1’s in the coefficient list

[. . . , a
(i,j)
−1 , a

(i,j)
0 , a

(i,j)
1 , . . . ] should be as few as possible. The degree of L and

L−1 are also chosen to be low. Thus, Ai,j may be chosen as 0, that is, zero
transformation.
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2. The integer d should be chosen as small as possible, since it determines the
efficiency of getting the final diffusion layerD in both hardware and software
implementation.

3. The linear transformation L should be low-cost in hardware implementation.
Our chief targets are linear transformations with no more than one XOR gate
(Note: one XOR gate needs about 2.66 GE in hardware implementation).
Multiplications with elements in F2n will be the secondary choices.

Additionally, for practical applications, we expect that

4. The perfect diffusion layers proposed in this paper should have examples for
n = 4 and n = 8, since 4-bit Sboxes and 8-bit Sboxes are involved in many
cryptographic primitives.

Remark 2. Suppose y = L·x, where L is an invertible matrix and x,y are column
vectors in F

n
2 . A linear transformation without any XOR gate is a permutation

of the input bits, that is, yi = xi′ , where [1′, 2′, . . . , n′] is a permutation of
[1, 2, . . . , n]. Thus, L is a matrix with exactly n nonzero entries, satisfying that
each row and each column of L have exactly one nonzero entry. Similarly, a linear
transformation with only one XOR gate is a matrix with exactly n+ 1 nonzero
entries, satisfying (1) each row and each column have at least one nonzero entries
and (2) there exists a unique row that has two nonzero entries.

All choices of L with no more than one XOR gate is n! + n! · (n2 − n). For
n = 4 and n = 8, we may enumerate all of them efficiently. For n ≥ 16, only a
small part of them can be enumerated. In this paper, we fix L[i, i+ 1] = 1 (for
1 ≤ i ≤ n− 1) and L[n, 1] = 1, and the search space is reduced to n2 − n+ 1.

In the subsequent two sections, we illustrate our results in constructing perfect
diffusion layers using bundle-based LFSRs. One class of them are obtained by
iterating one LFSR several times, following the design strategy of PHOTON
and [13]. In this design, only one bundle is updated while others are obtained by
shifting the state vector by one position to the left. Then, we extend the strategy
to find them using several bundle-based LFSRs in an iteration.

4 Construct Perfect Diffusion Layers with One
Bundle-Based LFSR

In this section, we revisit the design strategy of PHOTON and [13], which con-
structs recursive diffusion layers with one bundle-based LFSR. That is, we try
to construct its state transition matrix A and choose an iteration number d such
that D = Ad is perfect, where

A =

�
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
L1 L2 L3 · · · Ls

�
(5)
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and Li =
	

a
(i)
k · Lk. For simplicity, we only extract the final row of A, that is,

A
(s)
lfsr = [L1, L2, . . . , Ls],

to illustrate our choice of the LFSR. The cost of A in hardware implementation is
(s−1)n+

�s
i=1 #Li XOR gates if all Lis are nonzero elements of F2[L,L

−1], for
which #Li XOR gates are allocated to the linear transformation Li. To compare
our results with those given in LED, PHOTON and [13], we limit d ≤ s in this
section.

4.1 Perfect Diffusion Layers for s = 4

The best result we find for s = 4 is

A
(4)
lfsr = [L, 1, 1, L2] (6)

with d = 4. It costs 3n+#L+#L2 XOR gates in hardware implementation.
For the convenience of comprehension, we use this example to display how to

generate a condition set. Other proposals in this paper are done similarly.

Following the strategy discussed in Section 3, once A
(4)
lfsr = [L, 1, 1, L2] and

d = 4 are chosen, we calculate

D = A4 =



L 1 1 L2

L3 L2 + L L2 + 1 L4 + 1
L5 + L L4 + L3 + 1 L4 + L2 + L+ 1 L6 + 1
L7 + L L6 + L5 + L+ 1 L6 + L4 + L3 L8 + L4 + L+ 1

�
.

Now, based on Theorem 4, we need to calculate the determinants of all the
square submatrices Dk×k of D. Suppose F is a determinant of Dk×k for some k,
which is a polynomial in F2[L,L

−1], it can be factorized as

F = F i1
1 · F i2

2 · · ·F ij
j ,

where F1, . . . , Fj are irreducible polynomials and i1, . . . , ij are positive integers.
Then, F is non-singular if and only if its factors F1, . . . , Fj are non-singular.
Thus, F1, . . . , Fj are added to the condition set. For example, suppose k = 1
and D1×1 = D2,4 = L4 + 1, then L + 1 is added to the condition set since
L4 + 1 = (L + 1)4.

After enumerating the determinants of all 69 square submatrices Dk×k (1 ≤
k ≤ 4), we conclude that D = A4 with A

(4)
lfsr = [L, 1, 1, L2] has branch number

5, if the following 12 matrices

L, L+ 1, L2 + L+ 1,
L3 + L+ 1, L3 + L2 + 1, L4 + L3 + 1,

L4 + L3 + L2 + L+ 1, L5 + L2 + 1, L5 + L4 + L3 + L+ 1,
L6 + L5 + L4 + L+ 1, L6 + L5 + L4 + L2 + 1, L7 + L6 + L5 + L4 + 1

are non-singular.
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Table 1. Lightweight linear transformations L for A
(4)
lfsr = [L, 1, 1, L2]

Length of the input example of L

n = 4 [[2, 3], 3, 4, 1]

n = 8 [[5, 6], 7, 5, 8, 4, 3, 1, 2]

n = 16 [[1, 2], 3, 4, . . . , 16, 1]

n = 32 [[2, 4], 3, 4, . . . , 32, 1]

n = 64 [[2, 6], 3, 4, . . . , 64, 1]

Finally, we introduce some lightweight linear transformations of Fn
2 that sat-

isfy the above conditions (see Table 1). Each of them costs only one XOR gate
(2.66 GE) in hardware implementation. Thus, L2 costs two XOR gates. Note
that there are many other similar linear transformations. For simplicity, we ex-
tract the nonzero positions in each row of a matrix to represent it. For example,

[[2, 3], 3, 4, 1] is the representation of matrix



0 1 1 0
0 0 1 0
0 0 0 1
1 0 0 0

�
.

Other Information from the Condition Set. From the condition set, we
observe that L4 +L+ 1 does not belong to it. Thus, for n = 4, L can be chosen
as the multiplication with α, i.e., L(v) = α · v (v ∈ F24), where α is a root of the
irreducible polynomial x4 + x+ 1. This L also costs one XOR gate in hardware
implementation [8].

A question is that why the multiplication with α is also a valid choice. That
is, after replacing L by the multiplication with α, can we make sure that all 12
conditions in the condition set are invertible elements of F24? The answer is yes
and the reasons are shown as following.

– 1, α, α2 and α3 compose a basis of F24 , since α is a root of the irreducible
polynomial x4 + x + 1. That is, for each β ∈ F24 , there is a unique vector
[a0, a1, a2, a3] ∈ F

4
2 such that β = a0 + a1α+ a2α

2 + a3α
3.

– Suppose g(x) �= x4 + x+ 1 is another irreducible polynomial, then

g(α) ≡ a0 + a1α+ a2α
2 + a3α

3 mod α4 + α+ 1

is a nonzero element. Thus, g(α) is invertible. For a further step, all con-
ditions in the condition set are irreducible polynomials and not equal to
x4 + x + 1, which implies that they are invertible elements of F24 if L is
chosen as the multiplication with α.

In general, if we observe that an irreducible polynomial f(x) = xn + φ(x) does
not belong to the condition set, then the multiplication with one of its roots can
be chosen as a candidate of L to obtain a perfect diffusion layer over F2n .
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Table 2. Perfect diffusion layers we find for 5 ≤ s ≤ 8, together with the cost in
hardware implementation and the number of conditions

A
(s)
lfsr (d = s) Cost (XOR gates) No. of Cond.

s = 5 [1, L2, L−1, L−1, L2] 4n+ 2(#L2 +#L−1) 21

s = 6 [1, L−2, L−1, L2, L−1, L−2] 5n+#L2 + 2(#L−2 +#L−1) 90

s = 7 [1, L, L−5, 1, 1, L−5, L] 6n+ 2(#L+#L−5) 592

s = 8 [1, L−3, L, L3, L2, L3, L, L−3] 7n+#L2 + 2(#L+#L3 +#L−3) 2629

Table 3. Lightweight linear transformations L for A
(s)
lfsr with 5 ≤ s ≤ 8

Length of the input example of L fit for

n = 4 [[2, 3], 3, 4, 1] s = 5, 6, 7, 8

n = 8 [[5, 6], 7, 5, 8, 4, 3, 1, 2] s = 5, 6, 7, 8

n = 16 [[1, 2], 3, 4, . . . , 16, 1] s = 5, 6
n = 16 [[2, 6], 3, 4, . . . , 16, 1] s = 7, 8

n = 32 [[2, 10], 3, 4, . . . , 32, 1] s = 5, 6, 7, 8

n = 64 [[2, 3], 3, 4, . . . , 64, 1] s = 6, 7
n = 64 [[2, 17], 3, 4, . . . , 64, 1] s = 5, 8

Table 4. Comparison of our diffusion layers with those used in PHOTON

P100 P144 P196 P256 P288

(s, n) (5, 4) (6, 4) (7, 4) (8, 4) (6, 8)

PHOTON 75.33 GE 80 GE 99 GE 145 GE 144 GE

Ours 58.52 GE 74.48 GE 95.76 GE 117.04 GE 127.68 GE

Reduced(%) 22.3 6.9 3.3 19.3 11.3

4.2 Results for 5 ≤ s ≤ 8

The best results we find for 5 ≤ s ≤ 8 are listed in Table 2. In this table, we also
list their cost in hardware implementation. With the increment of s, the number
of conditions that must be satisfied increases rapidly. Due to the lack of space,
we only introduce the conditions for s = 5 in Appendix A.

Several lightweight examples of these diffusion layers are given in Table 3. All
of them and their inverses only cost one XOR gate in hardware implementation.
An interesting observation is that L4 + L + 1 is not included in any of these
condition sets. Thus, the multiplication with α is also a choice for n = 4, where
α is a root of irreducible polynomial x4 + x+ 1.

Application. PHOTON lightweight hash family has 5 variants according to
the size of its internal permutation. Our perfect diffusion layers can be used
to substitute those of PHOTON and obtain smaller hardware implementations.
The specification is given in Table 4. Note that our diffusion layers may perform
better in practice under some available techniques. For instance, in the document
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Fig. 2. Several bundle-based LFSRs for constructing diffusion layers

of PHOTON, the authors mentioned that using their library, the multiplications
with α, α2 and α3 can be implemented in hardware with 2.66 GE, 4.66 GE and
7 GE when using the irreducible polynomial x4 + x + 1, respectively. However,
we evaluate them with 2.66 GE, 5.32 GE and 7.98 GE in Table 4, respectively.
We would like to remark that the diffusion layer of P288 can be further improved
using the results of the next section.

5 Construct Perfect Diffusion Layers with Several
Bundle-Based LFSRs

In this section, we construct perfect diffusion layers with more than one bundle-
based LFSRs. We consider s

2 LFSRs (see Fig.2, upper part, s is even) in an
iteration, where each LFSR composed of two bundles and they form a head-tail
connecting circle. In each step, the last bundle of each LFSR is updated by a
linear combination of all of the bundles in the next LFSR while other bundles are
obtained by shifting the state vector of each LFSR by one position to the left.
Similar to the diffusion layers constructed by one LFSR, this mode also allows
to re-use the existing memory with neither temporary storage nor additional
control logic required.

From the point of view of block cipher structures, these LFSRs consist of a
Type-II Generalized Feistel Structure (GFS, [15]) (see Fig.2, nether part). Thus,
to obtain perfect diffusion layers, we firstly construct a matrix
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A =

�
T U2 0 · · · 0 0
0 T U3 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · T U s

2

U1 0 0 · · · 0 T

�
, (7)

and then make D = Ad perfect, where ”0” is a 2n×2n zero matrix over F2 while

T =

�
0 1
0 0


and Ui =

�
0 0

L2i−1 L2i


(1 ≤ i ≤ s

2 ) are 2 × 2 block matrices. We

also focus on Li =
	

a
(i)
k · Lk and use

A
(s)
gfs = [L1, L2, . . . , Ls]

to indicate our choice of A. The cost of implementing the LFSRs is s
2 · n +�s

i=1 #Li XOR gates if all Lis are nonzero elements in F2[L,L
−1].

5.1 Perfect Diffusion Layers for s = 4

The best results we find for s = 4 is

A
(4)
gfs = [L, 1, 1, L] (8)

with d = 4, if the following 7 matrices

L, L+ 1, L2 + L+ 1, L3 + L+ 1,

L3 + L2 + 1, L4 + L3 + 1, L4 + L3 + L2 + L+ 1

are non-singular.
It costs 2n+2#L XOR gates in hardware implementation. Since the condition

set of this choice is included in that of A
(4)
lfsr = [L, 1, 1, L2] with d = 4, all

examples listed in Table 1 and the multiplication with a root of the irreducible
polynomial x4 + x+ 1 for n = 4 fit the above seven conditions.

5.2 Results for s = 6 and s = 8

The best results we find for s = 6 is

A
(6)
gfs = [L, 1, 1, L2, L, L2] (9)

with d = 6. It costs 3n + 2#L + 2#L2 XOR gates in hardware implementa-
tion. And 196 conditions need to be satisfied. However, we do not find linear
transformations with no more than one XOR gates when n = 4 and n = 8.
For n = 4, we find all irreducible polynomials with degree 4 are included in
the condition set. Thus, there is no choices for L ∈ F24 . For n = 8, we find
four irreducible polynomials L8 + L6 + L5 + L2 + 1, L8 + L6 + L3 + L + 1,
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L8 + L6 + L5 + L4 + 1 and L8 + L7 + L3 + L2 + 1 are not included in the con-
dition set. Therefore, L can be chosen as the multiplication with a root of these
polynomials, which costs 3 XOR gates in hardware implementation. Using this
diffusion layer (2.66× (3× 8 + 2× 3 + 2× 6) = 112 GE) to substitute that used
in P288 of PHOTON, we may save 22.2% gate equivalents.

The best results we find for s = 8 is

A
(8)
gfs = [1, L4, 1, L−1, 1, L, 1, L2] (10)

with d = 8. It costs 4n + #L4 + #L + #L−1 + #L2 XOR gates in hardware
implementation. 8692 conditions need to be satisfied. However, we do not find
linear transformations with no more than one XOR gate when n = 4 and n = 8.
What’s more, all irreducible polynomials with degree 4 and 8 are included in the
condition set. Thus, neither L ∈ F24 nor L ∈ F28 satisfies the condition set.

6 Comparison with Known Results

In this section, we compare our bundle-based proposals with those given in
the document of LED, PHOTON and [13]. The comparison mainly consists of
two parts — the cost in hardware implementation and low-cost examples for
n ∈ {4, 8, 16, 32, 64}. Table 5 illustrates the comparison results. In this table,
we generalize the choices in the LED and PHOTON hash family, which only
considered the examples over F24 , to check whether they have lightweight exam-
ples for n ≥ 4. And diffusion layers proposed in [13] are also re-calculated under
the process of Section 3. ”Y” means we find an example with only one XOR
gate, ”YF ” means we do not find examples with no more than one XOR gate,
but there is an example if L is chosen as the multiplication with an element in
F2n . ”N” means we find neither examples with no more than one XOR gate nor
examples in L ∈ F2n .

Some observations are given as follows.

1. All of our proposals (for 4 ≤ s ≤ 8) using one bundle-based LFSR have
examples with one XOR gate when n ∈ {4, 8, 16, 32, 64}, together with the
diffusion layers used in LED, P100, P144, P195 and P256 of PHOTON. And
our proposals have smaller hardware implementation than them.

2. We compare our proposals with 9 diffusion layers given in [13]. We find
four of them can not be perfect when d = s. Another four of them have
bigger hardware implementation than our proposals. Only the diffusion layer

A
(5)
lfsr = [1, L2, 1, 1, L] with d = 5 has slightly better performance than our

proposal when n ≥ 16. However, this diffusion layer does not have examples
when n = 4 and it does not have examples with no more than one XOR gate
when n = 8.

3. Diffusion layers with the smallest hardware implementation in Table 5 are
those constructed by more than one bundle-based LFSRs, especially for s =
4, which has examples with one XOR gate for all n ∈ {4, 8, 16, 32, 64}. The
case with 8 branches (i.e., s = 8) may suffer restrictions in practice because
it does not have examples when n = 4 and n = 8.
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7 Other Recursive Diffusion Layers

In this section, we discuss some possible manners to construct new lightweight
perfect diffusion layers using LFSRs.

7.1 Increase the Number of Iterations

We may obtain more lightweight perfect diffusion layers if the number of itera-
tions is increased. However, the efficiency of getting the final diffusion layer D
is decreased.

When constructing perfect diffusion layers with branch number 5 (i.e., s = 4)
using one bundle-based LFSR (see Fig.1), we find some Lis may be chosen as
the zero transformation if the number of iterations can be greater than s. An
example we obtained is

A
(4)
lfsr = [1, L, 0, 0]. (11)

It costs n+#L XOR gates in hardware implementation and needs 22 iterations
to reach branch number 5, if the following eight matrices

L, L+ 1, L2 + L+ 1,
L3 + L+ 1, L3 + L2 + 1, L4 + L3 + 1,

L4 + L3 + L2 + L+ 1, L5 + L4 + L3 + L2 + 1

are non-singular.
We observe that all examples listed in Table 1 and the multiplication with

a root of the irreducible polynomial x4 + x + 1 for n = 4 fit the above eight
conditions.

7.2 Bit-Level LFSRs

Diffusion layers discussed above are constructed by bundle-based LFSRs. An
instinctive idea is to construct them using bit-level LFSR. That is, the updating
unit in the LFSR is not bundle but bit now. In each step, only a few bits,
for instance, the rightmost m bits, of LFSR are updated by the XOR values of
chosen bit positions while other sn−m bits are obtained by shifting the LFSR by
m bits to the left. When considering bit-level LFSR, Theorem 4 will be directly
used to judge whether a choice of LFSR is perfect after some iterations.

We search all possible LFSRs when s = n = 4 and m ∈ {1, 2}, aim to
find perfect diffusion layers with branch 5 under 4-bit Sboxes. We denote by
x[1], x[2], . . . , x[16] the 16 bits in the LFSR (see Fig.1), where x[16] is the least
significant (rightmost) bit.

– For m = 1, we do not find perfect diffusion layers. However, we find many
almost perfect diffusion layers [10], that is, with differential branch number 4.
They can be detected by a variant of Theorem 4, which will be introduced in
the full version due to the lack of space. Although these diffusion layers do not
reach the maximum branch number, they may still have some applications
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because they are extremely lightweight in hardware implementation. For
example, one LFSR we find is: y = x[1] ⊕ x[7], x[i] = x[i + 1] for 1 ≤ i ≤
15, x[16] = y, which only costs one XOR gate and needs 44 iterations to
reach differential branch number 4. Another example is: y = x[1] ⊕ x[6] ⊕
x[13], x[i] = x[i + 1] for 1 ≤ i ≤ 15, x[16] = y. It costs two XOR gates and
needs 15 iterations to reach differential branch number 4.

– For m = 2, we find a list of perfect diffusion layers. One of the best LFSR is:
y = x[1]⊕ x[6]⊕ x[8]⊕ x[10]⊕ x[13], z = x[2]⊕ x[5]⊕ x[7]⊕ x[10]⊕ x[11]⊕
x[13]⊕ x[14], x[i] = x[i + 2] for 1 ≤ i ≤ 14, x[15] = y, x[16] = z. It costs 10
XOR gates and needs 8 iterations to reach branch number 5.

8 Conclusion

In this paper, we construct a list of lightweight perfect diffusion layers using LF-
SRs. On the one hand, we revisit the design strategy of PHOTON and [13], which
constructs perfect diffusion layers using one bundle-based LFSR. Our propos-
als have smaller hardware implementations than those given in LED, PHOTON
and [13]. They can be used to replace the diffusion layers in PHOTON to gain
better performance. On the other hand, we extend the strategy to construct
perfect diffusion layers using more than one bundle-based LFSRs. The structure
we choose is the Type-II Generalized Feistel Structure. Finally, we discuss some
possible manners to construct perfect diffusion layers by increasing the number
of iterations and using bit-level LFSRs.

Since most of our proposals have low-cost examples which are consistent with
4-bit Sboxes and 8-bit Sboxes, we expect that they will be useful in designing
(lightweight) block ciphers and (lightweight) hash functions.
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A Condition Set of A
(5)
lfsr

A
(5)
lfsr = [1, L2, L−1, L−1, L2] with d = 5 is perfect, if the following 21 matrices

are non-singular.

L,L+ 1, L2 + L+ 1, L3 + L+ 1, L3 + L2 + 1, L4 + L3 + 1,

L4 + L3 + L2 + L+ 1, L5 + L2 + 1, L5 + L3 + 1, L5 + L3 + L2 + L+ 1,

L5 + L4 + L3 + L+ 1, L5 + L4 + L2 + L+ 1, L6 + L3 + 1, L6 + L5 + 1,

L6 + L5 + L4 + L+ 1, L6 + L4 + L3 + L+ 1,

L7 + L3 + 1, L7 + L5 + L2 + L+ 1, L8 + L7 + L2 + L+ 1,

L10 + L6 + L5 + L+ 1, L10 + L9 + L8 + L6 + L4 + L2 + 1.
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