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Abstract. We present a new structure from motion (Sfm) technique
based on point and vanishing point (VP) matches in images. First, all
global camera rotations are computed from VP matches as well as rel-
ative rotation estimates obtained from pairwise image matches. A new
multi-staged linear technique is then used to estimate all camera trans-
lations and 3D points simultaneously. The proposed method involves
first performing pairwise reconstructions, then robustly aligning these
in pairs, and finally aligning all of them globally by simultaneously es-
timating their unknown relative scales and translations. In doing so,
measurements inconsistent in three views are efficiently removed. Unlike
sequential Sfm, the proposed method treats all images equally, is easy to
parallelize and does not require intermediate bundle adjustments. There
is also a reduction of drift and significant speedups up to two order of
magnitude over sequential Sfm. We compare our method with a standard
Sfm pipeline [1] and demonstrate that our linear estimates are accurate
on a variety of datasets, and can serve as good initializations for final
bundle adjustment. Because we exploit VPs when available, our approach
is particularly well-suited to the reconstruction of man-made scenes.

1 Introduction

The problem of simultaneously estimating scene structure and camera motion
from multiple images of a scene, referred to as structure from motion (Sfm),
has received considerable attention in the computer vision community. Recently
proposed Sfm systems [2–5] have enabled significant progress in image-based
modeling [3] and rendering [4, 5]. Most Sfm systems [2–6] are either sequential,
starting with a small reconstruction and then incrementally adding in new cam-
eras by pose estimation and 3D points by triangulation, or hierarchical [7, 8]
where smaller reconstructions are progressively merged. Both approaches re-
quire intermediate bundle adjustment [9] and multiple rounds of outlier removal
to minimize error propagation as the reconstruction grows. This can be compu-
tationally expensive for large datasets.

This paper investigates ways to compute a direct initialization (estimates for
all cameras and structure) in an efficient and robust manner, without any inter-
mediate bundle adjustment. We propose a new multi-stage linear approach for
the structure and translation problem, a variant of Sfm where camera rotations
are already known. A robust approach for first recovering all the global camera
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Fig. 1. Overview: First, all camera rotations are estimated. All structure and transla-
tion parameters are then directly estimated using a new multi-stage linear approach.

rotations based on vanishing points (VPs) and pairwise point matches is also
described. Because we exploit VPs when available, our approach is particularly
well-suited for man-made scenes, a topic that has received a lot of recent atten-
tion [5, 10–13]. When VPs are absent, the rotations can be computed from only
pairwise point matches using one of the methods described in [14–16].

Approaches for such direct initialization of cameras and structure have been
explored in the past. Factorization based approaches, such as [17], usually require
all points to be visible in all views, or do not scale to large scenes with large
amounts of missing data [18]. Linear reference-plane based techniques [11], can
handle missing data, but minimize an algebraic error. This can cause points
close to infinity to bias the reconstruction, unless the measurements are correctly
weighted, which in turn requires a good initialization.

Direct linear methods [11, 19] also cannot cope with outliers, which are more
common when matching features in unordered image datasets, as compared to
tracking features in video. Outliers are also common in architectural scenes due
to frequently repeating structures. Such outliers are caused by mismatches that
survive pairwise epipolar geometry estimation and get merged with goodmatches
in other views to form long, erroneous tracks.

Recently, the L∞ framework for solving multi-view geometry problems, where
the maximum reprojection error of the measurements is minimized rather than
the sum of squared errors, was shown to be applicable to the problem of structure
and translation estimation, where camera rotations are known apriori [16, 20–
22]. Although a global minimum can be computed using convex optimization
techniques, L∞ problems become computationally expensive for a large number
of variables [21], and are also not robust to outliers. The known outlier removal
strategies for L∞ norm, such as [20], do not scale to large problems [16, 21].

Instead of directly solving a linear system as in [11, 19], we first perform
pairwise reconstructions, and then robustly align pairs of such reconstructions,
thereby detecting matches consistent over three views. In a subsequent linear
step, these reconstructions are jointly aligned by estimating their unknown rel-
ative scales and translations. Once approximate depths are available, a direct,
linear method can be used to jointly re-estimate the camera and point locations.
A final bundle adjustment step refines all camera parameters (including rota-
tions) and structure parameters. Our proposed approach is fast, treats all images
equally, and is easy to parallelize. Our technique could also be extended to in-
corporate linear constraints for 3D lines with known directions, and coplanarity
constraints on 3D points and lines, as described in [11, 23].

For estimating rotations, we show the benefit of exploiting parallel scene lines,
which are assumed to be either vertical, or orthogonal to the vertical direction.
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Fig. 2. The proposed method generates accurate reconstructions and is significantly
faster than a standard sequential Sfm pipeline [1] (see Table 2)

This is more general than Manhattan-world assumptions and is common in a va-
riety of man-made scenes [13]. Currently, we assume known focal lengths (using
values present in exif tags) but these could also be estimated from orthogonal
VPs [24]. Our method builds upon known techniques for estimating global rota-
tions from VP matches [10, 15, 24], and pairwise relative rotation estimates [14–
16]. However, unlike [10, 15] where omni-directional images with small baselines
were used, we perform VP matching on unordered regular images, which is a
more difficult case. We show that when VPs can be accurately detected and
matched in images, the global rotation estimates can be very accurate. Figure 2
shows some accurate reconstructions obtained using our proposed method.

2 Proposed Approach

Figure 1 provides an overview of the three stages of our Sfm pipeline. First,
points, line segments, and vanishing points are extracted and matched in all
images. Next, camera rotations are estimated using vanishing points whenever
possible, but also using relative rotation estimates obtained from pairwise point
matches. Finally, all cameras and 3D points are directly estimated using a linear
method, followed by a final bundle adjustment.

Notation and Preliminaries: In our Sfm formulation, a set of 3D points Xj

are observed by a set of cameras with projection matrices Pi. The i-th camera has
focal length fi and has a center of projection Ci. We assume camera intrinsics
of the form Ki = diag(fi, fi, 1), and denote camera pose (rotation, translation)
by (Ri,ti) respectively, with Pi = Ki[Ri ti], and ti = −RiCi. The j-th point is
observed in the i-th camera at the point xij . A point at infinity in the direction
dm, is observed at a VP vim in the i-th camera.

Match and Image-pair Graphs: From pairwise point matches, we form a
pruned match graph Gm, consisting of nodes for each image and edges between
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images with good matches. We first compute a full match graph G by exhaus-
tively matching all image pairs, and using the match inlier counts as the corre-
sponding edge weights. The graph Gm is initialized to the maximum spanning
tree of G. We then iterate through the set of remaining edges, sorted by decreas-
ing edge weights, and insert edges into Gm, as long as the maximum degree of
a node in Gm does not exceed k (set to 6 by default). We also build Gr, the
edge dual graph of Gm, referred to as the image-pair graph by [6]. Every node
in Gr corresponds to an edge in Gm and represents image pairs with a sufficient
number of matches. Two nodes in Gr are connected by an edge if and only if
the corresponding image pairs share a camera and 3D points in common.

3 Feature Extraction and Matching

Interest Points: We extract point features using a state of the art feature de-
tector [25], and perform kd-tree based pairwise matching as proposed in [26] to
obtain the initial two-view matches based on photometric similarity. These are
then filtered through a standard RANSAC-based geometric verification step [27],
which robustly computes pairwise relations – a fundamental matrix F, or a ho-
mography H (in the case of pure rotation or dominant planes) between cameras.

Line Segments and Vanishing Points: We also recover 2d line segments in
the images through edge detection, followed by connected component analysis
on the edgels. A local segment growing step with successive rounds of RANSAC
then recovers connected sets of collinear edgels. Finally, orthogonal regression
is used to fit straight line segments to these. Quantized color histogram-based
two-sided descriptors [28] are computed for each segment and are used later
for appearance-based matching. Vanishing point (VP) estimation in each image
also uses RANSAC to repeatedly search for subsets of concurrent line segments.
Once a VP has been detected along with a set of supporting lines, the process is
repeated on the remaining lines. In each image, we heuristically determine which
VP (if any) corresponds to the vertical direction in the scene, by assuming that
most images were captured upright (with negligible camera roll). The line seg-
ments are labeled with the VPs they support. Although, the repeated use of
RANSAC is known to be a sub-optimal strategy for finding multiple structures,
in our case, it usually detects the dominant VPs with high accuracy.

VP and Line Segment Matching: First, VPs are matched in every image pair
represented in the pruned match graphGm for which a pairwise rotation estimate
can be computed. We allow for some errors in this estimate, and retain multiple
VP match hypotheses that are plausible under this rotation up to a conservative
threshold. We verify these hypotheses by subsequently matching line segments,
and accept a VP match that unambiguously supports enough segment matches.
Line segments are matched using appearance [28] as well as guided matching
(correct line matches typically have interest point matches nearby). Note that
VP matching has an ambiguity in polarity, as the true VP can be confused
with its antipode, especially when they are close to infinity in the image. The
orientation of line segments, matched using two-sided descriptors, is used to
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resolve this ambiguity. VP matches are linked into multi-view tracks by finding
connected components, in the same way as is done for point matches, while also
ensuring that the polarity of the VP observations are in agreement. Note that
VP tracks are often disconnected, but different tracks that correspond to the
same 3D direction may subsequently get merged, as described next.

4 Computing Rotations

Given three orthogonal scene directions, d1 = [1, 0, 0]T, d2 = [0, 1, 0]T and d3

= [0, 0, 1]T, the global camera rotation in a coordinate system aligned with the
di’s, can be computed from the VPs corresponding to these directions.

vim = diag(fi, fi, 1)Ridm (1)

For each m, the mth column of Ri can be computed. In fact, two VPs are suffi-
cient, since the third column can be computed from the other two.

4.1 Rotations from VP Matches

The rotation estimation method just described assumes that the directions {dm},
are known. Our goal however, is to recover all camera rotations given M VP
tracks, each of which corresponds to an unknown 3D direction. As some of the
VPs were labeled as vertical in the images, we know which tracks to associate
with the unique up direction in the scene. Now, pairwise angles between all M
directions are computed. Every image where at least two VPs were detected
contributes a measurement. We rank the M directions with decreasing weights,
where each weight is computed by counting the number of supporting line seg-
ments over all images where a corresponding VP was detected. Next, we find
the most salient orthogonal triplet of directions such that at least one track
corresponding to the vertical direction is included.

For all images where at least two of these directions are observed, camera rota-
tions can now be computed using (1). If some of the remaining (M -3) directions
were observed in any one of these cameras, those can now be computed as well.
This step is repeated until no more cameras or directions can be added. This
produces the first camera set—a subset of cameras with known rotations, consis-
tent with a set of 3D directions. We repeat the process and obtain a partition of
the cameras into mutually exclusive camera sets, some of which may potentially
share a common direction (typically this is the up direction). A camera that sees
fewer than two matched VPs generates a set with a single element.

4.2 Global Rotations

If a single camera set is found, we are done. Otherwise, the K camera sets must
be rotationally aligned to obtain the global camera rotations. A unique solution
can be found by fixing the rotation of one of the camera sets to identity. Note that
we have an estimate of the relative rotation between camera pairs in the match
graph. Let us denote this rotation involving the i-th and j-th cameras, chosen
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from camera sets a and b respectively, by the quaternion qij . Each estimate of
qij provides a non-linear constraint relating the unknown rotations of the two
camera sets denoted by qa and qb respectively.

qa = (qa
i · qij · (qb

j)
−1)qb (2)

where qa
i and qb

i denotes the known rotations of the i-th and j-th camera in their
own camera sets. As proposed by [16], by ignoring the orthonormality constraints
on the quaternions, we linearly estimate the set {qk}. When the vertical VPs are
detected in a rotation set, the corresponding quaternion represents an unknown
1-dof rotation in the horizontal plane, as the vertical direction is assumed to be
unique. We solve the full 4-dof system (2), and snap the near vertical rotations
(within 5o degrees of each other) to be vertical. The scene directions within 5o

of each other are also snapped together, and all the rotations are re-estimated
under these additional constraints. This is useful in scenarios such as identifying
parallel lines on opposite sides of a building, which are never seen together.

In the absence of VPs, rotations can be recovered via the essential matrices
obtained from pairwise point matches for image pairs with an adequate number
of matches. In [15], relative rotations were chained over a sequence followed by
a non-linear optimization of the global rotations. We perform the chaining on a
maximum spanning tree of the match graphGm and then use its nontree edges in
the non-linear optimization step. The rotations could also have been initialized
using linear least squares (by ignoring the orthonormality constraint of rotation
matrices) [16], or by averaging on the Lie group of 3D rotations [14].

5 Linear Reconstruction

When the intrinsics Ki and rotations Ri are known, every 2D image point xij

can be normalized into a unit vector, x̂ij = (KiRi)
−1xij , which is related to the

j-th 3D point Xj (in non-homogenous coordinates) as,

x̂ij = d−1
ij (Xj −Ci), (3)

where dij is the distance from Xj to the camera center Ci. Note that (3) is
written with dij on the right side to ensure that measurements are weighted by
inverse depth. Hereafter, x̂ij is simply denoted as xij . By substituting approxi-
mate values of dij , if known, (3) can be treated as a linear equation in Xj and
Ci. All measurements together form a sparse, non-homogeneous, linear system,
which can be solved to estimate the cameras and points all at once. These can
be further refined by iteratively updating dij and solving (3). Notice that if we
multiply the above equation by the rotation and calibration matrices and divide
by zij , where zij is the distance between Xj and Ci projected along the camera
axis (the last row of Ri), we get the usual pixel matching error. Therefore, if
the focal lengths for all the cameras are similar, minimizing (3) is similar to the
usual bundle adjustment equations (when the depths are approximately known,
and ignoring any robust cost function).
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An alternative approach [11] is to eliminate dij from (3), since dijxij × (Xj −
Ci) = 0. All cameras and points can be directly computed by solving a sparse,
homogeneous system, using SVD (or a sparse eigensolver), and fixing one of
the cameras at the origin to remove the translational ambiguity. The points at
infinity must be detected and removed before this method can be used. Since
this method minimizes a purely algebraic cost function, if the linear equations
are not weighted correctly, points farther away from the camera may bias the
linear system, resulting in large reconstruction errors. Neither of these methods
can handle outliers in the 2D observations, which are inevitable in many cases.

In this paper, instead of directly solving (3) for all cameras and points at once,
we propose to independently compute two-view reconstructions for camera pairs
that share points in common. Various approaches for computing two-view re-
constructions are known and the situation is even simpler for a pair of cameras
differing by a pure translation. Next, pairs of such reconstructions, sharing a
camera and 3D points in common, are robustly aligned by estimating their rel-
ative scales and translations. This key step allows us to retain matches found to
be consistent in the three views. Finally, once a sufficient number of two-view re-
constructions have been pairwise aligned, we can linearly estimate the unknown
scale and translation of each individual reconstruction, which roughly brings all
of them into global alignment. An approximate estimate of depth dij can now
be computed and substituted into (3), and the linear system can be solved with
the outlier-free tracks obtained by merging three-view consistent observations.
We now describe these steps in more detail.

5.1 Two-View Reconstruction

A pairwise reconstruction for cameras (a,b), treated as a translating pair, is
denoted as Rab = {Cab

a ,Cab
b , {Xab

j }} where the superscript denotes a local co-
ordinate system. Under pure translation, it is known that the epipoles in the
two images coincide, and all points in the two views xaj and xbj are collinear
with the common epipole e, also known as the focus of expansion (FOE), i.e.
xT
aj [e]×xbj = 0. The epipole e is a vector that points along the baseline for the

translating camera pair. We compute e by finding the smallest eigenvector of a
3×3 matrix produced by summing the outer product of all 2D lines l = xaj×xbj ,
and then choose Cab

a = 0 and Cab
b = ê, corresponding to a unit baseline. Each

point Xab
j is then triangulated using the linear method.

xkj × (Xab
j −Cab

k ) = 0, for k ∈ {a, b}. (4)

Finally, we remove all points reconstructed behind both cameras and the ones
with small triangulation angles (< 1◦).

5.2 Robust Alignment

Each pairwise reconstruction Rab involving cameras (a,b) differs from a global
reconstruction by 4-dofs, i.e. an unknown scale sab and translation tab, unique up
to an arbitrary global scale and translation. Suppose, Rbc and Rab share camera
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Fig. 3. The symmetric transfer error of the 3D similarity (scale and translation) trans-
formation S from Rab to Rbc is the sum of distances between the observed points xaj,
xbj , xcj and the projected points shown in grey.

b and some common 3D points. Using MLESAC [29], we robustly align Rab to
Rbc by computing a 4-dof 3D similarity Sabbc (parameterized by relative scale sabbc
and translation tabbc ). A hypothesis is generated from two 3D points common to
both reconstructions. These are chosen by randomly sampling two common 3D
points, or only one common point when the camera center of b is chosen as the
second point. Assuming exact correspondence for one of the two points in Rbc

and Rab gives a translation hypothesis t. A scale hypothesis s is computed by
minimizing the image distance between the observed and reprojected points for
the second 3D point. This can be computed in closed form as the reprojected
point traces out a 2D line in the image as the scale varies. The hypothesis (s,t)
is then scored using the total symmetric transfer error for all common 3D points
in all three images. As illustrated in Figure 3, this error for each Xj is equal to

∑

k

d
(
xkj , f

ab
k (S−1Xbc

j )
)
+
∑

k

d
(
xkj , f

bc
k (SXab

j )
)

(5)

Here, function fab
k projects a 3D point into each of the two cameras of Rab where

k ∈ {a, b}, f bc
k is defined similarly for Rbc, and d robustly measures the distance

of the projected points from the original 2D observations xkj , where k ∈ {a, b, c}.

5.3 Global Scale and Translation Estimation

Once a sufficient number of transformations (sabbc , t
ab
bc ) between reconstructions

Rab andRbc are known, their absolute scale and translations, denoted by (sab,tab)
and (sbc,tbc), can be estimated using the relation,

sbcX+ tbc = sbcab(s
abX+ tab) + tbcab, (6)

where X is an arbitrary 3D point in global coordinates. Eliminating X, gives us
four equations in eight unknowns:

wbc
ab(s

bc − sbcabs
ab) = 0,

wbc
ab(s

bctbc) = wbc
ab(s

bc
abt

ab + tbcab). (7)

Here, the weight wbc
ab is set to the number of three-view consistent points found

common to Rab and Rbc. The scale of any one reconstruction is set to unity and
its translation set to zero to remove the global scale and translational ambiguity.
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The size of the linear system (7), depends on the number of edges in the
image-pair graph Gr, (defined in Section 2), whose construction is described
below. Any spanning tree of Gr will result in a linear system with an exact
solution, but a better strategy is to use the maximum spanning tree, computed
using wbc

ab as the edge weight between nodes corresponding to Rab and Rbc.
Solving an over-determined linear system using additional edges of Gr is usually
even more reliable. Note that even when the match graph Gm is fully connected,
Gr may be disconnected. This can happen if a particular pairwise reconstruction
did not share any 3D points in common with any other pair. However, to obtain
a reconstruction of all the cameras in a common coordinate system, all we need
is a connected sub-graph of Gr, which covers all the cameras. We denote this
connected subgraph by G′ and compute it as follows.

To constructGr, for each camera we first form a list of pairwise reconstructions
the camera belongs to. We sort these reconstructions in increasing order of some
accuracy measure (we use the number of reconstructed points with less than
0.6 pixel residual error). We iterate through the sorted list of reconstructions,
labeling the ones that contain fewer than τ accurately reconstructed points (τ =
20 by default), provided it is not the only reconstruction a particular camera is
part of. Next, we remove all the nodes corresponding to labeled reconstructions
from Gr, along with the edges incident on these nodes. The maximum spanning
tree of the largest connected component of Gr, denoted by G′, is then computed.
Finally, we sort the remaining edges in Gr in decreasing order of weights, and
iterate through them, adding an edge to G′, as long as the maximum vertex
degree in G′ does not exceed k′ (k′ = 10 by default). With n cameras, our pruned
match graphGm with maximum vertex degree k has at mostO(kn) edges. Hence,
Gr has O(kn) nodes as well. Every node in Gm with degree d, gives rise to

(
d
2

)

edges in Gr. Therefore, Gr has O(nk2) edges. Thus, both the number of pairwise
reconstructions as well as the number of pairwise alignment problems are linear
in the number of cameras. Moreover, each of the pairwise reconstructions and
subsequent alignment problems can be easily solved in parallel.

6 Results

We have tested our approach on nine datasets (three sequences and six unordered
sets), many of which are representative of common man-made scenes. Radial
distortion was removed in advance using ptlens [30]. Our linear estimates had
low mean reprojection error in the range of 0.7–3.8 pixels, as shown in Column
e1 in Table 1, prior to bundle adjustment (BA) and without further optimization
of the rotations or intrinsics. A subsequent full BA on all cameras and points,
initialized with these estimates, converged in only 4–10 iterations, with mean
reprojection errors of 0.3–0.5 pixels for most of the datasets (Column e2).

The linear estimates were more accurate when VPs were used for recovering
rotations (column e1 v.s. e3 in Table 1). In some of our datasets, multiple groups
of parallel lines were present and reliable VPs could be matched in most images
(see columns v–d in Table 1). In some of these cases, up to five rotation sets
had to be aligned based on point matches, using the approach described in
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Table 1. Statistics for the six unordered sets (U) and three sequences (S) used in
our experiments. #images (I), #images with at least two VPs (V), #3D vanishing
directions (D), #2D observations, #3D points, #pairs (P) and #triplets (T) in Gr.
Columns (e1) and (e2) show the mean reprojection errors before and after bundle
adjustment for VP-based rotation estimates. Columns (e3) and (e4) show the errors
before and after bundle adjustment when using point-based rotations.

Name C I V D #2D obs. #3D pts P T e1 e2 e3 e4

Jesu-P25 U 25 25 3 118,977 49,314 75 383 0.71 0.29 0.86 0.29

CastleP30 U 30 28 3 104,496 42,045 90 445 2.22 0.32 2.34 0.32

Facade1 U 75 72 3 254,981 72,539 192 958 1.75 0.49 8.89 1.31

Facade2 U 38 34 3 148,585 59,413 114 572 1.94 0.43 11.5 0.55

Building1 S 63 60 3 201,803 77,270 186 907 2.31 0.35 2.91 0.39

Building2 U 63 63 3 185,542 52,388 173 764 1.82 0.35 1.09 0.39

Street S 64 64 3 182,208 51,750 184 855 1.24 0.34 0.52 0.34

Hallway2 S 184 181 3 140,118 27,253 435 1982 3.85 1.01 6.33 1.89

Statue U 111 0 0 137,104 34,409 350 1802 – – 3.07 0.46

herz-jesu-p25 castle-p30

Fig. 4. [herz-jesu-p25, castle-p30]: Ground truth camera pose evaluation [31] (see
text). The mean reprojection errors were 0.29 and 0.32 pixels after bundle adjustment.

Section 4.2. For the statue dataset where VPs were absent, all rotations were
computed from essential matrices. They were initialized by chaining pairwise
rotations on a spanning tree, and then refined using non-linear optimization, as
described in [15]. Incorporating the covariance of the pairwise rotations [6], or
using the method from [14] could lead to higher accuracy in the rotations, and
also our linear estimates. Nevertheless, the statue reconstruction was still quite
accurate (see Figure 2).

To test the need for robustness, during the pairwise alignment (Section 5.2) we
disabled MLESAC, and computed relative scale and translations by registering
all common 3D points shared by reconstruction pairs. This produced large errors
up to 50 pixels in the linear estimates, and with these as initialization, BA was
never able to compute an accurate reconstruction.

The reconstructions from the facade1 and facade2 unordered datasets are
shown in Figure 2. Although highly textured, these scenes also contain frequent
repeated patterns, resulting in more outliers, and some false epipolar geometries
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building1 Bundler (61 cams, 74K pts) Ours (61 cams, 77K pts)

building2 Bundler (63 cams, 50K pts) Ours (63 cams, 52K pts)

Fig. 5. [building1,building2]: Our method is comparable to Bundler in terms of
accuracy, but is two orders of magnitude faster (see Table 2 for details).
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Fig. 6. Accuracy test of global rotations estimates (VP-based v.s. pure point-based)
compared to the final rotations after bundle adjustment (better seen in color).

(this is also noted by [16]). The reconstructions from our linear method showed
no drift, and were visually accurate even without BA. In comparison, the refer-
ence plane based linear method [11] only worked on small selected subsets of the
input, and failed on most of the other datasets too, mainly due to its inability
to handle points at infinity and its lack of robustness.

We evaluated our method on two ground truth datasets from Strecha et.
al. [31] – HerzJesu-P25 and Castle-P30. Our reconstructions, shown in Fig-
ure 4, are quite accurate. We compared our camera pose estimates (before and
after BA) with ground truth, using camera centers for registration and then
comparing errors in baseline lengths and angles between camera optical axes.
Figure 4 shows the average error for each camera over all possible baselines. For
HerzJesu-P25, most cameras had less than 2% errors (baseline as well as an-
gle) while the worst had 4% angle and 2% baseline error. These reduced to less
than 1% after BA. The worst two out of 30 cameras in Castle-P30 initially
had 7% error (due to small inaccuracies in rotation estimates), but the angle
and baseline error in all cameras went below 1% and 2% respectively, after BA.
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street Bundler (65 cams, 21K pts) Ours (65 cams, 61K pts)

Fig. 7. street (65 images): Using vanishing points for rotation estimation eliminates
drift in our method. The linear estimate obtained by our method is shown on the right.

Where ground truth was absent, we compared the VP-based and point-based
rotation estimates to the final bundle adjusted rotation estimates. Figure 6 shows
the mean angle error per camera for four datasets. Point-based rotation estimates
for facade1 were inaccurate due to the presence of a few false epipolar geome-
tries. The VP-based rotation estimates were consistently better and produced
higher accuracy in the linear method (columns e1 v.s e3 in Table 1).

Table 2. The #cameras, #3D points and timings (excluding feature extraction and
matching) for bundler [1] and our method. A breakup of our timings is shown– for
estimating rotations (Trots), pair reconstructions (Tpairs), triplet and global align-
ment (Ttriplets) and bundle adjustment (Tbundle). The significant differences between
bundler and our method are highlighted in bold.

dataset #imgs Bundler Ours

#cams/#pts time #cams/#pts Trots Tpairs Ttriplets Tbundle Total

Jesu-P25 25 25/11583 1m 24s 25/49314 0.7s 3.6s 6.7s 1.1s 13s

CastleP30 30 30/17274 3m 51s 30/42045 0.8s 3.7s 4.1s 1.5s 11s

Facade1 63 63/71964 31m 28s 63/72539 2.7s 6.2s 9.1s 7.6s 26s

Facade2 38 38/70098 23m 15s 38/59413 1.0s 4.4s 6.4s 3.6s 16s

Building1 61 61/74469 57m 40s 61/77270 2.6s 7.6s 9.6s 4.4s 25s

Building2 63 63/50381 39m 50s 63/52388 1.1s 4.3s 4.8s 4.3s 15s

Street 65 65/20727 8m 47s 65/51750 1.5s 4.0s 4.8s 7.3s 18s

Hallway 184 139/13381 38m 05s 184/27253 1.9s 5.2s 6.8s 12.6 28s

Statue 111 109/9588 7m 17s 111/34409 3.6s 2.6s 3.7s 6.9s 17s

For seven out of nine datasets, the accuracy of our reconstructions is compa-
rable to that of bundler [1], a standard pipeline based on sequential Sfm, as
shown in Figure 5 for the building1 and building2 sequences. However, our
approach is up to two orders of magnitude faster even when more 3D points
are present in our reconstructions (see Table 2). Our reconstructions are more
accurate on the remaining two datasets – street and hallway. The street

sequence (Figure 7) captured from a driving car with a camera facing sideways,
demonstrates the advantage of using vanishing points for rotation estimation.
Virtually no drift is present in our linear estimate, whereas Bundler [1], pro-
duced some drift at the corner as well as in the straight section of the road. The
hallway sequence is an open-loop sequence, with narrow fields of view, poorly
textured surfaces, and predominantly forward motion. Our reconstruction shown
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Bundler (139 cams, 13K pts) Ours (184 cams, 27K pts)

Fig. 8. hallway (184 images): Unlike bundler, our method reconstructs the full hall-
way. (c) The camera path from our reconstruction overlaid on the floor plan.

in Figure 8, is qualitatively accurate with no rotational drift, although some drift
in scale can be noticed with the camera path overlaid on the floor plan. In com-
parison, bundler produced an incomplete reconstruction of the hallway where
only 139 out of the 184 cameras were reconstructed.

7 Conclusions

We have developed a complete Sfm approach, which uses vanishing points when
possible, and point matches to first recover all camera rotations, and then simul-
taneously estimates all cameras positions and points using a multi-stage linear
approach. Our method is fast, easy to parallelize, treats all images equally, effi-
ciently copes with substantial outliers, and removes the need for frequent bundle
adjustments on sub-problems. Its accuracy and efficiency is demonstrated on a
variety of datasets. In the future, we plan to extend bundle adjustment to incor-
porate constraints on camera rotations based on vanishing points and 2D line
correspondences. We also plan to make our approach robust to the presence of
false epipolar geometries [16] and test it on large Internet photo collections [6].
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