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Abstract. This paper presents a fast parallel garner algorithm for Chinese re-
mainder theorem. The variables in garner algorithm are divided into public pa-
rameters that are constants for fixed module and private parameters that 
represent random input integers. We design the parallel garner algorithm by 
analyzing the data dependencies of these arithmetic operations for computing 
public variables and private variables. Time complexities and speedup ratios of 
the parallel algorithm and the sequential algorithm are calculated to make the 
quantitative comparison based on our previous work about some fundamental 
parallel algorithms. The performance evaluation shows high efficiency of the 
proposed parallel algorithm compared to the sequential one.   
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1 Introduction 

The Chinese remainder theorem [1], which is creatively put forward by Sun Tzu, an 
ancient Chinese military strategist who composed the brilliant military writing “The 
Art of War”, is a constructive algorithm to find the solution of a positive integer di-
vided by some given divisors. In recent years, this theorem has received considerable 
attention in many modern computer applications, especially in the field of information 
security. There are many scientists dedicated to simplifying and accelerating the oper-
ation of Chinese remainder theorem to reduce the computation complexities in these 
applications. These works about parallelization of Chinese remainder theorem are 
mainly focused on fault-tolerant technology [2,3], binary reverse converter [4-6], 
distributed key distribution scheme [7,8] and fast encryption/decryption of crypto-
graphic algorithm [9-11]. However, there is less deep study on more general parallel 
algorithms concerning multiple-precision integers for Chinese remainder theorem.  

In this paper, we propose a fast parallel garner algorithm concerning basic algebra 
and modular arithmetic operations of multiple-precision integer to increase the  
efficiency of Chinese remainder theorem. The general parallel methods including 
balanced binary tree and prefix computation circuit are chosen to design the proposed 
parallel algorithm based on analyzing the data dependencies of the mathematical  
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operations. This parallel algorithm achieves high speedup and could be applied to 
many types of applications by improving their efficiencies.   

The rest of this paper is organized as follows. Next section introduces the garner 
algorithm and section 3 presents time complexities of several basic arithmetic algo-
rithms. Section 4 proposes the fast parallel garner algorithm. The performance evalua-
tion is presented in section 5. The last section concludes the whole paper and points 
out some future works briefly.  

2 Garner Algorithm 

The following algorithm is the garner algorithm, by means of which can be found the 
solution of variables divided by the given divisors in Chinese remainder theorem. For 
more details about Chinese remainder theorem, please refer to [1]. Product M of the 
dividers mi represents the module in Chinese remainder theorem while sequences 

 map given remainders in different finite field mi.  
 

Garner Algorithm   
Input: positive integer , for , 

 .  
Output: integer x.   
1. for i from 2 to t, repeat: 
   1.1 . 
   1.2 for j from 1 to , repeat:  
        . 
2. .  
3. for i from 2 to t, repeat:  

. 

4. return (x).   

3 Time Complexities of Basic Algorithms 

As depicted in [12], time complexities of basic multiple-precision algorithms are listed 
in Table 1. We set the runtime of single-precision multiplication as the basic measure-
ment unit. Time complexities of multiple-precision addition and deduction are O(1).  

Table 1. Time complexities of basic algorithms 

Operation Parallel Sequential 

Multiplication 2 2( 2) ( 2 )

computation communication

O n s O n s n+ + +
 

 
2( 2 )O n n+  

Barrett reduction 2 2(2 8) (2 4 )

computation communication

O n s O n s n+ + +
 

 
2( 4 5)O n n+ +  

Inversion-
multiplication (3 lg 3 lg ) (2 lg 2 lg )

computation communication

O X P O X P+ + +              
 

 
(4 lg 4 lg )O X P+        
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The meanings of the variables in Table 1 list as follows:  

• n : multiple-precision of operand. 
• s : process number for computing multiplication.  
• X: numerator of inversion-multiplication. 
• P: denominator of inversion-multiplication.  

4 Parallel Garner Algorithm  

This section discusses the proposed parallel garner algorithm for Chinese remainder 
theorem. This algorithm contains three public parameters ( ,  and 

 ) and two private parameters (  and ). The public parameters are fixed 

integers and only need to be computed one time for the same module M, while the 
private ones are used to compute the random number x divided by the given divisors.  

4.1 Parallelization of Inversion 

Inversion 
 
is one particular case of inversion-multiplication, in which the 

dividend is integer 1, and the parallel complexity and sequential complexity could be 
looked up in Table 1. For every  in substep 1.2, 

 
times inversion opera-

tions should be calculated. These inversion operations have no data dependency, which 
means that all of them could be computed simultaneously. Therefore, the parallel run-
time and sequential runtime are  

 . (1) 

 . (2) 

Assume that the word length of the computer we used is k bit, and then total runtime 
lists as follows 

 . (3) 

 . (4) 

4.2 Parallelization of Computing Ci 

In substep 1.2, we could obtain the solution of Ci by computing . 

Then computing Ci is a classical balanced binary tree problem, which is one of the 
general parallel questions. Fig.1 shows one example of computing Ci by using ba-
lanced binary tree. In every layer of the balanced tree, one multiplication and one re-
duction must be executed. The depth of the balanced tree is , so the parallel 
runtime for computing Ci is  



 Fast Parallel Garner Algorithm for Chinese Remainder Theorem 167 

 

 . (5) 

All of public parameters Ci have no data dependency, so they can be parallel calcu-
lated. Then the parallel runtime for computing all Ci is  

 . (6) 

In sequential algorithm,  times multiplications and  times reductions are 
needed. The sequential runtime is   

 . (7) 

Therefore, the sequential runtime for computing all Ci is 

 . (8) 

 

Fig. 1. An example of computing Ci 

4.3 Parallelization of Product of Subset Module 

 is defined as  for clarifying expression of the parallel procedure of this 

series of multiplication operation. We adopt the high-low prefix computation circuit, a 
general parallel method to handle suffix computation problem, to calculate this opera-
tion and Fig.2 shows one example of computing .  

As depicted in Fig.2,  communication time units and  round 
multiplications are required when computing . Along with the 
execution of the high-low prefix computation circuit, the multiple-precision of the 
parameters are doubled. Therefore, the parallel runtime for computing 

 is  

 . (9) 

If the multiple-precisions of two parameters in multiplication are  and  respec-
tively, the sequential time complexity would be . In sequential  
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algorithm of computing , the multiple-precision of  is  

 
and the one of  is . Therefore, the sequential runtime of computing 

 is  

 . (10) 

Then the total sequential runtime for computing  is  

 . (11) 

 

Fig. 2. An example of computing Mt-1  

4.4 Parallelization of Computing Private Variables 

The private variables in garner algorithm concerns only two operations in step 3. De-
grading the multiple-precision of x is helpful to simplify the computation of 

, so one reduction needs to be executed firstly. If  is smaller than 
, one multiple-precision addition would be needed and the probability is 0.5. 

To sum up, this operation consists of 0.5 multiple-precision addition, one multiple-
precision deduction, one multiplication and two reductions. Then the parallel runtime 
and sequential runtime of computing  are 

 . (12) 

 . (13) 

Therefore, the total runtime of this operation for all rounds in this loop are  

 . (14) 

 .  (15) 

In every round of the loop in step 3, the multiple-precision of u and  are  and 
 respectively. The operation  contains one multiplication and 
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one multiple-precision addition. Therefore, the parallel runtime and sequential runtime 
of every round are  

 . (16) 

 . (17) 

The total runtime of this operation are 

. (18) 

 . (19) 

5 Performance Discussion 

This section evaluates the performance of the parallel garner algorithm and sequential 
garner algorithm. In order to analyze the performance of this algorithm, we choose the 
special remainder module in which all given dividers have the same multiple-
precision in garner algorithm. In other words, all ni are equal in this algorithm and we 
assign value na to it. For simplification of performance evaluation, we also assume 
that the value of s is na and that the word length of the computer is 32. Then parallel 
runtime of all operations could be simplified as the following expressions with only 
two variables:  

 . (20) 

 . (21) 

 . (22) 

 . (23) 

 . (24) 

And so are the simplifications of the sequential runtime of all operations:   

 . (25) 

 . (26) 

 . (27) 



170 Y. Li et al. 

 

 

 

The speedup is  

 

We assign the independent
quantitative comparison bet
condition that the communi
showed in Fig.3, the prop
incorporating the parameter
tive performance evaluation
the parameter t varies from
make other assumption of re
tion time unit. The same c
comparison on different con
 

Fig. 3. 

6 Conclusions  

This paper proposes a fast 
theorem, which concerns ba
precision integer, for rapid
divisors. The parallel algor
constants for given module 
named as private variables. 
the same module. Our previ
serves as a simple and con
mance evaluation and the c
rithm achieves remarkable s

The analysis of this paral
formance comparison by c
riables in garner algorithm. 
GPU to verify the validity a
may also focus on the appl

0
10
20
30
40
50
60

5

. (

. (

. (

t parameters ( na and t ) into different values to make 
tween the parallel algorithm and the sequential algorithm
ication time unit is 20 percent of computation time unit.
posed method could significantly accelerate the speed
rs in the subset of Chinese remainder theorem. The quant
n demonstrates acceleration up to 9~55 times speedup wh

m 5 to 11 and parameter na increases from 5 to 40. We a
elationship between communication time unit and compu

conclusion could be derived by analyzing the performa
nditions.  

 

Speedup ratio of parallel garner algorithm  

parallel garner algorithm designed for Chinese remain
asic algebra and modular arithmetic operations of multip

d calculation of a random number divided by some gi
rithm is designed through a separate consideration of 
that is called public variables and random given parame
The public variables only need to be computed one time
ious work about time complexities of some basic operati
nvenient criterion for the proposed algorithm. The per
comparison demonstrate that the fast parallel garner al
speedup.  
llel algorithm is only a theoretical one and it just make p
onsidering different multiple precision integers of the 
We are likely to implement the parallel garner algorithm

and high efficiency of this algorithm. Future research eff
lication of this fast parallel garner algorithm in the field

5
7
9
11

10 15 20 25 30 35 40

50-60

40-50

30-40

20-30

10-20

0-10

(28) 

(29) 

(30) 

the 
m on 
. As 
d of  
tita-
hile 
also 
uta-

ance 

nder 
ple-
iven 
the 

eters 
e for 
ions 
for-
lgo-

per-
va-

m on 
forts 
d of 



 Fast Parallel Garner Algorithm for Chinese Remainder Theorem 171 

 

fault-tolerant technology, binary reverse converter, distributed key distribution scheme, 
fast encryption/decryption, etc.  
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