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Abstract. Feedback retargeting combines the benefits of two previous
retargeting methods: Bidirectional similarity [1] and Shift-Map [2]. The
first method may have blurry areas due to patch averaging and the latter
can remove entire objects. Feedback retargeting has the sharpness of
shift-map and the completeness of bidirectional similarity, avoiding the
removal of salient objects.

In Shift-Map retargeting the output image is made from segments of
the input image, and this minimizes the forward direction of bidirec-
tional similarity. An iterative feedback procedure is developed to take
care of the backward direction, assuring that the input image can be
reconstructed from the output image. This is done by using Shift-Map
backwards, reconstructing the input image back from the output image.
Areas in the input image that are difficult to reconstruct from the output
image get a feedback priority score. A second Shift-Map retargeting is
then performed, adding this feedback priority to the data term. These
regions now have a higher priority to be included in the output.

After a few iterations of forward retargeting and backward feedback
the retargeted image includes all salient features from the input im-
age. Computational efficiency and image sharpness remain as high as in
ordinary Shift-Map.

1 Image Retargeting Background

Image retargeting algorithms [1–7] take an input imageA and generate an output
image B having new dimensions, mostly having a new aspect ratio (e.g. reducing
image width by two). These algorithms attempt to preserve some of the image’s
important qualities and features, that may be lost or distorted when using simple
scaling or cropping.

The most recognized method for image retargeting is seam-carving [4, 8]. In
this approach continuous seams of pixels are removed from the image in an iter-
ative greedy manner, selecting in each step a seam whose removal will minimize
the error measured by image gradients. Seam-carving methods and also methods
that apply non-homogeneous warping to the image [5, 6, 9] may induce notice-
able distortions even if objects with high gradients are unchanged. Obviously,
some texture or details in the image will have to change their aspect ratio.

Some retargeting approaches [1, 2, 10] are based on algorithms that were
used in the fields of texture synthesis and image completion (see [11–13]). Paper
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[1] introduces a bidirectional similarity formulation. Every patch in the output
image B should have a similar patch in the input image A (“coherence”) and
vice versa: every patch in the input image A should have a similar patch in the
output image B (“completeness”). Shift-Map retargeting [2] has a high coherence
but does not guarantee completeness. An epitome [14] is an example for visual
summarization that imposes no coherence.

The minimization of the bidirectional dissimilarity score in [1] assumes retar-
geting with a small scale change. To obtain any significant scale change, multiple
iterations of small image scaling are performed. Feedback retargeting as proposed
in this paper can perform any scale change, with no need for repetitive small
changes.

Another bidirectional-similarity score was developed by [7]. They combine
several resizing operators (seam-carving, cropping, and scaling), and find an
optimal combination that minimizes that score. Their work was followed by the
work of [15], which use a similar technique to minimize a similarity score based
on the formulation in [1] and on dominant color descriptors.

2 Shift-Map

Following [2, 16, 17], we define the relationship between the pixels in the output
image R(u, v) to pixels in the source image I(x, y) by a shift-map M(u, v) =
(tx, ty). The pixel R(u, v) in the output image will be derived from the source
pixel I(u + tx, v + ty). The optimal shift-map is defined using graph labeling,
where the nodes are the pixels of the output image, and each output pixel is
labeled by a shift t = (tx, ty). The optimal shift-map M minimizes the following
cost function:

E(M) = α
∑

p∈R

Ed(p,M(p)) +
∑

(p,q)∈N

Es(p, q,M(p),M(q)). (1)

Es is a smoothness term defined over neighboring pixels N in section 2.1. The
data term Ed depends on whether the shift-map is forward or backward:

1. Forward direction, when retargeting the input image A to a smaller version
B. In this direction we use Ed,ret (Eq. 3 and Eq. 7). The role of α in that
case, and the value that was used will be discussed in Sec. 4.

2. Backward feedback stage, when trying to reconstruct the input image A from
the reduced image B. In this direction we use Ed,sim (Eq. 4), and an α value
of 1.

Once the graph is given, shift-map labeling is computed using the alpha-expansion
algorithm [18–20]. As in [2] a hierarchical pyramid scheme is used to speed up
the optimization.

Assignment of new locations to pixels using a similar energy minimization
scheme was done in the texture-synthesis application of [11], and formulating
image synthesis problems as a graph labeling problem was done by [2, 16, 17].
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We follow [16] in using a heuristic adaptation of the alpha-expansion algorithm
for smoothness costs where the triangle inequality is not guaranteed (Eq. 2).
Video retargeting using shift-map is described in [21].

2.1 The Smoothness Term

The smoothness term Es is identical to the one used in [2], and is based on
the formulation in [22]. The smoothness term represents discontinuities added
to the output image by discontinuities in the shift-map. The smoothness term
should reflect, for each of the two neighboring output pixels, how different the
value of its output neighbor is from the value of its input neighbor, as well as
the difference of the output-neighbor gradient from the input-neighbor gradient.
The smoothness term between two neighboring locations p and q in the output
image R, having shift-maps r = M(p) and t = M(q), is defined as follows:

Es(p, q, r, t) = ‖I(p+ r)− I(p+ t)‖2 + ‖I(q + r)− I(q + t)‖2 + (2)

βs( ‖�I(p+ r) −�I(p+ t)‖2 + ‖�I(q + r)−�I(q + t)‖2).
we used a value of βs = 2, and as in [2] the squared norm is used over RGB
values.

2.2 Image Retargeting

In horizontal image retargeting, horizontal monotonicity is often required. I.e.,
if M(u, v) = (tx, ty) and M(u + 1, v) = (t′x, t

′
y), than t′x ≥ tx. This constraint

assures that input objects are not duplicated in the output, and that the left-right
relationship between objects will be maintained. In Shift-Map [2] this constraint
is imposed through the smoothness term, giving a large penalty if t′x < tx.

The priority of input pixels to appear in the output image can be controlled
using the data term as follows:

Ed,ret((u, v), (tx, ty)) = D(u+ tx, v + ty), (3)

where D(x, y) is a value between 0 to 1 given to each input location (x, y). The
higher the value of D(x, y), the smaller are the chances to include the pixel at
input location (x, y) in the output image.

2.3 A New Shift-Map Application: Similarity Guided Composition

Shift-Map can be used for the composition of an output image R(x, y) from
segments taken from a source image I(x, y) while requiring that the resulting
image R(x, y) will be similar to a given target image T (x, y). This is done by
using the data term Ed,sim:

Ed,sim(p, t) = ‖R(p)− T (p)‖2 = ‖I(p+ t)− T (p)‖2 (4)
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This data term is defined for every output pixel location p = (u, v) and for every
candidate shift-value t = (tx, ty).

While similarity guided composition can be used to create very interesting
visual effects, these will not be addressed here. In feedback retargeting only the
following question is important: “how hard is it to reconstruct the target image T
from pieces of an image I”. The output image R itself is not used in retargeting.
The next section will describe how to extract this information from the optimal
shift-map.

3 Composition Score

After performing similarity guided composition and assigning shift-map labels
to all output pixels, values of the data term (Eq. 4) and the smoothness term
(Eq. 2) indicate how difficult it was to compose the target image T from pieces
of the source image I. This indicates features in the target image that did not
appear in the source image.

For an ordered pair of images 〈T, I〉, an optimal shift-mapM will be computed
to construct the target image T from the source image I. This will be done as
described in Sec. 2 for similarity guided composition. Once the optimal shift-
map has been computed, A composition score indicates for every image location
p ∈ T how hard it is to build its neighborhood from the source image I. This
composition score is defined as follows:

E〈T |I〉(p) = αEd(p,M(p)) + Es,mean(p,M), (5)

where Ed is the data term as defined in Eq. 4, and Es,mean(p,M) is the average
smoothness term Es (Eq. 2) between a pixel p and its neighbors:

Es,mean(p) =
1

4

∑

q∈N(p)

Es(p, q,M(p),M(q)).

The composition-energy for the entire image is defined as

E(T |I) =
∑

p∈T

E〈T |I〉(p), (6)

and is equal to the value of E(M) in Eq. 1.
It may be relevant to compare this score to the score used in [23], as both

answer the abstract question: “How difficult is it to compose a signal S1 from the
signal S2”. The two algorithmic frameworks are designed for different tasks, and
our score does not use SIFT descriptors nor an exhaustive search. In addition,
our score is flexible enough to match patches of different sizes and shapes due
to the use of similarity guided shift-map composition.

We get back to the retargeting of an input image A to a smaller output image
B, and to the issue of similarity. Terms used in previous papers are also used here:
“coherence” will indicate the ease of constructing the output B from the input
A, and will be inversely proportional to the global composition energy E(B|A).



Feedback Retargeting 149

(a) (b) (c)
Retargeted Construction of the source from

output the output using similarity
guided composition.

Fig. 1. Iterations of feedback retargeting, reducing the width of an image by 2.
Top Row: (a) The source image A. (b) The initial output B0 using Shift-Map retar-
geting, when data term is set to zero everywhere except the left and right columns. The
fish disappeared. (c) Backward reconstruction of the input A from B0 using similarity
guided composition. The fish is poorly restored (best visible in color).
Middle Row: (a) The feedback score C1 corresponding to regions in the input A
that are poorly restored from B0. High values are given to the fish area. (b) Shift-Map
retargeting of the input A to B1, this time using an updated data-term with the feed-
back values C1. The fish returned! (c) Backward reconstruction of the input A from
B1 using similarity guided composition. This reconstruction is much better than the
first attempt.
Bottom Row: The last iteration. (a) The cumulative feedback C2 from the first two
iterations. (b) Shift-Map retargeting to B2 using the updated data-term. (c) The last
and best Backward reconstruction of the input A from the retargeted image B2.
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“Completeness” will indicate the ease of constructing the input A from the
output B, and will be inversely proportional to E(A|B) . Shift-Map retargeting
[2] creates, by definition, a “coherent” output B.

In the bidirectional similarity work of [1], coherence and completeness are
modeled slightly differently. In their work, the penalty for each rectangular patch
(in different scales) equals to the SSD with its nearest neighbor in the other
image. The global score adds up the scores of all patches. A similar formulation
to [1] was used in [24] in the field of texture transfer.

In feedback retargeting we use Shift-Map [2] to reduce either the width or
the height of the image. Shift-Map retargeting minimizes the value of E(B|A)
with respect to a constraint given by the data-term Ed,ret. In [2], the data term
included maintaining the borders and perhaps a user-given saliency. Complete-
ness, however, is not guaranteed by the original Shift-Map retargeting method.
To improve completeness, feedback retargeting uses the data-term mechanism:
input regions with lower value of D(x, y) (Eq. 3) are more likely to appear in the
output image. We propose to determine the value of D(x, y) of an input pixel
p = (x, y) from the composition score for that pixel E〈A|B〉(p).

4 Feedback Retargeting

Input regions with a high composition score E〈A|B〉 indicate that these input
regions cannot be reconstructed accurately and easily from the output image B.
If we decrease the value of D(x, y) in Eq. 3 for pixels in these input regions,
and recompute again the output B using Shift-Map, we increase the likelihood
that components from these regions will appear in the output, increasing the
completeness. The iterative feedback retargeting algorithm, creating a retargeted
image having bidirectional similarity, is as follows:

In each iteration we use Shift-Map retargeting to compute the retargeting re-
sult B from the input image A using the updated data-term. In the first iteration
D(x, y) is set to zero for all input pixels, and it is possible that important fea-
tures of the input image will disappear in the initial retargeted image. Given the
retargeted image B, the composition score E〈A|B〉 is computed using similarity
guided composition as described in sections 2.3 and 3.

The composition score computed during the similarity guided composition is
used as a feedback to improve the data term in the following way:

D(x, y) = e−C(x,y) (7)

where C(x, y) is a cumulative feedback, summing the feedback E〈A|B〉(x, y)
from all previous iterations. We do not know which weight to use when adding
E〈A|B〉(x, y) to the cumulative feedback C(x, y) in a way that will maximize
completeness. We therefore search through a decreasing sequence of weights as
follows, until we reach the first weight which reduces the global composition
energy E(A|B) therefore improves completeness.

Ctemp(x, y) = C(x, y) +
E〈A|B〉(x, y)

γ2k
. (8)
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(a) (b)

(c) (d)

Fig. 2. Reducing width by 50%: (a) Source image. (b) Initial Shift-Map retargeting. (c)
Intermediate result does not reduce the composition energy E(A|B). (d) Final result
with lower composition energy.

We use γ = 0.05, and the value of k is determined by searching k = 0, 1, 2, . . ..
Each k gives a candidate feedback Ctemp computed by Eq. 8.

As mentioned before, we increase k until we reach the first value of k which
reduces the global composition energy E(A|B) (Eq. 6). In order to compute that
value, retargeting of A to B, and reconstruction of B from A, are performed for
each step of the search. An example with intermediate results of this process is
shown in Fig. 2. Once an improved composition energy E(A|B) is obtained, we
update the value of C to this of Ctemp, and iterations continue. This is a common
way to perform gradient descent: A step in the direction of the gradient is tested;
If the value of function is decreased the step is taken, and minimization continues,
otherwise the step is not taken and a smaller step is tested.

Convergence is obtained after 2-3 iterations, once the improvement in the
composition score is smaller than a given threshold. In each iteration we start
with an initial value of k that was used in the previous iteration so we have
about 6 calls for each of the shift-map optimization routines (retargeting or
composition). The algorithm is demonstrated in Fig. 1.

To accelerate performance, the composition score E〈A|B〉 can first be com-
puted on a downscaled version of the images. Then the composition map can
be either magnified to the original resolution using bilinear interpolation, or the
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Fig. 3. Feedback retargeting without border constraints: For every test image we show
(from left to right): The input image, the result of [2] and our final output image.

hierarchical scheme of [2] can be used. Fig. 4 shows the difference between the
two schemes. The synthesis itself is fine in both schemes, as the retargeting step is
left the same, but the sensitivity to unique fine details increases. A compromise
can obviously be made between the two schemes by performing optimization
only on some of the levels of the pyramid. As for the Shift-Map retargeting step,
one or two pyramid levels were used when the images were large. Horizontal
shift-map is inherently faster due to a smaller number of allowed shifts. This
makes the total running time only a few minutes.

Even though the value of C determines the priority of input pixels, it should
not be confused with “saliency” or “importance” of the regions of the input
image A. When an important feature is not removed by Shift-Map retargeting,
it can have a low value of C.

As in the original shift-map algorithm, an infinite penalty was added if either
the left-most or right-most column were not mapped to the new border loca-
tion. Feedback retargeting works well also without this border constraint. Now
that the values of D(x, y) are not uniform, removing this constraint will not re-
sult in an under-determined problem. Practically, this means that pixels can be
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(a) (b)

(c) (d) (e) (f)

(g) (h) (i)

Fig. 4. Comparing coarse and fine feedbacks.
Fish: (a) Source image. (b) Initial retargeting (i.e., result of [2]). (c) Coarse Feedback.
(d) Retargeted output using the coarse feedback (second iteration). (e) Feedback com-
puted using the hierarchical scheme of [2]. (f) Retargeted output using this feedback.
In this case a finer feedback does not improve the result.
Man and Cow: (g) Source image. (h) Final result using coarse feedback. (i) Final
result using a finer feedback. The sensitivity to fine details is increased.

removed from the boundaries of the image as long as they does not increase the
value of E(A|B). But unlike the crop operator, we do not restrict pixels from
the boundaries to be removed as entire columns. Fig. 3 shows results of this
retargeting strategy. As it can be seen, in some cases most of the pixels removed
were from the left and right boundaries, and in other cases most of the pixels
removed were from the interior of the image.

The use of a negative exponent in Eq. 7 limits the data-term value to be
between 0 and 1. This serves well our intentions, as we do not want the gradient
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Simakov et. al [1] Shift-Map[2] Feedback Retargeting

Fig. 5. Comparison of Feedback retargeting with the Image-Summarization of [1].
Input image (same as in Fig. 4.g) and result of their method were taken from their
article. Feedback retargeting does not suffer from blur caused by patch averaging.

descent technique to lead us to put too much weight on completeness. We also
do not want to sacrifice coherence for completeness, but to make sure a certain
amount of coherence will always be implied. The balance between the two can
be controlled by the value of α in Eq. 1 in the forward retargeting stage. In our
specific implementation we have used a value of α = 0.02, and it worked well for
most of our test images. But this value can be changed if the result should be
more complete or coherent.

5 Comparison and Conclusion

Feedback retargeting combines the low level qualities of shift-map retargeting
with the bidirectional similarity property [1]. As can be seen in Fig. 5, the result
of [1] suffers from blurring caused by voting techniques, and possible distortions
caused by repeated gradual resizing. Shift-Map retargeting does not capture the
entire content of the input image. Feedback retargeting benefits from the best
of both worlds, producing a good retargeting without blurring or distortions.
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