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Abstract. This paper proposes an automatic method for registering images from 
different sensors, particularly 2D optical sensors and 3D range sensors, without 
any assumption about initial alignment.   

Many existing methods try to reconstruct 3D points from 2D image 
sequences, and then match 3D primitives from both sides. The availability of 
appropriate multiple images associated with 3D range data, the well-known 
challenge of inferring 3D from 2D and the difficulty of establishing 
correspondences among 3D primitives when there is no pre-knowledge about 
initial pose estimation, lead us to a different approach based on region matching 
between optical images and depth images projected from range data.  

This paper details our interest region extraction method for optical images 
and also the efficient region matching component. Experiments using several 
cities’ aerial images and LiDAR (Light Detection and Ranging) data illustrate 
the effectiveness of the proposed approach even when facing considerably 
geometric distortions.  

Keywords: different sensors registration, 2D-3D matching, LiDAR data. 

1 Introduction 

Recent years, there has been an increasing awareness of the growing need for 
registering images from different sensors, especially the range and optical sensors. 
For example, the photorealistic modeling of urban scenes using range data from 
airborne or ground laser scanner requires the registration of those 3D range data onto 
aerial or ground 2D images for recognition and texture mapping purposes. In the 
medical image processing domain, there has a long standing concern about how to 
automatically align Computed Tomography or Magnetic Resonance images with 
optical camera images. Traditional texture-based image matching approaches such as 
[1] can not be directly adapted to above tasks, basically because unlike the optical 
sensors, range sensors capture no texture information. 

In this paper, we propose an automatic registration method based on matching of 
local interest regions extracted from 2D images and depth images of 3D range data 
for urban environment. The regions we are interested in (ROI) are typically well 
separated regions of individual buildings. Global context information is implicitly 
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used for outlier removal and matching propagation (system overview in figure 1). Our 
approach can register images from different sensors with large initial location and 
scale errors. Although today there exist systematic ways to obtain initially well 
aligned 3D and 2D data at the same time for large scale scenes, possible applications 
of our work include data fusion from different sources and sensors, and updating 
existing GIS (Geographic Information System) with new content, when data from 
different sources may have non-unified calibration or no georeference at all, e.g. 
historic photos or photos from common users. Furthermore, the ROI extraction 
component proposed in this paper is an important prerequisite to a variety of 
recognition, understanding, and rendering tasks in urban environments. 

3D Range Data 2D Image

ROI Extraction 
from Range Data

ROI Extraction
from Image

ROI
range

ROI
image

Region
 Matching

2D-3D Point-to-Point
Correspondences  

Fig. 1. Overview of the proposed 2D-3D registration system 

Our two basic assumptions are: first the dominant contours of most interest regions 
are repeatable under both optical and range sensors. A similar assumption was used 
and verified in [8]. Second, focusing on different sensor problems, in this paper we 
assume both optical and depth images have similar viewing directions (nadir view in 
our experiments) though position, zoom level and in-plan rotations of capture devices 
can be different. Our idea for the whole system is to first handle different sensor 
problems in this stage, and then register nadir, oblique and even ground images all 
from optical sensors to handle 3D view point changes by using approaches such as 
[13] and [16]. In the end, oblique and ground images can be indirectly registered. 

Intensive experiments have verified the effectiveness of the proposed approach in 
terms of scale, rotation and location invariance, significant geometric distortion and 
partially missing data due to occlusion or historic data. After the related works, 
section 3 details our interest region extraction method for optical images and section 4 
presents the region matching component.  

2 Related Works 

To register images from different sensors, many recently developed methods 
reconstruct sparse or dense 3D point clouds from image sequence, then use high level 
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features (e.g. 3D edges, intersection of perpendicular 3D lines) which are preserved 
and consistent on both 3D and 2D sides to establish correspondences.  

Zhao, et al. [2] use motion stereo to recover dense 3D point clouds from 
continuous oblique video and ICP algorithm to register recovered 3D points with 
LiDAR data with initial alignment provided by positioning hardware such as GPS 
(Global Positioning System) and IMU (Inertial Measurement Unit).  Ding, et al. 
detect 2D orthogonal corners (2DOC) and use them as primitives to match single 
oblique image with airborne LiDAR [3]. The proposed method achieves overall 61% 
accuracy and the processing time of each image is only several minutes in contrast to 
20 hours of the previous work of [4].   

Both [2] and [3] utilize positioning hardware for initial alignment. Our own 
visualization of similar datasets indicates the readings from the airplane-bonded GPS 
and IMU are accurate enough to significantly simplify the registration problem. 
However, for historic data or photos from common users, we can not assume such 
assistant hardware is always available for GIS data fusion and updating problems. 
Moreover, though accurate for large city scenes, the current accuracy of positioning 
hardware makes their application to small scenes (e.g. indoor environment and 
medical imaging settings) impractical. If initial orientation, scale and location errors 
are significant, ICP or local search of orthogonal corners could not be sufficient. 

 Multiview geometry methods are used in [2] and [6] to recover 3D point clouds 
from image sequences. The first limitation is appropriate multiple views of the 
interest object might not always be readily available. Second, as the first step of 3D 
reconstruction, correspondence among 2D images needs to be established. This is a 
challenge problem by its own especially for wide baseline cases. Simple Harris 
corners and correlation are used in [2] for continuous video frames, while in [6], SIFT 
is use. However, for non-planar 3D object and significant view point changes, even 
SIFT and its many variations can not be confidently counted for dense and stable 
correspondences. Last but not the least, even a number of perfect correspondences can 
be obtained , traditional stereo or structure from motion techniques still tend to 
produce inconsistent and noisy results. 

3 ROI Extraction from Aerial Images 

One important component of our 2D-3D registration method is ROI extraction from 
aerial images (major components in fig. 2), which can be viewed as a special case of 
general image segmentation problem. Related recent works include: Comaniciu and 
Meer’s non parametric mean shift segmentation algorithm [9] and Felzenszwalb and 
Huttenlocher’s efficient graph based segmentation methods [10]. 

The fractal geometry used in our method, originally introduced by Mandelbrot 
[11], has long been used for aerial image understanding tasks. Solka et al. use fractal 
measurement combined with classical statistical features such as the coefficient of 
variation to identify ROI for unmanned aerial vehicle imagery [12]. Recent work of 
Cao et al. [14] tries to minimize an energy function representing how well the current 
boundary contains the interest region using fractal error image and texture edge image 
generated by Discrete Cosine Transformation. 
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This section presents our ROI extraction algorithm for aerial photography. The 
proposed algorithm produces initial ROI through a region-growing process utilizing 
various image cues from low level features such as intensity and color preference to 
high level ones such as fractal errors and multiple assistant information maps (AIMs). 
The detected initial ROI could be further refined by a learning-based region 
regulation step. This component is to extract, from aerial images, buildings’ most 
external contours repeated and consistent with those extracted from 3D range data. 

Preprocessing

 AIMs Construction and Selectively Smoothing

Region Growing 

Learning-based Region Refinement

ROI
image

Input Aerial Image

 

Fig. 2. ROI extraction from aerial images 

3.1 AIMs Construction and Selectively Smoothing 

There are three kinds of assistant information maps the region growing process 
frequently refers to: vege maps, shadow maps and edge maps. The aerial image is also 
selectively smoothed during the construction of three AIMs. 

Vege-Map (Mvege): By utilizing color information in the aerial photograph, we 
identify pixels that are dominated by the green channel and possibly vegetations.  

Shadow-Map (Mshadow): For each pixel, let I represent the intensity value and (Cr, Cg, 
Cb) represent its RGB color channels. A pixel is said be to a shadow pixel if: 

1shadowTI <  and 2},,max{ shadowbgr TCCC <                        (1) 

where Tshadow1 and Tshadow2 are thresholds specifying how low the intensity and color 
channel need to be for a shadow pixel. Because vegetations typically form low 
reflection regions, the shadow-map typically have many overlaps with the vege-map. 

Edge-Map (Medge): There are two kinds of edges in our edge-map, the true edges and 
the in-region edges. Among the initial edges returned by Canny operator, most are not 
actual boundaries of ROI (true edges) but rather edge responses within those regions 
(in-region edges) due to slope or textures of the roofs, items like air conditioners on 
the building's top, or even noises from image sensors. 

The existence of in-region edges is one primary reason for over-segmentation. 
Moreover, since our ROI extraction process is a combination of region-driven and 
edge-driven, it is meaningful to distinguish those two kinds of edges from the very 
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beginning. For urban scenes with regular buildings, an edge pixel is deemed as a part 
of true edges unless neighboring horizontal or vertical non-edge pixels have similar 
hues. HSV instead of RGB color space is used because neighboring pixels of either 
true or in-region edges tend to be affected by different lighting, and hue is generally 
more robust under such circumstance. The separation of in-region edges from true 
edges serves two purposes. First, while the true edges will become strict barrier 
during the region-growing process, those in-region pixels will not. The region-
growing process is allowed to pass those in-region pixels with certain penalty to the 
confidence attribute. Second, we perform selectively smoothing based on the results 
of in-region edges. The color and intensity of each confirmed in-region edge pixel 
will be replaced by the average of its non-edge eight neighbors, helping us eliminate 
those in-region details which will otherwise compromise segmentation performance. 

3.2 Region Growing 

A uniform grid is placed on top of aerial images to determine seed locations. Each 
cell's center P is used as a tentative seed location and if it fails the seed conditions: 

vegeMP ∉  and shadowMP ∉  and 
edgeMP ∉                  (2) 

the cell is equally divided into four smaller cells and each center of those four sub-
cells is tested again. It is possible that all five tests fail and the corresponding cell has 
no marker at all (e.g., when the cell is placed on trees). 

During the region growing process, the current pixel (pcurrent) will be accepted and 
recursively expanded only if it meets the three expansion requirements: 

1) The fractal error requirement: The theory is based on the properties of nature 
features to fit a fractional Brownian motion model. The definition of fractal error in 
image domain concerns two pixel locations (pc and pr). The measurement (e.g. 
intensity) difference of those two locations should be normally distributed with a 
mean of zero and a variance proportional to the 2H power of the Euclidean distance. 

For intensity measurement, if the model fits, the average absolute intensity change 
across several pairs of pixels should follow exponential scaling: 

H
rcrc ppkpIpIE |||])()([| −=− ,                      (3) 

where E is the topological dimension (the number of independent variables) and in the 
image domain E = 2. k > 0 and 0 < H < 1 are two parameters. The parameter H is 
related to the fractal dimension D by: D = E + 1 -H. 

The above equation can be linearized by logarithm: 

|)ln(|)ln()])()([ln( rcrc ppHkpIpIE −+=− .                  (4) 

With the linear equation, we can use machine learning technique to obtain the 
estimates of H and k. To obtain training data, a window operator is placed on one 
aerial image's non-building regions. After collecting pixel distances and their 
associated intensity changes in those regions, the least-squares linear regression is 

used to compute the optimized H  and k .  
The individual fractal error for a pixel location pc is calculated as the difference 

between the actual and estimated values from one of its neighboring pixel pr: 
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H
rcrcrcerror ppkpIpIEppF ||)]()([),( −−−= .                  (5) 

Finally, the overall fractal error (OFE) for pc is computed as the root mean square 
(RMS) of these individual errors using a local window centered at pc: 
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1 ,                             (6) 

where n is number of pixels considered in a local window. 
A low OFE indicates that the center pixel's neighboring region is more likely to 

belong to a non-building region. Therefore, the center pixel will be excluded from the 
current growing region. A center pixel with sufficient high OFE will pass this 
expansion requirement. We never compute a fractal map for the entire aerial image 
because there are many regions in the aerial images that are never reached throughout 
the region-growing process due to one expansion requirement or another. Instead, we 
take the compute-on-demand-then-save way.  

2) Requirements from AIMs: The current pixel will fail this requirement if 
pcurrent∈Mvege or pcurrent∈Mshadow. The requirement for shadow-map can be relaxed in 
heavily urbanized scenes with long shadows overlapping buildings. If the current 
pixel belongs to an in-region edge, it will still pass this test though a penalty to this 
region's confidence needs to be taken. If the current pixel belongs to a true edge, it 
will be neither accepted nor further expanded. 

3) The dynamic intensity range: Finally the current pixel’s intensity must lie 
within the current dynamic intensity range, defined by two variables: the upper bound 
(Urange) and the lower bound (Lrange). Both are initialized as the intensity of initial seed 
point. The range is expanded simultaneously with the region growing process with a 
limit for the range's length (range_len). 

The current pixel will immediately pass the dynamic intensity range requirement 
without any update if: 

rangecurrentrange UpIL << )(                                  (7) 

Otherwise, we introduce a tolerate threshold Trange as an expansion limit. The 
threshold is softened and fluctuated based on the current area to handle the case when 
the current point falls into a small distinct region contained in a large region we are 
interested in. The current pixel will still pass this requirement and update the range if: 
when the current area is smaller than the minimum acceptable area, 
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or when the current area is larger, 

rangerangecurrentrangerange TUpITL +<<− )( ,                     (9) 

where Rangemax is the maximum adjustable range for Trange. 
Each pixel of the aerial image is associated with a 2-bit attribute called color 

preference. It is set to 1, 2 or 3 if the corresponding channel is dominant or 0 if no 
channel can obtain the dominate position. A region’s color preference is set to be the 
color preference of the seed pixel. We use a more strict Trange value if the current 
expanding pixel has a color preference different from the growing region. 
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Those pixels that pass the above three expansion requirements will form the initial 
ROI. Regions with high confidence should be those clearly distinguished from 
surrounding background and consequently have small dynamic intensity range (DIR). 
Moreover, one region will have high uncertainty if it contains a large number of in-
region edge pixels (#IREP). Therefore, we define a region R's uncertainty as: 

)(#)
_

1()( IREP
lenrange

DIR
RUCT ⋅+= .                     (10) 

A larger region has higher chance to encounter in-region edge pixels. Avoiding this, 
we compute the uncertainty per pixel (UPP) as: 

areaR
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.
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)( = .                              (11) 

Initial segments with comparatively large UPP or small size / area will be discarded. 
The rest are called ROI candidates. UPP is also used in the region merging step and 
the final region matching component.  

3.3 ROI Candidate Refinement 

The actual number of buildings in the scene is typically less than half the number of 
ROI candidates because many candidates are false positives such as grounds and 
roads, and some buildings are over-segmented due to factors such as shadows. The 
candidate refinement consists of two steps handling the two problems respectively. 

First, learning-based region regulation is to prune those ROI that are too 
irregular to become building regions or a part of such regions. For each ROI contour, 
we construct x and y histograms in the roation-relative frame and compute two 
attributes measuring their peak strength. Linear Discriminant Analysis is applied to 
the 5D augmented space to decide a linear boundary, which results a quadratic 
decision boundary in the original space. Around half of the ROI candidates are pruned 
by this step. Second, region merging is used to iteratively merge those regions that 
are spatially close to each other (especially when their color preferences are 
compatible) and form additional interest regions. Only ROI candidates with higher 
confidences (lower UPP attributes) will enter the region merging step because regions 
with high UPP already contain too many.  

The outputs of our aerial image ROI extraction are interest regions (ROIaerial) and 
their contour point lists. We also develop an efficient algorithm to extract ROIrange 
from 3D LiDAR data (not covered in this paper). 

4 Region Matching under Different Sensors 

Given dominant and most-external ROI contours from both aerial images and 3D 
range data, we choose to use the shape context [15] as our contour descriptor because 
as a histogram-based approach, it is able to handle issues like pixel location error 
well. It can also tolerate various shape deformations (common situation in our case 
due to imperfect segmentation) while capturing the essence of similarity. Last, shape 
context generates one descriptor for each contour point, which enables us to establish 
point-to-point correspondences.  
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Each ROI's contour points are uniformly sampled to form a contour point list of 
fixed size (NCPL). We ordered the list in a counter-clockwise manner starting from the 
point with the smallest y coordinate. Each CPL point j on ROIi is described by its 
relative angle difference θj,k (to other points k of CPL and k≠j) and logarithm 
normalized distance rj,k using a log-polar histogram: 

}0:)(  and  )({#),( ,,, iCPLrkjkjrji NkbbinrbbinofbbH <<∈∈= θθ θ        (12) 

Scale invariance is achieved by distance normalization (we normalize distances using 
the size of ROI bounding boxes) and by placing shapes of different scales into 
histograms with a fixed number of r bins. For rotation invariance [7], tangent vectors 
are computed at each point and treated as x-axis so that the descriptors are based on a 
relative frame that automatically turns with tangent angles. 

Despite many previous efforts in our ROI extraction stage, over-segmentation and 
segmentation-leaking can still be observed among ROIa and ROIr. Therefore it is still 
important to allow partial matching (fig. 5) in the region matching stage, achieved by 
forming partial descriptors in our algorithm.  Continuous subsets of the original 
sampled contour points are used. We re-sample the partial contour and form new 
partial descriptors. Though imperfectly segmented regions will have better chance of 
matching through this, adding more descriptors will also enlarge the necessary 
searching space and raise the distinctiveness requirement. To better handle this trade-
off, only those partial contours containing larger number of corners, consequently 
generating richer and more distinctive partial descriptors will be considered. To 
further restrict the total number of ROI descriptors, we generally compute partial 
descriptors only for ROIr, which are relatively clean and more accurate than ROIa. 

 

Fig. 3. ROI partial matching 

To search for optimal correspondences, for each ROIr described as NCPL histograms 
Hr(j), all the ROIa,i (0≤i<numa) described as Ha,i(j) are sequentially scanned. We 
efficiently measure the similarity of two ROI as the minimum average histogram 
distance (matching cost) of their corresponding CPL points.  
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The searching for minimum has a constant low computational cost of O(NCPL) because 
CPL is organized as a counter-clock list of most-external contour points. Once one 
point's matching is determined, the rest points are automatically corresponded. There is 
no need to compute the solution for general bipartite matching problem.  

After the searching process, each ROIr is associated with its best and second best 
matched ROIa. Among all those tentative correspondences, typically only 10%-40% 
are correct. The final task is to detect and correct the outliers. 

We define "cost ratio" for each ROIr as the matching cost ratio of its best matching 
over the second best matching. Lower cost ratio combined with lower UPP attributes 
for ROI indicates a higher matching confidence. For example, regular rectangle 
buildings are generally ambiguous and produce higher cost ratio because many 
buildings have similar shapes, while buildings of unique shapes will produce lower 
cost ratio and higher matching confidence.  

For comparatively easy tests with a few distinguished buildings in the scene, 
correct initial matchings can be found by simply picking several ROIr with the lowest 
cost ratio. Each selected ROIr can contribute 10 uniformly sampled contour points 
providing a large set of point to point correspondences, based on which a global 
perspective transformation is estimated using least square method.  The result is 
propagated to those unselected ROIr using the recovered transformation and produces 
the final point to point correspondences across the entire scene. 

 

Fig. 4. the 1st column is ROI contours extracted from range data, the 2nd and 3rd column are the 
best and second best matching from the input aerial image. Cost ratio for each row is given. 

For challenging scenes, the correctness of initial matchings can not by solely 
decided by cost ratio. We propose a unified framework combining outlier removal 
and matching propagation together. We first construct a subset of matchings with 
relatively low cost ratio. This high-confidence subset of matchings serves as the 
foundation group of transformation estimation. For each iteration of the process, we 
randomly pick one pair of matchings from the subset and compute a global 
transformation using least square method. The remaining matchings are scanned to 
locate those consistent with the estimated transformation by comparing the point-to-
point correspondences generated by region matching with the matching propagation 
results. The transformation matrix is updated every time the size of consistent set 
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increases. We compare and evaluate the results of different iterations using two 
criteria: the number of propagated matching points that are within the spatial range of 
ROIa, and the average UPP of the consistent set.  

Throughout the process, global context is implicitly taken into consideration. The 
whole process runs iteratively until a global transformation meeting some predefined 
criteria is found, in which case matchings have already been propagated to all 
buildings across the scene, or when the list is exhausted, the system will claim that no 
correspondence could be established. 

5 Experimental Results 

The proposed registration method was tested using aerial images and LiDAR data of 
Atlanta, Baltimore, Denver and Los Angeles. Both real and synthesized data were 
tested. Though most LiDAR data we used are current and of high resolution, some 
(e.g. Los Angeles dataset) are captured years ago with very low resolution and some 
recently built buildings missing from the range data such as the two bottom left 
buildings in figure 7(c). As a local region based approach, our method can robustly 
handle such situation common for historic data.  

Most aerial images we used are captured in early years with low resolution and 
from various sources (e.g. returned from online image search engine) and no 
georeference data can be tracked at all. Others are casually cropped from satellite 
images. Some testing areas are heavily urbanized with a large number of close 
buildings while others have sparsely distributed buildings but a lot of vegetations. To 
focus on different sensors problems in this work, the sides of buildings could be 
visible but should be comparatively small (Details about how our whole 2D-3D 
registration system registers images from nadir views to oblique, e.g. [16], are not 
covered in this paper.). Other than that, we made no assumption about the initial 
alignment. The images may have any in-plane rotation, even upside down. The scale 
difference from aerial image to depth image ranges from 0.3 to 3. Perspective and 
skew distortions could be applied. Concerning location errors, the corresponding 
building might lie on the opposite corner of the image. The inputs data may originally 
have no correspondence. Our method is robust enough to handle those factors 
challenging to general matching and registration system.  

Last, the proposed method had been successfully integrated into two application 
systems for urban rendering and UAV localization respectively. 

5.1 ROI Extraction Results 

Figure 5 and 6 show the color-coded ROI extraction results from aerial and depth 
images, compared with results generated by classical segmentation algorithm [10]. 
Our ROI extraction result meets the particular need of our registration system 
considerably better than others. The returned segmented regions are more focused on 
interest buildings and can provide more accurate dominant external contours.  

For setting parameters, we choose UPP and OFE in rather conservative ways only 
to remove those ROI that are clearly false positives. T_range is dynamically related to 
the current ROI size. We found changing of range_len have no significant impact on 
the segmentation results. Those ROI distinctive from background can robustly be 
obtained unless some unreasonable values are used, while we were not able to find a 
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Fig. 5. ROI extraction results (from aerial images) 

 

Fig. 6. Segmentation comparison. (a) our ROI extraction algorithm; (b) graph-based 
segmentation. 1st row for depth image, 2nd row for aerial image. 

universal value that can possibly help all the rest ambiguous ones. An average of 
more than 80% buildings can be correctly extracted from 3D range data during our 
experiments, while the percentage for correct ROI extraction from aerial images is 
around 60%. Nonetheless, instead of asking for perfect image segmentation, which is 
still not feasible today, we also believe the important thing is “how to make the best 
use of imperfect segmentation results” [8]. In our case, how to establish correct 
matchings at least for parts of the scene and expand the partial results to the rest. 

5.2 2D-3D Registration 

First, for registration accuracy, the final average pixel registration error of our method 
is typically within 5 pixels even for propagated matchings. Methods using high-level 
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features (better suitable for handling different sensors problem) such as curves and 
regions typically don't have an accuracy as high as pixel-based methods (e.g. SIFT 
has sub-pixel level accuracy). That's primarily because of the difficulty of locating 
exact pixel locations inside high-level features due to many challenging factors, e.g. 
in our case the influence of shadows, the segmentation leaking and breaking, etc. 

Second, like other registration and matching systems, the successful registration of 
our system also relies on the existence and acquisition of proper matching primitives. 
In our case, three properly segmented ROI repeated in both 2D image and 3D range 
data sides are sufficient. This requirement could, sometimes, be difficult to meet 
either basically because the lack of such primitives in the scene, in which case even 
human found the registration difficult or impossible, or because such primitives can 
not be accurately acquired through segmentation technique although it "seems" 
obvious to human observers. 

Our test set currently consists of 918 images, averaging over 200 images for urban 
areas of each city. Roughly 60% are real images from diverse sources. Large 
synthesized geometric distortions are applied to those real images to generate the rest. 
Overall, our method achieves around 56% of success rate for the four city's dataset. To 
the best of our knowledge, there is no existing registration method that can achieve 
similar performance without support from positioning hardware. The closest one is: the 

 

Fig. 7. Registration results of our proposed approach. (a) initial correspondences (left: 
normalized depth image; right: input aerial image; middle: aerial image wrapped by the 
recovered transformation); (b) the final results after matching propagation visualized by the 
bounding boxes and centers of all interest regions’ point-to-point correspondences. (c) distorted 
and partially missing inputs due to historic data. (d) results registering oblique views. 



 Automatic Registration of Large-Scale Multi-sensor Datasets 237 

 

Fig. 7. (continued) 

  

Fig. 8. Apply the proposed approach to urban rendering (left) and UAV localization (right) 

system proposed in [5] can directly register 5 camera images out of a test set of 22 
images to ground scanned range data. Both methods are working on 2D-3D 
registration problem without positioning hardware support. 

Concerning efficiency, regardless of offline training our entire registration process 
of one single test for a scene containing around 30 buildings takes roughly one minute 
in a P4 3.4G PC with a peak memory occupation of 35M. 
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6 Conclusion 

This paper presents our automatic 2D-3D registration method. We provide details for 
the aerial image ROI extraction component as well as the region matching. Future 
directions include the propagation of correct registrations to those aerial images that 
failed the initial registration by iteratively expansion and refinement. 
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