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Abstract. Large de bruijn graph based algorithm is widely used in genome 
assembly and metagenetic assembly. The scale of this kind of graphs - in some 
cases billions of vertices and edges - poses challenges to genome assembly 
problem. In this paper, a one-step bi-directed graph is used to abstract the 
problem of genome assembly. After that small world asynchronous parallel 
model (SWAP) is proposed to handle the edge merging operation predefined in 
the graph. SWAP aims at making use of the locality of computing and 
communication to explore parallelism for graph algorithm. Based on the above 
graph abstraction and SWAP model, an assembler is developed, and experiment 
results shows that a factor of 20 times speedup is achieved when the number of 
processors scales from 10 to 640 when testing on processing C.elegans data. 
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1 Introduction 

Current sequencing technology (Illumina Solexa [1], Applied Biosystems SoLiD[2], 
and Helicos Biosciences Heliscope[3]) allows one to read millions of short 35 to 100 
nucleotide sequences per hour. Due to experimental errors, gaps, and genomic 
repeats, a much higher coverage depth of 50-fold to 300-fold is needed for accurate 
assembly. These factors contribute to a 300-fold to 1000-fold increase in the number 
of reads, which means there are billions of reads need to be processed, and this 
significantly complicate the genome assembly problem.  

De Bruijn Assembler based on de-bruijn graph strategy [4,5] is well suitable for the 
current generation high throughput short reads assembly. In De Bruijn graph each 
vertex represents a length-k substring (k-mer) in a length-L read or its reverse 
complement. A directed edge connects two vertex u and v, if the k-1 length suffix of u 
is the same as the k-1 length prefix of v. Each input read is a path in the graph. By 
connecting such vertex pairs through edges, this approach will output the longest path 
without any branches as contigs. We denote the assemblers using De Bruijn graph 
strategy as De Bruijn assembler. 
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The first De Bruijn assembler, EULER assembler [5] was proposed by Pevzner, 
who had transformed the fragment assembly problem into a variation of the classical 
Eulerian path problem by dividing reads into k-mers and then constructing k-mers 
into a path graph. This opens new possibilities for repeat resolution and generating 
error-free solutions of the large-scale fragment assembly problem. Programs such as 
Velvet[6], SOAPdenovo[7], and IDBA[8] implicitly use this framework but are 
slightly different in local details. Velvet manipulates these De Bruijn graphs 
efficiently to both eliminate errors and resolve repeats by error correction algorithm. 
SOAPdenovo implement pre-assembler error correction on human genome assembly, 
after this operation the proportion of error free reads was improved from 64% to 70%, 
and nearly 60% percent of k-mers was filtered from the graph. IDBA also adopt pre-
assembler error filtering technique, which can save nearly 40-80% of memory 
compared with velvet. The second feature of IDBA is that it iterates from small k-mer 
to large k-mer to get longer contigs. So the quality of contigs is better than other tools. 

The above assemble tools can only run on single machine, the human genome 
assembly with current sequencing technology needs about 1TB memory and takes 
weeks or even months on single server. The situation will be even worse for larger 
genome assembly or meta-genome assembly. 

Parallel algorithm for sequencing assembly is an alternative to solve the problem. 
Parallel assemblers included ABySS[9] and YAGA[10-12], are both based on De 
Bruijn graph strategy. ABySS distributes k-mers to multi-servers to build a distributed 
De Bruijn graph, and error removal and vertex merging were implemented over MPI 
communication messages. YAGA constructs the distributed bi-directed De Bruijn 
graph by maintaining edge tuples in a community of servers. Unanimous chain 
compaction problem in YAGA was transformed to undirected list ranking, and then 
the authors designed a modified sparse ruling set algorithm for undirected lists. The 
computational complexity of YAGA is given by O(n/p) compute time, O(n/p) 
communication volume, and O(log2n) communication rounds, where n is the number 
of nucleotides in all reads, p denotes the number of processors . 

Efficient and scalable frameworks or libraries for distributed graphs are essential to 
parallel assembly based on De Bruijn graph. Existing works, such as BSPlib [13-15], 
CGMgraph [16], PBGL [17,18], Prejel [19], are based on BSP [20] model. The BSP 
model has advantage on simple computation-communication programming model, 
whereas the barrel principle exists in the computation-communication phase and the 
synchronous phase over large clusters limits the scalability of the model. To our 
knowledge, the scalability these implementations under BSP model has not been 
evaluated beyond several hundreds of computers [19]. No genome assembly tools 
have adapted the BSP library, although YAGA has used the BSP idea in its design on 
parallel list ranking algorithm implicitly. Another parallel programming model, 
MapReduce [21], has strength in loosely coupled work such as frequency statistics, 
sorting, indexing, and machine learning etc, and these works can be easily distributed 
to clusters. However graph algorithm is a tight coupled work and dividing one graph 
into several meaningful sub-graphs is still a challenging problem.  

This paper first demonstrates a one-step bi-directed graph for the problem of 
genome assembly. Genome can be recovered by merging semi-extended edges to full-
extended edges. Then small world asynchronous parallel (SWAP) model is proposed 
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to realize edge merging over a distributed one-step bi-directed graph. Specially, we 
implement an assembler using the SWAP model. Given the number of processes p, 
the complexity of this problem is reduced to O(n/p) parallel compute time, O(n/p) 
communication round, and O(nlog(n)/p) communication volume, here n is total length 
of input sequences. Simulation shows that Assembler has a factor of 20 times speedup 
when the number of processors scales from 10 to 640.  

The rest of the paper is organized as follows: Section 2 abstracts the De Bruijn 
graph based genome assembly problem; Section 3 describes the SWAP model for 
large scale graphs with small world property, then an assembler, as SWAP’s first 
application, is illustrated. Experimental results will be present in section 4. Finally 
section 5 concludes this paper.  

2 Abstraction of De Bruijn Assembly 

Let ls M∈  be a string of length L, where { }, , ,a t c gΜ = . Any substring 

[ ] [ 1]... [ 1],s j s j s j kα = + + −  0 1j L k≤ < − + is a k-mer of s. The set of all k-

mers of a given string s  is written as ( , )s k , here k must be odd. The reverse 

complement of a k-mer α  , denotes by α′ , is obtained by reversing α  and 

complementing each base ( [ ] [ 1]i k iα α′ ′= − + ) by the following bijection of 

Σ , { }: , , ,a t t a c g g cΣ → → → → . Note that [ ] [ ]i iα α ′′=  and α α′′= .  

A k-molecule α̂  is a pair of complementary k-mers { , }α α′ . Let ≥ be the partial 

ordering relation among the string of equal length such that α β≥  indicates that the 

string α is lexicographically larger than β . We designate the lexicographically 

larger of the two complementary k-mers as the positive k-mer, denoted as α + , and 

the lexicographically smaller one as the negative k-mer, denoted as α − , here 

α α+ −≥ . We choose the positive k-mer α +  as the representative k-mer α̂ of the 
k-molecule. The set of all k-molecules of a given string s is called the k-spectrum of s 
and is written as ( , )s k . Noted that ( , ) ( , )s k s k′=  . 

The notation su f (a, l) (pre(a, l), respectively) is used to denote the length l suffix 
(prefix, respectively) of string a. Let the symbol   denotes the concatenation 

operation between two strings, and the number of edges attached to k-molecule α̂  is 

denoted as degree(α̂ ). The number of edges pointing out from k-molecule α̂  is 

denoted as ˆdeg ( )ree α . 

Definition 1. The vertex set Vs is defined as k-spectrum of s,  

( , )sV s k=                                      (1) 

Definition 2. The 1-step bi-directed edge set 1
sE  is defined as follows: 
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1 1 1 ˆˆ{ ( , , , , ) | , ( , ), ( , 1)

( , 1) ( [ 1] ( ( , 1) ( , 1)))}
sE e d d c s k suf k

pre k k s k s k

αβ α β αβα β α β α
β α β

= = ∀ ∈ −
′= − ∧ − ∈ + ∨ +


 

                 (2) 

Equations (2) declares that any two overlapped k-molecules can be connected with a 
1-step bi-directed edge, if they are continuous in sequence s or its complementary. 

Here dα  is the direction of k-mer α , if α α += , ' 'dα = + , otherwise ' 'dα = − . 

Set 1cαβ  is initialized with one element [ 1]kβ − , and 1( , )suf c kαβα β= .  

Property 1. Given two k-molecules , ( , )s kα β =
  , there will be four possible 

connections, and for each type of connection exactly two equivalent 1-step bi-directed 
edge exist, 

1. 1 1 1 1( , , , , ), ( , , , , )e c e c
α β α β α β α β

α β α β+ + + + − − − −
+ + − −= + + = − − , 

2. 1 1 1 1( , , , , ), ( , , , , )e c e c
α β α β α β α β

α β α β+ − + − − + − +
+ − − += + − = − + , 

3. 1 1 1 1( , , , , ), ( , , , , )e c e c
α β α β α β α β

α β α β− + − + + − + −
− + + −= − + = + − , 

4. 1 1 1 1( , , , , ), ( , , , , )e c e c
α β α β α β α β

α β α β− − − − + + + +
− − + += − − = + + .  

In each type of connection, the first bi-directed edge and the second one correspond to 
the same bi-directed edge, but in different form. Within a distributed edge 
representation situation, the first bi-directed edge in each type will be attached with  

k-molecule α , and the second one will be with β


. Figure (1) illustrates four 

possible connections and examples of a 1-step bi-directed edge graph. 
 

 

Fig. 1. The illustration of four possible connections 

Definition 3. 1-step bi-directed de bruijn graph of order k for a string s can be: 
1 1(s) { , }k s sG V E=                                (3) 

Definition 4. Given two 1-step bi-directed edge 1 1( , , , , )e d d cαβ α β αβα β= and 

1 1( , , , , )e d d cβγ β γ βγβ γ= , if 1 1. .e d e dαβ β βγ β=  and degree( β


)=2, we can get  
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2-step bi-directed edge 2 2( , , , , )e d d cαγ α γ αγα γ= by merging 1eαβ and 1eβγ . Here 

2 1 1c c cαγ αβ βγ=  . Let the symbol ⊕ denote edge merging operation between two 

bi-directed edges attached to one k-molecule, then edge merging operation can be 
written as, 

2 1 1e e eαγ αβ βγ= ⊕          (4) 

 or 2 1 1e e eγα γβ βα= ⊕        (5) 

According to property 1, equation (4) and equation (5) correspond to one edge 
merging operation. Then z-step bi-directed edge can be defined as: 

, , . . ,deg ( ) 2,z x y x ye e e iff e d e d ree z x yαγ αβ βγ αβ β βγ ββ β= ⊕ ∃ = = = +


  (6) 

Definition 5. Given an n-step bi-directed edge ( , , , , )m me d d Cαβ α β αβα β= , if k-

moleculeα or β has only one another bi-directed edge ( , , , , )t te d d Cγα γ α γαγ α=  

or ( , , , , )t te d d Cβγ β γ βγβ γ=  respectively, then meαβ  can be extended by teγα  or 

teβγ , we regard this edge as semi-extended edge, and the corresponding k-molecule 

as semi-extended vertex. If meαβ  cannot be extended by any edge, we call this edge 

a full-extended edge. 

Given a set of string or reads 1 2 h{ , , , }S s s s=  , a one-step bi-directed De Bruijn 

graph of S with order of k is 
11 1

1 1

(S) { , } { , }
i ik S S s s

i h i h

G V E V E
≤ ≤ ≤ ≤

= =   . The key property 

of this bi-directed De Bruijn graph 1 (S)kG  is that each read can be recovered by 

traversing the corresponding path in either direction, concatenating (k-1)-molecule 
prefix of the first node and the edge labels on the path. As all input reads of assembler 
are derived from chromosomes, each chromosome can now be seen as a long path in 
this graph. However because of read errors, and repeats in the sequence, we cannot 
expect to see continuity in sampling, our goal is to recover the genome as a large set 
of contigs by merging semi-extended edges into full-extended edges. 

3 Assembler over SWAP 

Vertices in large scale real world graph (such as social network, web link graph, et) 
always have limited number of neighbors, little computing work, and constant number 
of edges randomly connected to other vertices, this phenomenon is denoted as small 
world property. For a given vertex, its small world includes all its edges, neighbors 
and itself. Then any computing and communication work of a vertex can be done in 
its small world. As long as the work of a vertex on a graph does not interrupt others, 
we can run computational work of those vertices in parallel. Here we will present our 
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work on pursuing parallelism in the computation of bi-directed graph for genome 
assembly. 

Inspirited from CSMA/CA in wireless networks [22], Small World Asynchronous 
Parallel model (SWAP) aims to improve parallelism on processing large scale graph 
problem with small world property. After having distributed graph over a network of 
processors, the main schedule of SWAP can be defined as a combination of following 
three steps: 

1. Lock operation is applied to each vertex’s small world, which includes itself 
and its neighbors. 

2. Computation and modification will be performed in each vertex’s small 
world.. 

3. Unlock operation will be triggered after each computation step. 

The basic schedule of SWAP is Lock-Computation-Unlock. Because of the locality of 
computing and communication in the small world, SWAP model utilizes local 
synchronization and global asynchronization mechanism to maximize underline 
parallelism for the graph algorithm. 

An assembler over SWAP is the first application using SWAP model. In the 
following paragraphs we will describe its data structure on distributed de brujin graph, 
strategy on error removal, and the edge merging algorithm, respectively. 

3.1 Parallel Constuction of Distributed One-Step Bi-directed De Bruijn Graph 

1 2 m{ , , , }S s s s=  is m sequences sampled from a genome of length g, the total 

length of all these sequence is n. we aim to construct a one-step bi-directed De Bruijn 

graph 1 (S)kG  with O(n) vertexes and edges distributed among p processors such that 

each processor store O(n/p) vertices. 
Input sequences can be broken into overlapping k-molecules by sliding a window 

of length k along the input sequence. Each processor maintains a hash table to store k-
molecules, and each k-molecule is represented as a base-4 number of its positive k-
mer.  Numerical values {0,1,2,3} are assigned to bases {A,C,G,T}. The location of a 
given k-molecule can be computed by take the mod of a large prime number and then 
take the mod of the number of processors. The large prime number is used to evenly 
distribute k-molecules to all processors. 

A single k-molecule can have up to eight edges, and each of them corresponds to a 
one-base extension, {A, C, G, T} in either direction. The adjacent k-molecule can be 
easily generated by adding the base extension in the edge set to the source k-
molecule. 

The construction of one-step bidirected De Bruijn graph can be achieved in O(n/p) 
parallel compute time, O(1) round of all-to-all communication, and O(n/p) parallel 
communication volume.  

3.2 Error Removal 

Sequencing errors make the assembly problem more complex. To identify errors, we 
assume that the errors are random, and they are unlikely to occur twice in the same 
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base. As each base in the genome is sampled on average as many times as the overage 
number, the erroneous k-molecule will have lower frequency compared to the correct 
ones. According to this principle, we identify all k-molecules with low frequency as 
erroneous k-molecules, and delete all of them from our vertex set of the graph. The 
complexity of this step is O(n/p) parallel compute time. 

3.3 Edge Merging 

One step bidirected graph generated in the previous section will likely have many long 
chains, and each corresponds to a sequence that can be unambiguously assembled into 
a single contig. We will merge these chains into full-extend edges using Algorithm 1. 

 
A subset of vertices and their associated edges are stored in processor i, and the set 

of semi-extended vertices stored in this processor is denoted as iV . We aim to delete 

all semi-extended vertices and merge their associated semi-extended edges to form 
full-extended edges. 

As the bi-directed graph 1 (S)kG  is distributed over p processors, each processor 

will store a subset of semi-extended k-molecules Vi and the average number of k-
molecules in Vi is O(n/p). Then the expected computational complexity of each 
processor on edge merging is given by O(n/p) parallel compute time, O(n/p) 
communication round, and O(nlog(n)/p) communication volume. 

4 Experimental Results 

The assembler is written in C++ and MPI. The hardware and software architecture 
supporting this assembler is demonstrated in Fig 2. We use Dawning 5000 as high 
performance cluster, which has 40 16-core servers with 32GB memory. The 
distributed file system is lustre. All the components are interconnected with 
infiniband 20Gbit Router.  
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Fig. 2. Hardware and software architecture of the assembler on SWAP 

Perl scripts [23] are used to generate the following two theoretical datasets: 50x 
coverage of Yeast chromosomes containing 17 million reads, and 50x coverage of 
C.elegans chromosomes containing 141 million reads. The error rate is set to be 1%, 
and the length of reads ranges from 36bp to 50bp. The primary goal of this 
experiment is to demonstrate the scalability of SWAP model on handling large-scale 
graphs using parallel system with distributed memory.  

We first test the performance of this assembler on Yeast dataset. The runtime of 
assembler is displayed in figure 3, and the time is divided into three phases, Parallel 
File I/O, graph building, and edge merging. The first phase is the time spent on 
reading dataset from a distributed file system, the second phase is the time used to 
construct the one-step bi-directed graph over the cluster, and the last phase is the time 
cost on edge merging operations. The run time is dominated by the third phase, where 
hundreds of processors are sending messages to lock their neighbors, merging edges, 
deleting semi-extended nodes and edges, and unlocking their neighbors. Figure 3 
shows that this phase has good scalability. The speedup is about 50 when the number 
of processor scales from 10 to 640 and the overall runtime of assembler on Yeast 
dataset is reduced by a factor of 30. 

The C.elegans dataset is nearly ten times larger than Yeast, and its corresponding 
data on time usage is demonstrated in figure 4. In this figure, the time used in parallel 
 

 

Fig. 3. Time usage analysis in three phase on Yeast dataset 
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Fig. 4. Time usage analysis in three phase on C.elegans dataset 

file I/O is very short compared to the other two phases. The graph construction phase 
has a decreasing trend on its running time. This phase have a speedup of 35x. This 
speedup is slightly smaller than that of the yeast dataset. The total speedup of all three 
phases on C.elegans dataset is about 20. 

5 Conclusion 

In this paper, we abstracted the problem of genome assembly using De Bruijn 
strategy. By constructing the one-step bi-directed graph over k-spectrum of input 
sequences, the unanimous path compaction problem in generic genome assembly was 
transformed to merge semi-extended edges in our bi-directed graph, and the final 
contigs are full-extended edges in our method. The proposed SWAP introduced local 
synchronization and global asynchronization mechanism to maximize the parallelism 
in the graph algorithm. SWAP model applies the Lock-Computation-Unlock scheme 
to each vertex’s small world.  Based on SWAP model, we developed a De Bruijn 
assembler, and simulation results show that when the number of processors scales 
from 10 to 640, a factor of 30 and 20 speedup, can be achieved for  assembling Yeast 
and C.elegans genomes, respectively. 
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