

J.J. Park et al. (Eds.): NPC 2012, LNCS 7513, pp. 145–155, 2012.
© IFIP International Federation for Information Processing 2012

Small World Asynchronous Parallel Model
for Genome Assembly

Jintao Meng1,2,4, Jianrui Yuan2,3, Jiefeng Cheng2, Yanjie Wei2, and Shengzhong Feng2

1 Institute of Computing Technology, CAS, Beijing, 100190, P.R. China
2 Shenzhen Institutes of Advanced Technology, CAS, Shenzhen, 518055, P.R. China

3 Central South University, Changsha, 410083, P.R. China
4 Graduate University of Chinese Academy of Sciences, Beijing, 100049, China
{jt.meng,jr.yuan,jf.cheng,yj.wei,sz.feng}@siat.ac.cn

Abstract. Large de bruijn graph based algorithm is widely used in genome
assembly and metagenetic assembly. The scale of this kind of graphs - in some
cases billions of vertices and edges - poses challenges to genome assembly
problem. In this paper, a one-step bi-directed graph is used to abstract the
problem of genome assembly. After that small world asynchronous parallel
model (SWAP) is proposed to handle the edge merging operation predefined in
the graph. SWAP aims at making use of the locality of computing and
communication to explore parallelism for graph algorithm. Based on the above
graph abstraction and SWAP model, an assembler is developed, and experiment
results shows that a factor of 20 times speedup is achieved when the number of
processors scales from 10 to 640 when testing on processing C.elegans data.

Keywords: parallel computing, De Bruijn graph, genome assembly.

1 Introduction

Current sequencing technology (Illumina Solexa [1], Applied Biosystems SoLiD[2],
and Helicos Biosciences Heliscope[3]) allows one to read millions of short 35 to 100
nucleotide sequences per hour. Due to experimental errors, gaps, and genomic
repeats, a much higher coverage depth of 50-fold to 300-fold is needed for accurate
assembly. These factors contribute to a 300-fold to 1000-fold increase in the number
of reads, which means there are billions of reads need to be processed, and this
significantly complicate the genome assembly problem.

De Bruijn Assembler based on de-bruijn graph strategy [4,5] is well suitable for the
current generation high throughput short reads assembly. In De Bruijn graph each
vertex represents a length-k substring (k-mer) in a length-L read or its reverse
complement. A directed edge connects two vertex u and v, if the k-1 length suffix of u
is the same as the k-1 length prefix of v. Each input read is a path in the graph. By
connecting such vertex pairs through edges, this approach will output the longest path
without any branches as contigs. We denote the assemblers using De Bruijn graph
strategy as De Bruijn assembler.

146 J. Meng et al.

The first De Bruijn assembler, EULER assembler [5] was proposed by Pevzner,
who had transformed the fragment assembly problem into a variation of the classical
Eulerian path problem by dividing reads into k-mers and then constructing k-mers
into a path graph. This opens new possibilities for repeat resolution and generating
error-free solutions of the large-scale fragment assembly problem. Programs such as
Velvet[6], SOAPdenovo[7], and IDBA[8] implicitly use this framework but are
slightly different in local details. Velvet manipulates these De Bruijn graphs
efficiently to both eliminate errors and resolve repeats by error correction algorithm.
SOAPdenovo implement pre-assembler error correction on human genome assembly,
after this operation the proportion of error free reads was improved from 64% to 70%,
and nearly 60% percent of k-mers was filtered from the graph. IDBA also adopt pre-
assembler error filtering technique, which can save nearly 40-80% of memory
compared with velvet. The second feature of IDBA is that it iterates from small k-mer
to large k-mer to get longer contigs. So the quality of contigs is better than other tools.

The above assemble tools can only run on single machine, the human genome
assembly with current sequencing technology needs about 1TB memory and takes
weeks or even months on single server. The situation will be even worse for larger
genome assembly or meta-genome assembly.

Parallel algorithm for sequencing assembly is an alternative to solve the problem.
Parallel assemblers included ABySS[9] and YAGA[10-12], are both based on De
Bruijn graph strategy. ABySS distributes k-mers to multi-servers to build a distributed
De Bruijn graph, and error removal and vertex merging were implemented over MPI
communication messages. YAGA constructs the distributed bi-directed De Bruijn
graph by maintaining edge tuples in a community of servers. Unanimous chain
compaction problem in YAGA was transformed to undirected list ranking, and then
the authors designed a modified sparse ruling set algorithm for undirected lists. The
computational complexity of YAGA is given by O(n/p) compute time, O(n/p)
communication volume, and O(log2n) communication rounds, where n is the number
of nucleotides in all reads, p denotes the number of processors .

Efficient and scalable frameworks or libraries for distributed graphs are essential to
parallel assembly based on De Bruijn graph. Existing works, such as BSPlib [13-15],
CGMgraph [16], PBGL [17,18], Prejel [19], are based on BSP [20] model. The BSP
model has advantage on simple computation-communication programming model,
whereas the barrel principle exists in the computation-communication phase and the
synchronous phase over large clusters limits the scalability of the model. To our
knowledge, the scalability these implementations under BSP model has not been
evaluated beyond several hundreds of computers [19]. No genome assembly tools
have adapted the BSP library, although YAGA has used the BSP idea in its design on
parallel list ranking algorithm implicitly. Another parallel programming model,
MapReduce [21], has strength in loosely coupled work such as frequency statistics,
sorting, indexing, and machine learning etc, and these works can be easily distributed
to clusters. However graph algorithm is a tight coupled work and dividing one graph
into several meaningful sub-graphs is still a challenging problem.

This paper first demonstrates a one-step bi-directed graph for the problem of
genome assembly. Genome can be recovered by merging semi-extended edges to full-
extended edges. Then small world asynchronous parallel (SWAP) model is proposed

 Small World Asynchronous Parallel Model for Genome Assembly 147

to realize edge merging over a distributed one-step bi-directed graph. Specially, we
implement an assembler using the SWAP model. Given the number of processes p,
the complexity of this problem is reduced to O(n/p) parallel compute time, O(n/p)
communication round, and O(nlog(n)/p) communication volume, here n is total length
of input sequences. Simulation shows that Assembler has a factor of 20 times speedup
when the number of processors scales from 10 to 640.

The rest of the paper is organized as follows: Section 2 abstracts the De Bruijn
graph based genome assembly problem; Section 3 describes the SWAP model for
large scale graphs with small world property, then an assembler, as SWAP’s first
application, is illustrated. Experimental results will be present in section 4. Finally
section 5 concludes this paper.

2 Abstraction of De Bruijn Assembly

Let ls M∈ be a string of length L, where { }, , ,a t c gΜ = . Any substring

[] [1]... [1],s j s j s j kα = + + − 0 1j L k≤ < − + is a k-mer of s. The set of all k-

mers of a given string s is written as (,)s k , here k must be odd. The reverse

complement of a k-mer α , denotes by α′ , is obtained by reversing α and

complementing each base ([] [1]i k iα α′ ′= − +) by the following bijection of

Σ , { }: , , ,a t t a c g g cΣ → → → → . Note that [] []i iα α ′′= and α α′′= .

A k-molecule α̂ is a pair of complementary k-mers { , }α α′ . Let ≥ be the partial

ordering relation among the string of equal length such that α β≥ indicates that the

string α is lexicographically larger than β . We designate the lexicographically

larger of the two complementary k-mers as the positive k-mer, denoted as α + , and

the lexicographically smaller one as the negative k-mer, denoted as α − , here

α α+ −≥ . We choose the positive k-mer α + as the representative k-mer α̂ of the
k-molecule. The set of all k-molecules of a given string s is called the k-spectrum of s
and is written as (,)s k . Noted that (,) (,)s k s k′=  .

The notation su f (a, l) (pre(a, l), respectively) is used to denote the length l suffix
(prefix, respectively) of string a. Let the symbol  denotes the concatenation

operation between two strings, and the number of edges attached to k-molecule α̂ is

denoted as degree(α̂). The number of edges pointing out from k-molecule α̂ is

denoted as ˆdeg ()ree α .

Definition 1. The vertex set Vs is defined as k-spectrum of s,

(,)sV s k=  (1)

Definition 2. The 1-step bi-directed edge set 1
sE is defined as follows:

148 J. Meng et al.

1 1 1 ˆˆ{ (, , , ,) | , (,), (, 1)

(, 1) ([1] ((, 1) (, 1)))}
sE e d d c s k suf k

pre k k s k s k

αβ α β αβα β α β α
β α β

= = ∀ ∈ −
′= − ∧ − ∈ + ∨ +


 

 (2)

Equations (2) declares that any two overlapped k-molecules can be connected with a
1-step bi-directed edge, if they are continuous in sequence s or its complementary.

Here dα is the direction of k-mer α , if α α += , ' 'dα = + , otherwise ' 'dα = − .

Set 1cαβ is initialized with one element [1]kβ − , and 1(,)suf c kαβα β= .

Property 1. Given two k-molecules , (,)s kα β =
  , there will be four possible

connections, and for each type of connection exactly two equivalent 1-step bi-directed
edge exist,

1. 1 1 1 1(, , , ,), (, , , ,)e c e c
α β α β α β α β

α β α β+ + + + − − − −
+ + − −= + + = − − ,

2. 1 1 1 1(, , , ,), (, , , ,)e c e c
α β α β α β α β

α β α β+ − + − − + − +
+ − − += + − = − + ,

3. 1 1 1 1(, , , ,), (, , , ,)e c e c
α β α β α β α β

α β α β− + − + + − + −
− + + −= − + = + − ,

4. 1 1 1 1(, , , ,), (, , , ,)e c e c
α β α β α β α β

α β α β− − − − + + + +
− − + += − − = + + .

In each type of connection, the first bi-directed edge and the second one correspond to
the same bi-directed edge, but in different form. Within a distributed edge
representation situation, the first bi-directed edge in each type will be attached with

k-molecule α , and the second one will be with β


. Figure (1) illustrates four

possible connections and examples of a 1-step bi-directed edge graph.

Fig. 1. The illustration of four possible connections

Definition 3. 1-step bi-directed de bruijn graph of order k for a string s can be:
1 1(s) { , }k s sG V E= (3)

Definition 4. Given two 1-step bi-directed edge 1 1(, , , ,)e d d cαβ α β αβα β= and

1 1(, , , ,)e d d cβγ β γ βγβ γ= , if 1 1. .e d e dαβ β βγ β= and degree(β


)=2, we can get

 Small World Asynchronous Parallel Model for Genome Assembly 149

2-step bi-directed edge 2 2(, , , ,)e d d cαγ α γ αγα γ= by merging 1eαβ and 1eβγ . Here

2 1 1c c cαγ αβ βγ=  . Let the symbol ⊕ denote edge merging operation between two

bi-directed edges attached to one k-molecule, then edge merging operation can be
written as,

2 1 1e e eαγ αβ βγ= ⊕ (4)

 or 2 1 1e e eγα γβ βα= ⊕ (5)

According to property 1, equation (4) and equation (5) correspond to one edge
merging operation. Then z-step bi-directed edge can be defined as:

, , . . ,deg () 2,z x y x ye e e iff e d e d ree z x yαγ αβ βγ αβ β βγ ββ β= ⊕ ∃ = = = +


 (6)

Definition 5. Given an n-step bi-directed edge (, , , ,)m me d d Cαβ α β αβα β= , if k-

moleculeα or β has only one another bi-directed edge (, , , ,)t te d d Cγα γ α γαγ α=

or (, , , ,)t te d d Cβγ β γ βγβ γ= respectively, then meαβ can be extended by teγα or

teβγ , we regard this edge as semi-extended edge, and the corresponding k-molecule

as semi-extended vertex. If meαβ cannot be extended by any edge, we call this edge

a full-extended edge.

Given a set of string or reads 1 2 h{ , , , }S s s s=  , a one-step bi-directed De Bruijn

graph of S with order of k is
11 1

1 1

(S) { , } { , }
i ik S S s s

i h i h

G V E V E
≤ ≤ ≤ ≤

= =   . The key property

of this bi-directed De Bruijn graph 1 (S)kG is that each read can be recovered by

traversing the corresponding path in either direction, concatenating (k-1)-molecule
prefix of the first node and the edge labels on the path. As all input reads of assembler
are derived from chromosomes, each chromosome can now be seen as a long path in
this graph. However because of read errors, and repeats in the sequence, we cannot
expect to see continuity in sampling, our goal is to recover the genome as a large set
of contigs by merging semi-extended edges into full-extended edges.

3 Assembler over SWAP

Vertices in large scale real world graph (such as social network, web link graph, et)
always have limited number of neighbors, little computing work, and constant number
of edges randomly connected to other vertices, this phenomenon is denoted as small
world property. For a given vertex, its small world includes all its edges, neighbors
and itself. Then any computing and communication work of a vertex can be done in
its small world. As long as the work of a vertex on a graph does not interrupt others,
we can run computational work of those vertices in parallel. Here we will present our

150 J. Meng et al.

work on pursuing parallelism in the computation of bi-directed graph for genome
assembly.

Inspirited from CSMA/CA in wireless networks [22], Small World Asynchronous
Parallel model (SWAP) aims to improve parallelism on processing large scale graph
problem with small world property. After having distributed graph over a network of
processors, the main schedule of SWAP can be defined as a combination of following
three steps:

1. Lock operation is applied to each vertex’s small world, which includes itself
and its neighbors.

2. Computation and modification will be performed in each vertex’s small
world..

3. Unlock operation will be triggered after each computation step.

The basic schedule of SWAP is Lock-Computation-Unlock. Because of the locality of
computing and communication in the small world, SWAP model utilizes local
synchronization and global asynchronization mechanism to maximize underline
parallelism for the graph algorithm.

An assembler over SWAP is the first application using SWAP model. In the
following paragraphs we will describe its data structure on distributed de brujin graph,
strategy on error removal, and the edge merging algorithm, respectively.

3.1 Parallel Constuction of Distributed One-Step Bi-directed De Bruijn Graph

1 2 m{ , , , }S s s s=  is m sequences sampled from a genome of length g, the total

length of all these sequence is n. we aim to construct a one-step bi-directed De Bruijn

graph 1 (S)kG with O(n) vertexes and edges distributed among p processors such that

each processor store O(n/p) vertices.
Input sequences can be broken into overlapping k-molecules by sliding a window

of length k along the input sequence. Each processor maintains a hash table to store k-
molecules, and each k-molecule is represented as a base-4 number of its positive k-
mer. Numerical values {0,1,2,3} are assigned to bases {A,C,G,T}. The location of a
given k-molecule can be computed by take the mod of a large prime number and then
take the mod of the number of processors. The large prime number is used to evenly
distribute k-molecules to all processors.

A single k-molecule can have up to eight edges, and each of them corresponds to a
one-base extension, {A, C, G, T} in either direction. The adjacent k-molecule can be
easily generated by adding the base extension in the edge set to the source k-
molecule.

The construction of one-step bidirected De Bruijn graph can be achieved in O(n/p)
parallel compute time, O(1) round of all-to-all communication, and O(n/p) parallel
communication volume.

3.2 Error Removal

Sequencing errors make the assembly problem more complex. To identify errors, we
assume that the errors are random, and they are unlikely to occur twice in the same

 Small World Asynchronous Parallel Model for Genome Assembly 151

base. As each base in the genome is sampled on average as many times as the overage
number, the erroneous k-molecule will have lower frequency compared to the correct
ones. According to this principle, we identify all k-molecules with low frequency as
erroneous k-molecules, and delete all of them from our vertex set of the graph. The
complexity of this step is O(n/p) parallel compute time.

3.3 Edge Merging

One step bidirected graph generated in the previous section will likely have many long
chains, and each corresponds to a sequence that can be unambiguously assembled into
a single contig. We will merge these chains into full-extend edges using Algorithm 1.

A subset of vertices and their associated edges are stored in processor i, and the set

of semi-extended vertices stored in this processor is denoted as iV . We aim to delete

all semi-extended vertices and merge their associated semi-extended edges to form
full-extended edges.

As the bi-directed graph 1 (S)kG is distributed over p processors, each processor

will store a subset of semi-extended k-molecules Vi and the average number of k-
molecules in Vi is O(n/p). Then the expected computational complexity of each
processor on edge merging is given by O(n/p) parallel compute time, O(n/p)
communication round, and O(nlog(n)/p) communication volume.

4 Experimental Results

The assembler is written in C++ and MPI. The hardware and software architecture
supporting this assembler is demonstrated in Fig 2. We use Dawning 5000 as high
performance cluster, which has 40 16-core servers with 32GB memory. The
distributed file system is lustre. All the components are interconnected with
infiniband 20Gbit Router.

152 J. Meng et al.

Fig. 2. Hardware and software architecture of the assembler on SWAP

Perl scripts [23] are used to generate the following two theoretical datasets: 50x
coverage of Yeast chromosomes containing 17 million reads, and 50x coverage of
C.elegans chromosomes containing 141 million reads. The error rate is set to be 1%,
and the length of reads ranges from 36bp to 50bp. The primary goal of this
experiment is to demonstrate the scalability of SWAP model on handling large-scale
graphs using parallel system with distributed memory.

We first test the performance of this assembler on Yeast dataset. The runtime of
assembler is displayed in figure 3, and the time is divided into three phases, Parallel
File I/O, graph building, and edge merging. The first phase is the time spent on
reading dataset from a distributed file system, the second phase is the time used to
construct the one-step bi-directed graph over the cluster, and the last phase is the time
cost on edge merging operations. The run time is dominated by the third phase, where
hundreds of processors are sending messages to lock their neighbors, merging edges,
deleting semi-extended nodes and edges, and unlocking their neighbors. Figure 3
shows that this phase has good scalability. The speedup is about 50 when the number
of processor scales from 10 to 640 and the overall runtime of assembler on Yeast
dataset is reduced by a factor of 30.

The C.elegans dataset is nearly ten times larger than Yeast, and its corresponding
data on time usage is demonstrated in figure 4. In this figure, the time used in parallel

Fig. 3. Time usage analysis in three phase on Yeast dataset

High Performance Cluster

Linux

MPI

SWAP
Parallel File I/OBuilding Bi-directed

Graph Edge Merging

De Bruijn Assembler

C
luster M

onitoring

C
luster C

ontrol

Distributed File System Cluster

 Small World Asynchronous Parallel Model for Genome Assembly 153

Fig. 4. Time usage analysis in three phase on C.elegans dataset

file I/O is very short compared to the other two phases. The graph construction phase
has a decreasing trend on its running time. This phase have a speedup of 35x. This
speedup is slightly smaller than that of the yeast dataset. The total speedup of all three
phases on C.elegans dataset is about 20.

5 Conclusion

In this paper, we abstracted the problem of genome assembly using De Bruijn
strategy. By constructing the one-step bi-directed graph over k-spectrum of input
sequences, the unanimous path compaction problem in generic genome assembly was
transformed to merge semi-extended edges in our bi-directed graph, and the final
contigs are full-extended edges in our method. The proposed SWAP introduced local
synchronization and global asynchronization mechanism to maximize the parallelism
in the graph algorithm. SWAP model applies the Lock-Computation-Unlock scheme
to each vertex’s small world. Based on SWAP model, we developed a De Bruijn
assembler, and simulation results show that when the number of processors scales
from 10 to 640, a factor of 30 and 20 speedup, can be achieved for assembling Yeast
and C.elegans genomes, respectively.

Acknowledgements. This work is supported by NSFC (Grant No. 61103049) and
Shenzhen Research Fund (Grant No.JC201005270342A). The author also thanks
Bingqiang Wang from BGI, and Prof. Francis Y.L. Chin from HKU for their
suggestions on this work.

References

1. Bennet, S.: Solexa ltd. Pharmacogenomics 5(4), 433–438 (2004)
2. Pandey, V., Nutter, R.C., Prediger, E.: Applied Biosystems SOLiDTM System: Ligation-

Based Sequencing. In: Next Generation Genome Sequencing: Towards Personalized
Medicine. Wiley (2008)

154 J. Meng et al.

3. Business Wire, Helicos biosciences enters molecular diagnostics collaboration with
renowned research center to sequence cancer-associated genes. Genetic Engineering and
Biotechnology News (2008)

4. Idury, R.M., Waterman, M.S.: A New Algorithm for DNA Sequence Assembly. Journal of
Computational Biology 2(2), 291–306 (1995)

5. Pevzner, P.A., Tang, H., Waterman, M.S.: An Eulerian path approach to DNA fragment
assembly. Proceedings of the National Academy of Sciences of the United States of
America (PNAS) 98(17), 9748–9753 (2001)

6. Zerbino, D.R., Birney, E.: Velvet: algorithms for de novo short read assembly using De
Bruijn graphs. Genome Research 18(5), 821–829 (2008)

7. Li, R., Zhu, H., Ruan, J., Qian, W., Fang, X., Shi, Z., Li, Y., Li, S., Shan, G., Kristiansen,
K., Li, S., Yang, H., Wang, J., Wang, J.: De novo assembly of human genomes with
massively parallel short read sequencing. Genome Research 20(2), 265–272 (2010)

8. Peng, Y., Leung, H.C.M., Yiu, S.M., Chin, F.Y.L.: IDBA – A Practical Iterative de Bruijn
Graph De Novo Assembler. In: Berger, B. (ed.) RECOMB 2010. LNCS, vol. 6044, pp.
426–440. Springer, Heidelberg (2010)

9. Simpson, J.T., Wong, K., Jackman, S.D., Schein, J.E., et al.: ABySS: a parallel assembler
for short read sequence data. Genome Research 19(6), 1117–1123 (2009)

10. Jackson, B.G., Aluru, S.: Parallel Construction of Bidirected String Graphs for Genome
Assembly. In: Proc. of the 37th International Conference on Parallel Processing (ICPP
2008), pp. 346–353 (September 2008)

11. Jackson, B.G., Schnable, P.S., Aluru, S.: Parallel short sequence assembly of
transcriptomes. BMC Bioinformatics 10(S-1) (2009)

12. Jackson, B.G., Regennitter, M., Yang, X., Schnable, P.S., Aluru, S.: Parallel de novo
assembly of large genomes from high-throughput short reads. In: Proc. of the 24th
International Symposium on Parallel & Distributed Processing (IPDPS 2010), Atlanta
(2010)

13. Miller, R.: A Library for Bulk-Synchronous Parallel Programming. In: Proc. British
Computer Society Parallel Processing Specialist Group Workshop on General Purpose
Parallel Computing (1993)

14. Goudreau, M.W., Lang, K., Rao, S.B., Suel, T., Tsantilas, T.: Portable and Effcient
Parallel Computing Using the BSP Model. IEEE Transactions on Computers 48(7), 670–
689 (1999)

15. Bonorden, O., Juurlink, B.H.H., von Otte, I., Rieping, I.: The Paderborn University BSP
(PUB) Library. Parallel Computing 29(2), 187–207 (2003)

16. Chan, A., Dehne, F.: CGMGRAPH/CGMLIB: Implementing and Testing CGM Graph
Algorithms on PC Clusters and Shared Memory Machines. International Journal of High
Performance Computing Applications 19(1), 81–97 (2005)

17. Gregor, D., Lumsdaine, A.: The Parallel BGL: A Generic Library for Distributed Graph
Computations. In: Proc. of Parallel Object-Oriented Scientific Computing, POOSC (2005)

18. Gregor, D., Lumsdaine, A.: Lifting Sequential Graph Algorithms for Distributed-Memory
Parallel Computation. In: Proc. of the 20th Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications(OOPSLA 2005),
pp. 423–437 (2005)

19. Malewicz, G., Austern, M.H., Bik, A.J.C., Dehnert, J.C., Horn, I., Leiser, N., Czajkowski,
G.: Pregel: a system for large-scale graph processing. In: SIGMOD 2010 Proceedings of
the 2010 International Conference on Management of Data, New York, pp. 135–146
(2010)

 Small World Asynchronous Parallel Model for Genome Assembly 155

20. Valiant, L.G.: A bridging model for parallel computation. Communications of the
ACM 33(8) (August 1990)

21. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
Communications of the ACM - 50th Anniversary Issue: 1958 - 2008 51(1) (2008)

22. Tanenbaum, A.S.: Computer Networks. Prentice Hall, New Jersey (2003)
23. Zhang, W., Chen, J., Yang, Y., Tang, Y., Shang, J., Shen, B.: A practical comparison of de

novo genome assembly software tools for next-generation sequencing technologies. PLoS
ONE 6(3) (March 2011)

	Small World Asynchronous Parallel Model for Genome Assembly

	Introduction
	Abstraction of De Bruijn Assembly
	Assembler over SWAP
	Parallel Constuction of Distributed One-Step Bi-directed De Bruijn Graph
	Error Removal
	Edge Merging

	Experimental Results
	Conclusion
	References

