

J.J. Park et al. (Eds.): NPC 2012, LNCS 7513, pp. 208–216, 2012.
© IFIP International Federation for Information Processing 2012

MAP-numa：Access Patterns Used to Characterize
the NUMA Memory Access Optimization

Techniques and Algorithms

Qiuming Luo1,2, Chenjian Liu2, Chang Kong2, and Ye Cai1,2,3,*

1 National High Performance Computing Center (NHPCC), Shenzhen, China
2 College of Computer Science and Software Engineering, Shenzhen University, China
3 State Key Laboratory of Computer Architecture, Institute of Computing Technology,

Chinese Academy of Sciences, Beijing, China
wiselcj@126.com,clarkong89@gmail.com,

{lqm@szu,caiye}@szu.edu.cn

Abstract. Some typical memory access patterns are provided and programmed
in C, which can be used as benchmark to characterize the various techniques
and algorithms aim to improve the performance of NUMA memory access.
These access patterns, called MAP-numa (Memory Access Patterns for
NUMA), currently include three classes, whose working data sets are corres-
ponding to 1-dimension array, 2-dimension matrix and 3-dimension cube. It is
dedicated for NUMA memory access optimization other than measuring the
memory bandwidth and latency. MAP-numa is an alternative to those exist
benchmarks such as STREAM, pChase, etc. It is used to verify the optimiza-
tions’ (made automatically/manually to source code/executive binary) capaci-
ties by investigating what locality leakage can be remedied. Some experiment
results are shown, which give an example of using MAP-numa to evaluate some
optimizations based on Oprofile sampling.

Keywords: Memory Access Patterns, NUMA, Benchmark, Oprofile.

1 Introduction

NUMA has been the source of performance problems for high performance compu-
ting on large scale distributed shared memory platforms for years. In these systems a
processer core can access nearby memory faster than remote memory. To maximize
the aggregate memory bandwidth all processes must simultaneously access data from
their own local memory location. It means that multithreaded codes in NUMA plat-
form should sustain sufficient locality of memory access and minimize access to
remote data to obtain a high performance.

The importance of the data locality is well documented [1][2][3][4] and there are
some OS-provided NUMA APIs to control it [5][6][7][8]. Linux traditionally
had ways to bind threads to specific CPUs/Cores and NUMA API extends that to

*Corresponding author.

 Access Patterns Used to Characterize the NUMA Memory 209

allow programs to specify on which node memory should be allocated. Some more
complicated APIs are based on these basic policies, such as MAi [7] and MaMI [9].It
is not an easy task to apply these API because it is much difficult to find the commu-
nication pattern in shared memory platform than message passing platform, because it
is implicit and occurs through the memory accesses. Recently, some tools are availa-
ble to guide a program developer on where to judiciously apply these API within
a large parallel code [10][11][12]. But it is still a hard problem to find the best map-
ping of the access patterns, which is considered NP-Hard [13]. [12] used a heuristic
algorithm to map threads and data on the machine based on the Edmonds matching
algorithm [14]. [18] presents a strategy which used the Dual Recursive Bipartition
algorithm for process placement to reduce communication time of parallel applica-
tions that have a steady communication pattern on clusters of multi-core machines.
[19] introduced the Locality-Aware Mapping Algorithm (LAMA) for distributing
individual processes of a parallel application across the processing resources in an
HPC system paying particular attention to on-node hardware topologies and memory
locality.

But all those works are using the traditional test tools or benchmarks to evaluate
their efforts. To our best knowledge, there are no benchmark dedicate to validate the
various optimizations for memory access on NUMA platform. How to qualify and
characterize an optimization technology or algorithm is still need further study. One
benchmark that can tell how the memory locality leakage can be remedied by an
optimization would be the answer. And this benchmark should be an abstraction of
typical applications which is architecture independent. This is the motivation of
MAP-numa (Memory Access Patterns for NUMA, short for MAP).

The rest of the paper is organized as follows. In section 2, we discuss related work.
Section 3 focuses on MAP and the memory access patterns. In section 4 we present an
application example of MAP in a NUMA optimization based on memory traces (ob-
tained via Oprofile). Finally in section 5 the conclusion is drawn and some future
work is discussed.

2 Related Work

There exist plenty of researches that focus on NUMA memory access optimization.
They can be classified into three categories if the verification method is considered.
Some of them use well-known benchmarks for high performance computing, some
use a particular application, and some other use memory benchmarks.

Memphis [11] evaluated its effectiveness by applying the NPB (NAS Parallel
Benchmarks), HYCOM (a production ocean modeling application), XGC1 (a produc-
tion Fortran90 particle-in-cell code that models several aspects of plasmas in a toka-
mak thermonuclear fusion reactor) and CAM (the Community Atmosphere Model).
MAi [7] used two kernels (FFT and CG) from NPB and ICTM [15]. SPLASH2,
PARSEC and Advention (a part of the Brazilian Regional Atmosphere Modeling
System) were used in [13]. NPB is also used in [12][16][17]. They measured the run-
time before and after the optimization with the well known scientific benchmarks to
demonstrate their effectiveness.

210 Q. Luo et al.

The second category use particular applications other than using benchmarks.
Gaussian computational chemistry code is used in [10]. H.264 video encoding code is
used in [17]. Essentially, they are similar to the first category.

The last category try to setup some memory testing code customized to NUMA
characteristic. ForestGOMP [9] made some modification to STREAM benchmark.
STREAM measures sustainable memory bandwidth and the corresponding computa-
tion rate for simple vectors. The first modification is called nested-STREAM, which
creates the threads by two steps. The threads in outer parallelism create a team of
threads in inner parallelism. Each team works on its own set of STREAM vectors.
The other modification is called twisted-STREAM. It contains two distinct phases.
The first one behaves exactly as nested-STREAM. During the second phase, each
team works on a different data set instead the one it was given in the first phase. Fo-
restGOMP also considered the irregular applications with imbalanced parallelism and
derived a modified version call imbalanced-STREAM.

Using the well known high performance computing benchmarks can demonstrate
the effectiveness of various optimizations to sustaining the memory locality on
NUMA. And so do those particular applications. But it cannot give us more details
about how and what the optimization really contributes, except the reduction of run-
ning time. Nested-STREAM, twisted-STREAM and imblanced-STREAM reveal
some more details about how and what ForestGOMP help to improve the memory
performance in these three different circumstances. Keeping that idea in mind, we are
trying to figure out one set of code that can help to understand characteristics of vari-
ous optimization techniques and algorithms.

3 MAP-numa

MAP is designed under some guide lines or objectives. First of all, it should represent
the typical memory access patterns used in today’s high performance computing, or it
will be useless. Secondly, it should cover a wide range of applications. The third
objective is to be capable of revealing different kinds of potential memory locality
leakages, and to be able to characterize an optimization in various aspects. The forth
objective is to achieve platform independence. And the last one is to limit the use of
cache, or the NUMA effect will be conceal under the enormous cache hits.

3.1 Data Set and Thread Affinity

Most computing programs used 1D array, 2D matrix (2D array) or 3D cubic (3D array)
as their work data set. MAP uses those types of data sets too. But what is more important
is the relationship between the computing threads and the data subset they access.

The first type of data set used by MAP is 1D array and the access patterns include
shared, divided, interleaved and partial shared. Fig.1-(a) stands for the shared case,
where all the threads share the entire array equally. The access sequence can be seria-
lized of randomized. Fig.1-(b) stands for the divided case, where each thread accesses
the dedicated memory zone separately. Fig.1-(c) stands for the interleaved case,
where each thread accesses the entire memory area in an interleaved pattern. Fig.1-(d)

 Access Patterns Used to Characterize the NUMA Memory 211

stands for the case between shared and divided, each thread accesses its dedicated
memory and shares a portion of it with its neighbor. These access patterns should
have cover most applications that using 1D array as their working data set.

Fig. 1. Data sets in MAP

For 2D matrix cases, the data set can be accessed in more patterns. If it is shared,
the access sequence may be scanning in horizontally or vertically, or randomly. As for
divided cases, it can be divided in horizontal, in vertical or in 2D mesh. All the pat-
terns are drawn in Fig. 1-(e)~(i). The 3D array in MAP is accessed in three fashions
shown as Fig. 1-(j)~(l).

The STREAM benchmark uses four types of operations (COPY: a(i) = b(i),
SCALE : a(i) = q*b(i) SCALE : a(i) = q*b(i), SUM : a(i) = b(i) + c(i) and TRIAD :

Thread Thread Thread Thread

Thread Thread Thread Thread

(a)

(b)

(c)

Thread Thread Thread Thread

(d)

Thread Thread Thread Thread

Thread Thread Thread Thread

(e) (f)

(g) (h)

(i)

(k)

(l)

(j)

212 Q. Luo et al.

a(i) = b(i) + q*c(i)).While in MAP, the emphasis is NUMA memory access and the
arithmetic operation should be eliminated. The basic operations (read, write and
read/write) are chosen to perform without any arithmetic operations.

In order to achieve the objective of architecture independence, no architecture infor-
mation is adopted in MAP. When programming MAP in C, it is completely based on
the concept of one shared memory platform, and let the OS and compiler to handle the
thread binding and data allocating. In order to eliminate the cache influence, each data
element of the data set accessed by each thread is as big as one cache line. Each element
in the array is padded by some blank field to make it long enough to occupy one cache
line. Currently, MAP has two versions, which are programmed using pthreads library
API and OpenMP directives respectively. The later one, OpenMP directive code, would
be compiled by GCC with pthreads library or other thread library.

4 Application Example

An application example is provided in this section to demonstrate the value of MAP.
Some optimizations are applied to MAP and the physical patterns are captured for
evaluation.

4.1 The NUMA Hardware Platform

An HP 32-core NUMA platform is used as the test bed. Each 4 cores consists one
memory node. 8 NUMA nodes are connected by HT. There are three different NUMA
factors (relative latency values), 10 stands for native one, 16 and 22 stand for remove
latency values.

4.2 The Tuning Steps Based on Oprofile

In this example, the optimization adopts the memory trace scheme similar to [10][13].
By analyzing the memory trace, physical patterns (contrast to the logical access
patterns) can be drawn and represented in memory access matrix or communication
matrix [16].

Fig. 2. The optimization steps

 Access Patterns Used to Characterize the NUMA Memory 213

On AMD Opteron, with the Instruction-Based-Sampling (IBS)[20], it can provide
the following information for sampled instructions that load data or store data.

 The precise program counter of the instruction.
 The virtual address of the data referenced by the instruction.
 The physical address of the data referenced by the instruction.

Only the samples with correct TID are kept and analyzed. Then they are classified
into load and write categories. They are further labeled by node number according
their physical address. The communication matrix is generated by accumulating the
item with same source node and target node. The whole process is shown by Fig.2.

4.3 The Experiment Results

Three optimization methods, Linux NUMA API functions, numactl command-line
tools and rewriting the source code manually, are applied to MAP’s 1D data set to

1D-sh . R / def 1D-sh R / CL 1D-sh R / API 1D-sh W / def 1D-sh W / CL

 1D-sh W / API 1D-div R / def 1D-div R / CL 1D-div R / API 1D-div W / def

 1D-div W/ CL 1D-div W / API 1D-int R / def 1D-int R / CL 1D-int R / API

 1D-int R / M 1D-int W / def 1D-int W / CL 1D-int W / API 1D-int W / M

Fig. 3. Communication matrices of MAP-numa before and after the optimizations (1D stands
for 1D data set, sh/div/int stand for shared/divided/interleave, R/W stands for read or write,
def/CL/API/M stand for default/command line tools/NUMA API functions/Manually rewrite)

214 Q. Luo et al.

make comparison. The following communication matrices (vertical axis represents
the nodes ID that issue the accesses and the horizontal axis represents the accessed
nodes ID, the darker means more accesses) are obtained by Oprofile sampling.

For 1D shared pattern (Fig.1-a), OS allocates the data without particular policy and
with influence from other processes’ memory allocation (Fig. 3, 1D-sh R/def and 1D-
sh W/def). Because the allocation tends to take place in one node, the communication
matrix is focus on one (or a few) node. While applying numactl command-line tools
(with --interleave option) to binary executable file or NUMA API functions into
source file, the matrix become more flattened(Fig3, 1D-sh R/CL, 1D-sh W/CL, 1D-sh
R/API and 1D-sh W/API). For 1D divided pattern (Fig.1-b), the default matrix (Fig.
3, 1D-div R/def and 1D-div W/def) still focus on one (or a few) node. Using numactl
command-line tools (with --interleave option) can make the matrix more flattened
(Fig.3 1D-div R/CL and 1D-div R/CL). By adding NUMA API functions into source
code, the matrix can be diagonalized (Fig.3 1D-div R/API and 1D-div R/API), which
means no memory locality leakage. For 1D interleaved pattern (Fig.1-c), default
allocation remains. But this time, API functions have the same result as numactl
command-line tools. They both flatten the matrix. If manually modify the code and
applying NUMA API functions, a diagonal matrix can be obtained (Fig.3 1D-int R/M
and 1D-int W/M). Fig. 4 give the execution time of all the cases mentioned above,
which make the effectiveness of these optimization obvious.

(a) 1D-shared (b) 1D-divied (c) 1D-interleaved

Fig. 4. Execution time of default/CL/API/M methods on MAP’s 1D data set

5 Discussion and Conclusion

From the experiment results, we can distinguish the abilities of different optimization
methods. The OS tends to allocate memory on one node and then move to another
node, which will give rise to the memory contention and become a bandwidth bottle-
neck. The numactl command-line tools can deal with 1D-shared and 1D-divided (not
perfectly), but fail to handle 1D-interleaved and multi-patterns cases. NUMA API can
handle 1D-shared, 1D-divided and multi-patterns. If source code can be rewritten
manually, all the patterns can be handled nicely.

The change of the matrices (physical patterns) reveals the remedy of locality lea-
kage. If a matrix with large number focus on one or a few columns was converted to a
more flat matrix, which means the potential memory bandwidth bottleneck is re-
moved. If a matrix with large number focus on one or a few rows was converted to a
more flat matrix, which means the threads are distribute to more nodes and improving

 Access Patterns Used to Characterize the NUMA Memory 215

the parallelism. If an evenly distributed matrix is converted to a diagonalized matrix,
it means the best placement is achieved where there is no remote memory access.

So, we used table 1 to summarize their ability. It is hard to compare two optimiza-
tions, if they are only applied to one particular application. Instead, MAP consists of
various typical access patterns and is able to verify whether (and what) locality lea-
kages can be remedied by an optimization method. Actually, Table 1 can have more
details if all the patterns are applied.

Table 1. Abilities of nuamctl, NUMA API and rewrite manually methods

 default numactl NUMA API rewrite manually

1D-shared × √ √ √

1D-divided × √ √ √

1D-interleaved × × × √

multi-patterns × × √ √

MAP is applicable to the source code methods as well as the methods modify bi-

nary executable file. The optimizations made by manually coding, or with the help
of compiler, don’t make any difference when being evaluated. So MAP is good start
point of a general purpose benchmark to evaluate all kinds of optimizations.
As future work, we intend to profile some real world parallel applications to get the

memory access patterns ,which are contained by our MAP access patterns. Further
more, we can use the proper way described in Table 1 to optimize the applications.

Acknowledgements. This work was supported by the project (NO.
2011A090100037) funded by Guangdong Province and Chinese Academy of
Sciences, and the project funded by State Key Laboratory of Computer Architec-
ture, ICT,CAS.

References

1. Zhang, X., Qin, X.: Performance Prediction and Evaluation of Parallel Processing on a
NUMA Multiprocessor. IEEE Trans. Software Eng. 17(10), 1059–1068 (1991)

2. LaRowe Jr., R.P., Ellis, C.S., Holliday, M.A.: Evaluation of NUMA Memory Management
Through Modeling and Measurements. IEEE Transactions on Parallel and Distributed Sys-
tems, 686–701 (1992)

3. Brecht, T.B.: On the importance of parallel application placement in NUMA multiproces-
sors. In: Proc. of SEDMS IV, Symposium on Experiences with Distributed and Multipro-
cessor Systems, pp. 1–18. USENIX Association (1993)

4. Holliday, M.A., Stumm, M.: Performance Evaluation of Hierarchical Ring-Based Shared
Memory Multiprocessors. IEEE Trans. Computers 43(1), 52–67 (1994)

5. Drepper, U.: What every programmer should know about memory (2007),
http://people.redhat.com/drepper/cpumemory.pdf

6. Kleen, A.: A NUMA API for linux. Technical report, Novell Inc., Suse Linux Products
GmbH (2005)

216 Q. Luo et al.

7. Ribeiro, C.P., Méhaut, J.-F., Carissimi, A., Fernandes, L.G.: Memory Affinity for Hierach-
ical Shared Memory Multiprocessors. In: 21st International Symposium on Computer Ar-
chitecture and High Performance Computing, pp. 59–66 (2009)

8. Lameter, C.: Local and remote memory: Memory in a Linux/NUMA system (2006),
ftp://ftp.tlk-l.net/pub/linux/kernel/people/christoph/
pmig/numamemory.pdf

9. Broquedis, F., Furmento, N., Goglin, B., Wacrenier, P., Namyst, R.: ForestGOMP: An Ef-
ficient OpenMP Environment for NUMA Architectures. International Journal of Parallel
Programming (Spring 2010)

10. Yang, R., Antony, J., Rendell, A., Robson, D., Strazdins, P.: Profiling Directed NUMA Op-
timization on Linux System: A Case Study of the Gaussian Computational Chemistry Code.
In: 2011 IEEE International Parallel&Distributed Processing Symposium, pp. 1046–1057
(2011)

11. McCurdy, C., Vetter, J.: Memphis: Finding and Fixing numa-related performance prob-
lems on Multi-core platforms. In: Proceedings of ISPASS, pp. 87–96 (2010)

12. Cruz, E., Pousa, C., Alves, M., Carissimi, A., Navaux, P., Mehaut, J.-F.: Using Memory
Access Traces to Map Threads and Data on Hierarchical Multi-core Platforms. In: 2011
IEEE International Parallel & Distributed Processing Symposium, pp. 551–558 (2011)

13. Diener, M., Madruga, F., Rodrigues, E., Alves, M., Schneider, J., Navaux, P., Heiss, H.U.:
Evaluating thread placement based on memory access patterns for multi-core processors.
In: 2010 12th IEEE International Conference on High Performance Computing and Com-
munications, pp. 491–496 (2010)

14. Osiakwan, C., Akl, S.: The maximum weight perfect matching problem for complete
weighted graphs is in pc. In: Proceedings of the Second IEEE Symposium on Parallel and
Distributed Processing, pp. 880–887 (1990)

15. Castro, M., Fernandes, L.G., Ribeiro, C.P., Méhaut, J.-F., de Aguiar, M.S.: NUMA-ICTM:
A Parallel Version of ICTM Exploiting Memory Placement Strategies for NUMA Ma-
chines. In: PDSEC 2009: Parallel and Distributed Processing Symposium, International,
pp. 1–8 (2009)

16. Cruz, E., Alves, M., Carissimi, A., Navaux, P., Pousa, C., Méhaut, J.-F.: Memory-aware
Thread and Data Mapping for Hierarchical Multi-core Platforms. International Journal of
Networking and Computing, 97–116 (2012)

17. Tudor, M., Teo, Y., See, S.: Understanding Off-Chip Memory Contention of Parallel Pro-
grams in Multicore Systems. In: 2011 International Conference on Parallel Processing,
pp. 602–611 (2011)

18. Rodrigues, E.R., Madruga, F.L., Navaux, P.O.A., Panetta, J.: Multi-core aware process
mapping and its impact on communication overhead of parallel applications. In: ISCC,
pp. 811–817 (2009)

19. Hursey, J., Squyres, J.M., Dontje, T.: Locality-Aware Parallel Process Mapping for Multi-
Core HPC Systems. In: 2011 IEEE International Conference on Cluster Computing,
pp. 527–531 (2011)

20. Drongowski, P.J.: Instruction-Based Sampling: A New Performance Analysis Technique
for AMD Family 10h Processors. Advanced Micro Devices, Inc. (2007)

	MAP-numa：Access Patterns Used to Characterize the NUMA Memory Access Optimization Techniques and Algorithms

	Introduction
	Related Work
	MAP-
	Data Set and Thread Affinity

	Application Example
	The NUMA Hardware Platform
	The Tuning Steps Based on Oprofile
	The Experiment Results

	Discussion and Conclusion
	References

