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Abstract. The recognition of human actions such as pointing at objects
(“Give me that...”) is difficult because they ought to be recognized in-
dependent of scene parameters such as viewing direction. Furthermore,
the parameters of the action, such as pointing direction, are important
pieces of information. One common way to achieve recognition is by us-
ing 3D human body tracking followed by action recognition based on
the captured tracking data. General 3D body tracking is, however, still
a difficult problem. In this paper, we are looking at human body track-
ing for action recognition from a context-driven perspective. Instead of
the space of human body poses, we consider the space of possible ac-
tions of a given context and argue that 3D body tracking reduces to
action tracking in the parameter space in which the actions live. This
reduces the high-dimensional problem to a low-dimensional one. In our
approach, we use parametric hidden Markov models to represent para-
metric movements; particle filtering is used to track in the space of action
parameters. Our approach is content with monocular video data and we
demonstrate its effectiveness on synthetic and on real image sequences.
In the experiments we focus on human arm movements.

1 Introduction

Human communicative actions such as pointing (“Give me this”) or object
grasping are typical examples of human actions in a human-to-human commu-
nication problem [1,2]. These actions are usually context-dependent and their
parametrization defines an important piece of their information [3,1]. To cap-
ture these communicative actions is challenging because a) the capturing should
be independent of scene parameters such as viewing direction or viewing dis-
tance and b) one needs complex action models that allow to recover what action
is performed and which parameters it has. The observation that the parameters
of an action carry important information about the meaning of the action was
already earlier pointed out by Wilson and Bobick in [3] using the example “The
Fish was this big”.

One strategy for recognizing such actions [3,4] is to first track the human
movements using, e.g., a 3D body tracker and to then in a second step feed
these tracks into an action recognition engine, such as, e.g., HMMs [5,6] or even
parametric HMMs (PHMMs) [3]. Considering the first ingredient of the above
outlined strategy, it was pointed out recently again [7] that 3D tracking and pose
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estimation, especially from monocular views, is non-trivial. Common approaches
are model-based generative ones [8,9,10], that compare a synthesized candidate
pose with the image data.

In this paper, we would like to argue that such a 2 step approach as the above
is un-necessary complication. Human actions are usually goal-directed and are
performed within a certain context (eating, cooking etc.). Furthermore, actions
are often performed on objects [11,12] which leads to the observation that the ob-
jects can prime the actions performed on them (e.g. reaching, pointing, grasping,
pushing-forward) [13,14]. Thus, we would like to suggest to look at 3D human
body tracking from an object and context-driven perspective: Instead of asking
“What is the set of joint angles that make a human model fit to the observation”
we ask “What action causes a pose that fits to the observation”. By replacing
in a particle filter approach the propagation model for joint angles [8] with a
propagation model for human actions we become able to re-formulate the 3D
tracking problem instead as a problem of recognizing the action itself (incl. its
parameters). In other words, instead of having to estimate the high-dimensional
parameter vector of the human body model, we sample the action and its pa-
rameters in the low-dimensional action space. By using a generative model for
the action representation we can deduce the appropriate 3D body pose from the
sampled action parameters and compare it to the input data. We call this ap-
proach Tracking in Action Space. In our work we use parametric hidden Markov
models (PHMMs) [3] as the generative action model. While classical HMMs can
recognize essentially only a specific trajectory or movement, PHMMs are able to
model different parametrizations of a particular movement. For example, while
a common HMMs would be able to recognize only one specific pointing action,
PHMMs are able to recognize pointing action into different directions [3]. Fur-
thermore, (P)HMMs are generative models which means that for recognizing an
observation they compare it with a model of the expected observation. In the
experiments in this paper, our action space spans over the human arm actions
pointing, reaching, pushing, the corresponding 2D coordinates of where to point
at or reach to, plus a timing parameter. One might argue that such an approach
cannot be used for general 3D body tracking because the action space will always
be too limited. However, following the arguments in [15,16,17,18,19] that human
actions are composed out of motor primitives similarly to human speech being
composed out of phonemes, we believe that the limited action space considered
here can be generalized to the space spanned by the action primitives. Stochastic
action grammars could be used as in [20,17,19] to model more complex actions.
Furthermore, [19] explains how a language for human actions can be generated
based on grounded concepts, kinetology, morphology and syntax. For estimating
the action and action parameters during tracking we have used classical Bayesian
propagation over time which, as we will discuss below, provides an excellent em-
bedding for tracking in action space, including the use of primitives and action
grammars. Our key contribution are:

– introduction of Tracking in Action space by posing the 3D human pose es-
timation problem as one of action and action parameter recognition,
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– good recovery of 3D pose and action recognition plus action parameters
– is content with monocular video data
– potentials to run in real-time, our implementation runs with just edge fea-

tures
– concise formulation in particle filtering framework
– concept of approaching action recognition as a context and object dependent

problem.

The paper is structured as follows: In Section 2 we will discuss the Tracking
in Action Space in detail. Section 2.1 explains the use of parametric HMMs
(PHMMs) for modeling the action space and Section 2.2 explains details on
using the PHMMs for tracking in action space. In Section 2.3, we will discuss
the calculation of the observation likelihood for a given image. In Section 3,
we provide experimental results for synthetic and for real video data, and we
conclude with final comments in Section 4.

Related Work
As it can be seen in the survey [21], early deterministic methods, as gradient
based methods, have been overcome by stochastic methods due to problems as
depth disambiguations, occlusions, etc. The methods rage from the basic par-
ticle filtering, as described in [22], to, e.g., belief propagation [23,7]. Efficient
techniques for particle filtering [8,10,24] in combination with (simple) motion
models [9] to constrain the particle propagation or the state space [25] are in-
vestigated since the number of required particles generally scale exponentially
with the degree of freedom. Novel frameworks use for example multistage ap-
proaches ([7] considers the stages: coarse tracking of people, body part detection
and 2D joint location estimation, and 3D pose inference) or implement various
constrains ([23] considers the constrains concerning self-occlusion, kinematic,
and appearance and uses belief propagation to infer the pose within a graphical
model). Contrary to the simple motion models, which roughly approximate the
state space used by certain motions, for example as a linear subspace [25], ad-
vanced approaches, as for example locally linear embedding allow to learn [26]
the intrinsic low dimensional manifold, or aim at the learning of nonlinear dy-
namic system (NLDS) on motion data, as it is approached through the Gaussian
process model developed in [27] in a more efficient way. Interestingly for our con-
text, the learning of NLDS requires a vast amount of training data [27], whereas
“classic” HMMs for example can be easily trained but are limited in their ex-
pressiveness for complex motions. In our work, we use the parametric extension
to HMMs and are interested in both the pose estimation and the uncovering the
action parameters.

2 Tracking in Action Space

In this section we want to discuss our approach for Tracking in Action Space in
detail.
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We are starting our discussion looking at the classical Bayesian propagation
over time:

pt(ωt)∝
∫
P (It|ωt)P (ωt|ωt−1)pt−1(ωt−1)dωt−1, (1)

where It is the current observation, pt(ωt) the probability density function (pdf)
for the random variable (RV) ωt at time t, P (ωt|ωt−1) the propagation density,
and P (It|ωt) the likelihood measurement of It, given ωt. If applied for 3D
human body tracking, the RV ω usually specifies the set of joint angles for some
human body model (see, e.g., [8]). The propagation density is used to constrain
the RV ωt to the most likely pose values at each time step t [24,9,8]. In order to
compute the likelihood P (It|ωt), a human body model is generated using the
pose values from ωt and is then compared with the input image It.

For tracking in action space we use the RV ω to control a generative action
model with ω = (a, θ, k). Here, the parameter a identifies which action it is, θ is
a vector specifying the parameters of action a, and k is a timing parameter which
specifies the timing within the action model. In our work, we use parametric hid-
den Markov models (PHMMs) [3] which we will discuss in detail, below. We train
the PHMM for each action a on joint location data captured from human perfor-
mances of the action a. Using one PHMM for each action, the parameter a refers
then to the a-th PHMM, the parameter vector θ specifies the parameters for the
PHMM, e.g., where we point to or grasp at, and the parameter k is discrete and
specifies the PHMM state. Then, the likelihood P (It|ωt) = P (It|(a, θ, k)t) is
computed by first using the a-th PHMM to generate the joint location of the 3D
human body pose for parameters θ and HMM-state k. We can do this because
the PHMM is trained on joint location data for the action a, as discussed above.
In the second step, these joint angles of the 3D body pose are translated into
the corresponding 3D body model which is then projected onto the image plane
and compared to the input image It. For computing the observation likelihood,
we also make use of the standard deviations of the observation densities of the
PHMM. This second step is in principle the same as the likelihood measurement
in Eq. (1). The propagation density P (ωt|ωt−1) can be considerably simplified.
Assuming that a human finishes one action primitive before starting a new one,
the action identifier a is constant until an action (primitive) is finished. If we
have an action grammar model for complex human actions as in [19,17] then
the corresponding action grammar can be used to control the progression of
a. Likewise, the action parameters θ are approximately constant until the ac-
tion primitive is completed. The timing parameter k changes according to the
transition matrix of the HMM.

In the following, we will discuss some details of PHMMs (Section 2.1), how
we use the PHMMs in our tracking scheme (Section 2.2) and how we compute
the observation likelihood (Section 2.3).

2.1 Parametric Hidden Markov Models

In this section we give a short introduction to parametric hidden Markov models
(PHMMs) [3], which are an extension of the hidden Markov model (HMM)
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[28] through additional parameters. The additional variables allow to model
a systematic variation within a class of modeled sequences. For example, for a
pointing, reaching or pushing action, the variation is given by the target location
(e.g., a location pointed at).

A hidden Markov model is a generative model. It is a finite state machine
extended in a probabilistic manner. For an continuous (P)HMM λ = (A,B,π),
the vector π = (πi) and the transition matrix A = (aij) define the prior state
distribution of the initial states i and the transition probability between hidden
states. In continuous HMMs, the output of each hidden state is described by
a density function bi(x), which is in our context a multivariate Gaussian den-
sity bi(x) = N (x|μi,Σi). The HMM parameters can be estimated through the
Baum-Welch algorithm [28] for a set of training sequences.

An output sequence x = x1 . . .xT can be drawn from the model by gen-
erating step-by-step a state sequence Q = q1 . . . qT with respect to the initial
probabilities πi and the transition probabilities aij and drawing for each state qt
the output xt from the corresponding observation distribution bqt(x). Generally,
there is no unique correspondence between an output sequence X and a state
sequence Q as different hidden state sequences can generate the same output
sequence X. Since we are interested in the temporal behavior and correspon-
dence between parts of the sequence and the state, we use a left-right model
[28] to model the trajectories of different actions. A left-right model allows only
transitions from each state to itself or to a state with a greater state index.

The movement trajectories we are considering generally underlie a systematic
variation, e.g., the pointed at position. A general HMM can handle this only
as noise or with a great number of states. A parametric HMM (PHMM) [3]
models the systematic variation as a variation of the means of the observation
distributions bθi (x), where b

θ
i (x) = N (x|μθ

i ,Σi). The means are functions μθ
i =

f i(θ) that are approximated for each state separately in the training process.
In [3] a linear model and a more general nonlinear model is used to model

f i(θ). In the linear case, each function f i(θ) is of the form μi = μ̄i + Wi θ,
where the matrix Wi describes the linear variation. In the more general non-
linear case, a neural network is used for each state i that is trained to approximate
a more general nonlinear dependency. For both models, the training procedures
are supervised by providing the parametrization θ for each training sequence.
For training in the linear case, an extension of the Baum-Welch approach is used.
For the non-linear case, a generalized EM (GEM) procedure was developed. We
will denote a PHMM with parameter θ by λθ.

2.2 Action Tracking: PHMM-Based

In this section we want to discuss the details of using PHMMs for modeling
the actions for the action tracking. In our problem scenario we have a set A =
{1, . . . ,M} of actions, where we have for each action a ∈ A a trained PHMM
λθ
a. They define each action through the corresponding sequences of human

joint settings. On these sequences of joint settings, the PHMMs are trained.
E.g. the PHMM for the pointing action is trained on joint location sequence
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coming from different pointing actions, including pointing actions into different
directions. We consider left-right PHMMs with a single multi-variate Gaussian
as the observation density bi(x) = bθa,i(x) for each state i of λθ

a with a rather
small covariance.

Our human action model has the following parameters: the value a identifies
the PHMM λa. The value k specifies the hidden state, i.e., the progress of the
action a. The parametrization θ (e.g., a pointing location) of the PHMM λθ

a is
used as the parameter for the observation functions bθa,i. Hence, we have defined
our random space over the tracking parameter ωt = (a, θ, k)t.

In order to generate an action using a PHMM one simple way is to sample
the PHMM: the first state kt=0 is drawn according to the initial distribution πa.
At each time step the state change is governed by the probability mass function
P (kt|kt−1) specified by the transition matrix Aa. The actual synthesis is then
done by sampling from the observation density bθa,kt

(x), parametrized with θ.
In principle the likelihood for an observation It and for a given ωt = (a, θ, k)
can be computed simply by P (It|ωt) = bθa,k(I t) if the observation space is the

same as the one bθa,k is defined on. In our case, P (x|ω) = bθa,k(x) defines the
distribution of joint locations of 3D body poses which generates a corresponding
3D human body model (see Figure 2, left) which is then matched against the
input image It:

P (It|ωt) =

∫
x

P (It|x)P (x|ωt)dx. (2)

Finally, the propagation density P (ωt|ωt−1) is given as follows: k is propagated
as mentioned above using Aθ

a , and θ is changed using Brownian motion. The
variable a is initially drawn from an even distribution and is then kept in this
work constant for each particle. We use a particle-filter approach [22] to estimate
ω = (a, θ, k). It is worth having a close look at this approach: The entropy
of the density pt(ωt) of Eq. 1 reflects the uncertainty of the so far detected
parameters. Furthermore, by marginalizing over θ and k, we can compute the
posterior probability of each action a (see Figure 5). And by marginalizing over
a and k, we can compute the action parameters, θ, respectively. This is displayed
in Figure 1. The figure shows the progression of the RV ω over time for a pointing
action. The red and green lines show the most likely pointing coordinates u and
v (for θ = (u, v)). The dotted lines show their corresponding uncertainties. The
horizontal thin lines mark the corresponding correct values for u and v. As one
can see, the uncertainty decreases with time, and after ≈ 60 frames, the correct
parameters are recovered. This is about the time when the arm is fully stretched.
In the next section, we will discuss how the observation likelihood P (It|ωt) is
computed.

2.3 Observation Model

We use an articulated model of the human body, see Figure 2 (left), where the
kinematic structure is similar to the one used in [8]. Based on this model, we
compute the observation function P (I|x) for an arm pose drawn from P (x|ω)
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Fig. 1. The figure shows the progression of the current estimate of the action param-
eters over time. The estimate parameters u, v are computed as mean of all particles
ω = (u, v, k). The action parameters u, v correspond to the x-, and y-offsets to the
center of the active table-top region (x corresponds to the horizontal, y to the deeps
direction in Figure 3). The dotted lines show the standard deviation of the particles.

for a particle ωi. Here, the arm pose is defined through x = (p, q, r), where p,
q, and r are the positions of shoulder, elbow, and finger-tip in R

3. The mapping
to the model’s kinematic is purely trigonometric. However, since the vector x is
drawn from a Gaussian which is an observation density of an HMM, the lengths
of the upper arm |p − q| and forearm |q − r| are not preserved. Generally, we
set the finger-tip and shoulder positions of the model as given through r and p.
The elbow position q is then corrected with respect to the model’s arm lengths
through refining q to the nearest possible point on the plane defined through p, q,
and r. The rather unlikely case that |p−r| is greater than the overall arm length
is mapped on an arm pose, where the stretched arm points from the shoulder
position p in the direction of r. The computation of the observation function
is based on the edge information of the arm silhouette, therefore, the contour C
of the model is extracted from the rendered view for a pose x. We defined the
observation function similar to the method described in [8] on a smoothed edge
image (see Figure 2, right), where the pixel values are interpreted as distances to
the nearest edge. The edge distance image is calculated as follows. We calculate
a normalized gradient image of the observed image I, gray values above some
threshold are set to 1. The image is finally smoothed with a Gaussian mask, and
normalized. This edge image, denoted by G, can be interpreted as a distance to
edge image. The value of 1−G(c) of a pixel c can then be interpreted as distance
values between 0 and 1, where the value 1 corresponds to a pixel with no edge
in the vicinity. This distance interpretation is in some sense similar to the edge
detection along normals as used in [22], but faster to evaluate.
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Fig. 2. Left: We use an articulated human model, where the skeletal structure is mod-
eled by cones and super-quadratics. Right: The edge image (here of the model itself)
is a smoothed gradient image, serving as a distance to edges image.

The observation function is computed by

P (I|x) = exp− 1

2γ2

1

|C|
∑
p∈C

(1 −G(p))2, (3)

where C is the model’s contour and G is the smoothed edge image. A value
of γ = 0.15 turned out to be reasonable in the experiments. An extension to
multiple camera views is straight forward:

P (I|x) = exp− 1

2γ2

∑
i

1

|Ci|
∑
p∈Ci

(1 −Gi(p))
2, (4)

where Ci and Gi are the corresponding contour sets and edge images of each
view i.

3 Experiments

We have evaluated our approach on synthetic data and on monocular video data.
For the testing with real data we captured performances of reaching and pointing
movements simultaneously with a single video camera and Vicon motion capture
system, the video camera was synchronized with the Vicon system. Our exper-
iments were carried out on the monocular video data while the Vicon system
provides us with ground truth. In this paper, we focus our attention on human
arm pointing, reaching and pushing actions in particular (see tracked sequence,
Figure 3). We call our scenario a table-top scenario where the actions are meant
be performed on objects on a table. For each action, we used a linear PHMM
λ(u,v) trained on 20 demonstration of each action recorded with the Vicon sys-
tem. The pointing and reaching 2D locations (u, v) at table-top cover a table-top
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Fig. 3. Pose Estimation through Tracking in Action Space. In the rows 2–5, a whole
pointing action (approaching and withdrawing motion) is shown with the recovered
arm pose superimposed. The sequence has about 110 frames, of which every ≈ 6th
frame is shown. The recovered pose corresponds to the sample/particle which explains
the observation in the single monocular view best. The measurement is based only
on the edge information in the gradient images (see top row). The estimated action
parameters are indicated through the dot on the table: the color of the dot reflects the
uncertainty of the indicated location (given through the entropy): a red dot indicates a
large uncertainty, a green dot a low one. The last two rows show 10 completed pointing
performances where one can see the stretched arm and the recovered pointing position
(red dot).
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Fig. 4. The three plots compare the estimated finger position (red) to the true position
(green) over three pointing actions. The position value (red) is the median filtered value
of the pose estimates through action tracking (black), the true position is given through
marker-based tracking. Here, the x-, y-, and z-position belong to the horizontal, depth,
and height directions in Figure 3.
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region of 30cm×80cm; these positions correspond with the parametrization of
the corresponding PHMM, and were during the training procedure given by the
finger tip location at the time of maximal arm extension. For training we used
actions directed approximately to the four outer corners of the table top, with
5 repetitions each. The testing was done using continuous video data of 40 dif-
ferent random locations on the table top. Ground truth was available through
the vicon system, the markers on the human were used by the vicon system, but
were not used for our tracking experiments. We used a large number of HMM
states which assured a good predictive model (resolution in time) and small state
covariances of the observation densities. The used PHMM is a forward model
which allows self-transitions and transitions to the subsequent three states. In
order to allow the tracking of repeated performances of the actions, we have
defined a very simple action grammar that models a loop. For the particle based
tracking in action space we use 400 particles (ωi = (a;u, v; k)). The propagation
over time is done as described in Section 2.2. We decrease the diffusion of the u
and v during the propagation step in dependence of the HMM state number k
by σ(k) = 0.4 ·exp{−2 loge(1/4) · k/N}, where N number of states of the HMM.
Our argument for the cooling down of the diffusion is that for the first frames
the visual evidence for the right u and v is very weak, but as visual evidence
increases with time, we inversely reduce the standard deviation.

The sampling and normalization of the image observation are performed as
described in [22]; as discussed the observation function is based on the evaluation
of the edge information in the monocular video data and the human body model
for a particle ωi.

The images in Figure 3 show that the arm pose is (visually) very accurately
estimated. The following three complicating factors emphasize the capabilities
of our tracking in action space approach: 1) all information is gathered from a
single monocular view, 2) we use only a single feature type (edge information),
and 3) the edge images (especially the first sequence part in Figure 3 due to
the chair) have a lot of clutter, so that the silhouette of the arm is difficult to
segment accurately. Besides the pose estimation, one can see in Figure 3 that
the estimation of the action parameters (corresponding to the position indicated
by the small colored dot on the table) converges to the true parameters of the
action when the arm approaches the table-top.

The quality of the pose estimation over a sequence of several pointing actions
is shown in Figure 4. Here, we compare the positions of the shoulder, elbow, and
finger estimated through action tracking to the ground truth positions recorded
with the marker-based Vicon system. The route-mean-square error of the three
joint positions over the three pointing actions which are plotted in Figure 4 is
3.3cm, whereas the component-wise average error is just 2.4cm. It is interest-
ing to note that this errors correlate with the natural variance of the human
movements as recorded with the vicon system. This gives a mean error for the
recovered table locations of 1.3cm.

Despite the good results above, the recognition rate between reaching and
grasping was very low. This was due to the fact that these two actions have
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Table 1. The table shows the errors in cm between the recovered parameters and the
ground truth at the specified frames (completed pointing action). Frame numbers here
are the same as in Figure 4.

frame Error X Error Y Error Z

61 -2.53 -0.53 0.72
195 -3.77 -0.48 -0.36
301 -0.05 -1.70 1.62
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Fig. 5. The plot shows the posterior probability of the two actions point and push over
time

the same general arm trajectory but differ only in the hand movement. On the
other hand, testing on videos showed pointing and pushing actions in random
order with at least 40 pointing and 40 pushing actions, the recognition rate was
with ≈ 98% as high as expected. Figure 5 shows the posterior probability for the
two actions over time for a test video showing the pointing action: The action
label a of a particle ω = (a; θ; k) identifies the pointing or pushing action. By
marginalizing ω over θ = (u, v) and k we compute the likelihood of a. The
actions are very similar in the beginning. This is also visible in the plot: after
60 frames, the pushing action starts to differ from the observed pointing action
and the posterior probability of the pushing action converges.

For the particle filter, we use only 400 particles, the edge features are fast
to compute and on a standard workstation with non-threaded code we require
presently 3.9s per frame. Ongoing work is to port our approach to CUDA for
faster processing on a GPU.

4 Conclusions

We presented a novel concept of tracking in action space which combines the
aspects of recognition, tracking and prediction based on parametric and time de-
pendent action models. One can argue that this approach is too limited because
it is not possible to model all different possible actions each with a PHMM. As
our response, the starting point for our approach was (1) the observations that
most actions are object and context dependent which means that a) object affor-
dances and b) the scenario and the scene state greatly reduce the set of possible
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actions, and (2) that according to neuroscientific evidence actions are composed
using action primitives and grammars. Thus, even though the number of possi-
ble actions at any time is indeed large, only a small number of actions actually
can appear, with a certain likelihood. Furthermore, all these possibly appearing
actions do not need to be modeled each with a PHMM. Instead, it is sufficient to
identify the building blocks of these action, i.e., the action primitives, to model
only those with PHMMs and to then compose the complete actions out of these
action primitive PHMMs. In the experiments, we have focused on arm actions
as these were the ones needed in our human-robot communication scenario. But
we believe that our approach should scale well to more body parts and more
complex actions. In our future work we are going to consider different actions
and the use of stochastic grammars in order to allow proper concatenation of
actions as, e.g., reach for an object, move the object, withdraw arm etc. Exten-
sion to, e.g., dual arm actions in combination with upper body tracking is also
ongoing work.

Acknowledgments. This work was partially funded by PACO-PLUS (IST-
FP6-IP-027657).
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