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Abstract. BioPortal is a repository of biomedical ontologies—the
largest such repository, with more than 300 ontologies to date. This set
includes ontologies that were developed in OWL, OBO and other lan-
guages, as well as a large number of medical terminologies that the US
National Library of Medicine distributes in its own proprietary format.
We have published the RDF based serializations of all these ontologies
and their metadata at [sparql.bioontology.org. This dataset contains
203M triples, representing both content and metadata for the 300+ on-
tologies; and 9M mappings between terms. This endpoint can be queried
with SPARQL which opens new usage scenarios for the biomedical do-
main. This paper presents lessons learned from having redesigned several
applications that today use this SPARQL endpoint to consume ontolog-
ical data.
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1 SPARQL In Use In BioPortal:
Overview of Opportunities and Challenges

Ontology repositories act as a gateway for users who need to find ontologies for
their applications. Ontology developers submit their ontologies to these reposi-
tories in order to promote their vocabularies and to encourage inter-operation.
In biomedicine, cultural heritage, and other domains, many of the ontologies and
vocabularies are extremely large, with tens of thousands of classes.

In our laboratory, we have developed BioPortal, a community-based ontology
repository for biomedical ontologies [II]. Users can publish their ontologies to
BioPortal, submit new versions, browse the ontologies, and access the ontologies
and their components through a set of REST services. BioPortal provides search
across all ontologies in its collection, a repository of automatically and manually
generated mappings between classes in different ontologies, ontology reviews,
new term requests, and discussions generated by the ontology users in the com-
munity. BioPortal contains metadata about each ontology and its versions as
well as mappings between terms in different ontologies.
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We had numerous requests from users to open a public SPARQL endpoint,
which would enable them to query and analyze the data and metadata in much
more fine-ground and application-specific ways than our set of REST APIs al-
lowed. In December 2011, we released |[sparql.biooontology.org to provide
direct access to ontology content, metadata and mappings. We describe the de-
tails of the structure of the dataset and how it implements the Linked Data
principles elsewhere [I7] and provide a short overview here in Section

In the first months of the endpoint deployment, we have received valuable
feedback from our user community and were able to identify some points of
continuous debate around the use of [sparql.bioontology.org In this paper,
we address the following three points that both proved challenging and provided
a clear use case for the advantages of SPARQL:

— Retrieval of common attributes from multiple ontologies: BioPortal’s on-
tologies, with 300 ontologies and growing, have been developed by different
institutions and groups. Even though there are standard vocabularies and
best practices, the flexibility of ontology languages allow ontology authors to
use different techniques and patterns. If a user needs to query for information
across several ontologies (e.g., looking for a string in a textual definition),
she must know how each ontology developer modeled the definitions. Thus
querying across multiple ontologies for common properties becomes cum-
bersome and error-prone. We try to alleviate this issue by providing simple
reasoning (Section [B]).

— Best practices in using a shared SPARQL endpoint: We have faced challenges
in scaling on two different aspects: (1) the processing of complex queries
and (2) client applications processing large outputs as result of a query. To
develop more robust and fast applications and to promote a fair usage of
our resources, we adopted simple best practices. Some of the best practices
are SPARQL query constructions, others are design recommendations. We
discuss these best practices in Section Ml

— Complex Query Articulation: The non-trivial mapping of complex OWL ob-
jects to RDF graphs can make queries verbose and difficult to articulate.
A W3C recommendation [13] describes how OWL 2 maps to RDF graphs.
Most libraries that transform OWL into RDF conform to this recommen-
dation. To load OWL ontologies in our triple store we use the OWL-API
that follows these recommendation [6]. We discuss the query articulation for
OWL ontologies that are stored in a triplestore in Section [l

In this paper, we do not try to solve these issues from a research point of view but
rather we describe them so that other Semantic Web developers can plan ahead
with a sense of what they will encounter. For each of these points, we present
our pragmatic solutions that at least alleviated these issues. We discuss these
points from a developer’s point of view. When possible, we link the discussion to
the current state of Semantic Web standards and technology in terms of solving
a particular issue.


sparql.biooontology.org
sparql.bioontology.org

182 M. Salvadores et al.

2 Background: Dataset Description

Researchers and practitioners in the Semantic Web normally deal with two types
of information: (1) ontologies or TBoxes; and (2) instance data or simply data.
BioPortal’s content is almost exclusively ontologies and related artifacts. Other
popular datasets of the Linked Data Cloud focus on instance data and ontologies
and schemas play only a small role there. In the biomedical domain, ontologies
play a very active and important role and many ontologies and vocabularies
are extremely large, with tens of thousands of classes and complex expressions.
For example, SNOMED CT, one of the key terminologies in biomedicine, has
almost 400,000 classes [14]. The Gene Ontology (GO) has 34,000 classes [4].
These ontologies and terminologies are updated on a regular basis, some very
frequently. For example, a new version of GO is published daily.

To host BioPortal’s RDF content we use 4store as SPARQL server [5]. The
best practices and opportunities that we describe in this paper not only apply
to a particular RDF database and can be extrapolated to other deployments.

Ontology Content. The core of the BioPortal dataset is the content
of each ontology that users have submitted to BioPortal. The BioPortal
repository keeps multiple versions of each ontology. However, at the moment,
sparql.bioontology.org exposes only the latest version of each. There are
three main ontology formats in BioPortal:

— OBO format is a format that many developers of biomedical ontologies
prefer because of its simplicity. OBO Editor, a tool that many ontology de-
velopers in biomedicine use, produces ontologies in this format [3]. The OWL
APT now provides a translation from OBO syntax into OWL syntax [22].

— The Rich Release Format (RRF) is primarily used by the US National
Library of Medicine to distribute the vocabularies that constitute the Unified
Medical Language System (UMLS) [8].

— OWL is a W3C recommendation for representing ontologies on the Semantic
Web [9].

For OBO and OWL ontologies, the content in the triple store is the ontology that
includes the closure of the owl:imports statements [18]. Prior to our recent quad
store implementation, our data had not been stored as triples in our backend
systems and therefore we need to follow a different workflow for each format
to expose the existing content as RDF triples. To handle the RRF syntax we
have developed the UMLS2RDF project [16]. UMLS2RDF is a set of scripts
that connect to the UMLS MySQL release and transforms its content into RDF
triples. To process OBO and OWL ontologies, we use the OWL-APT [6]. The
OWL-API can read the OBO syntax and all the OWL syntaxes (e.g: OWL /XML,
Manchester, RDF and Manchester syntax). We also use the OWL-API to extract
the import closure. We fetch imports from the web and materialize them, saving
the whole materialized ontology in the data store.


sparql.bioontology.org

Using SPARQL to Query BioPortal Ontologies and Metadata 183

Ontology Metadata. In addition to ontology content, we track metadata re-
lated to each ontology in the system. We represent the metadata using an OWL
ontology that we developed for this purpose, the BioPortal Metadata Ontology,
which extends the Ontology Metadata Vocabulary (OMV) [I5]. The metadata is
a set of instances in this OWL ontology. The two main entities in the metadata
are meta: VirtualOntology and omu:Ontology. meta: VirtualOntology represents a
container for all versions of an ontology; an omuv:Ontology represents a particular
ontology version (Figure [).

omv:Ontology

meta:VirtualOntology version

ontology metahasVersion ontology
/1353 s /46896 —
metahasVersion
()
ontology =
meta:has\/elrs\on 146116 ]
ontology \——3] <httpi//bioportalbioon
142122 )

Fig. 1. Metadata: Virtual Ontologies and Version Ontologies

meta:hasDataGraph

tologyorg/ontologies/SNOMED>

Mapping Data. The third type of data are the mappings between terms in
different ontologies, which constitute an important part of the BioPortal repos-
itory [12]. Users can submit mappings to BioPortal through the Web interface
or the REST APIs. In addition, the BioPortal team runs a series of processes to
generate mappings automatically. A mapping in BioPortal connects two terms
from different ontologies. It may also connect one term to many terms. We ab-
stract the mappings into entities that record the provenance information of the
mapping: the process that generated the mapping, when and how it was pro-
duced, the user who submitted it, the type of relation between classes, and so
on. This information is represented in two sets of triples (a) the mapping itself
and (b) the process information, which is referenced by all the mappings that
the process generated.

3 Retrieval of Common Attributes from Multiple
Ontologies

Ontologies in BioPortal vary in their content and structure. There are very rich
representations, such as those found in the NCI Thesaurus, which has 111K
rdfs:subClassOf relations. There are also terminologies, with no single transitive
taxonomic relation, such as Medical Subject Headings (MeSH).
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Ontology authors use different properties to represent common relations and
attributes. The ontologies in BioPortal use 17 different properties to represent
a preferred label of a term, and 28 different properties to store synonyms—even
though standards, such as SKOS, provide recommendations for the properties
to use in these cases. The two types of queries that we observe far more fre-
quently than the rest are queries to (a) browse a taxonomy or (b) extract labels,
synonyms and definitions. These type of queries are of particular interest for
visualization and for building annotation tools. Both type of applications are
very popular in the biomedical domain.

3.1 Retrieval of Preferred Names, Synonyms and Definitions

Preferred names, synonyms and definitions provide valuable term characteri-
zations, often used in biomedical applications like annotation of clinical and
scientific documents. For example, the tools developed by the BioPortal group
include the NCBO Annotator, which allowed users to annotate their documents
with ontology terms [2I] and the NCBO Resource Index, which allows users to
query an already annotated large collection of biomedical resources [7].

These types of resources must access lexical information in the ontologies such
as preferred names and synonyms of terms. However, because different ontologies
use different predicates to record each of this elements, it is difficult to devel-
opers to make their tools flexible enough to use any ontology in the repository.
In order to provide the users of the BioPortal dataset with a uniform access to
these properties, we link these different properties to the standard SKOS proper-
ties using rdfs:subPropertyOf relation. When ontology authors upload ontologies
into BioPortal they have to choose what are the predicates that represent these
attributes.

For example, properties that individual ontologies use for preferred labels
all become subproperties of skos:prefLabel in a “globals” graph; properties that
individual ontology authors chose to represent synonyms all become subprop-
erties of skos:altLabel. As the result, we have a set of common predicates to
query on lexical annotations across ontologies. The globals graph contains a hi-
erarchy of properties that maps each custom attribute property to one of the
standard predicates. We use this hierarchy of predicates to rewrite internally the
SPARQL query using backward-chaining reasoning. Figure [2] shows an example
of a SPARQL query for an ontology that uses a custom predicate to record pre-
ferred labels. In this case, the user does not need to know the specific predicate
and she can query on the standard skos:prefLabel.

Internally our triple store rewrites the SPARQL query and not only binds the
property skos:prefLabel but also the rdfs:subPropertyOf closure. Thus, the query
in Figure 2l will also contain http://NIF-RTH. owl#core_prefLabel. BioPortal
maintains a mirror of the 4store database where this backward-chained reason-
ing is implemented The entailment regime that we implemented follows the
Minimal RDFS Semantics [T0/19].

! https://github.com/ncbo/4store
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PREFIX owl: <http://www.w3.0rg/2002/07/owl#>
PREFIX skos: <http://www.w3.0rg/2004/02/skos/core#>
SELECT DISTINCT termURI ?preflLabel
FROM <http://bioportal.bioontology.org/ontologies/NIF-RTH>
FROM <http://bioportal.bioontology.org/ontologies/globals>
WHERE {
ttermURI a owl:Class; skos:preflLabel ?prefLabel .
}

<http://NIF-RTH.owl/#nif_resourcep | 7:birnlex_2353> "Commercial license"
<http://NIF-RTH.owl/#nif_resourcenif_resource:nlx_res_200904 | 4> "Biomaterial supply resource"
<http://NIF-RTH.owl/#nif_resourcep | 7:birnlex_22 18> "3D Time-series analysis software"
<http://NIF-RTH.owl/#nif_resourcenif_resource:nix_res_090904> "Reference atlas"

( 150 solutions omitted)

Fig.2. SPARQL Query on a standard preferred label property. The query re-
sult returns preferred labels for an ontology even though the authors used a
nonstandard property for this attribute. The predicate used in this case is
http://NIF-RTH.owl#core_prefLabel

The use rdfs:subPropertyOf reasoning was successful for our use case. Most
applications consuming labels and definitions care only about the default pred-
icates we provide as root elements of each property hierarchy. We documented
this technique in our Wiki and we have noticed that users tend to rework the
examples keeping the “globals” graph to use the standard predicatesE

3.2 Hierarchy Retrieval

Historically, browsing a taxonomic hierarchy is one of the most common ways
to browse ontologies. The way in which ontologies represent their taxonomic
hierarchy does not differ greatly among ontologies. By far, the predominant
predicate for this purpose is rdfs:subClassOf. There are 6M triples with this
predicate in the BioPortal triple store.

The fact that in modern triples stores we can load 3004 ontologies is of par-
ticular interest to applications that need to navigate multiple ontologies. Having
this kind of remote service allows for incremental browsing. Applications need
to know only a class IRI to start the navigation, such as root nodes. Then, with
simple SPARQL queries the application would be able to browse the hierarchy.
A SPARQL query like the one in Figure Blwould retrieve, by default, only direct
asserted subclasses with their labels.

In [sparql.bioontology.org, the default behaviour for queries like the one
in Figure [3is to retrieve only direct asserted subclasses; or direct superclasses if
we invert the rdfs:subClassOf pattern. However, many times our users want to
retrieve the subclass closure of a given node. If a triple store does not implement
any reasoning, getting the closure requires us to query recursively until we reach
all nodes. We argue in Section [] that property paths are also not an option

2 http://www.bioontology.org/wiki/index . php/SPARQL_BioPortal
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SELECT ?subClass ?preflLabel
FROM <http://bioportal.bioontology.org/ontologies/ SNOMED>
FROM <http://bioportal.bioontology.org/ontologies/globals>
WHERE {
IsubClass rdfs:subClassOf <http://purl.bioontology.org/ontology/SNOMEDCT/ 1 2738006>;
skos:prefLabel ?prefLabel .}

Fig. 3. SPARQL query to retrieve all subclass elements from a given class and their
labels. The IRI in the example is from the SNOMED CT ontology and represents the
term “Brain Structure.” This example combines taxonomy browsing with preferred
name retrieval. This query outputs five results in the current SNOMED CT ontology.

to return hierarchy closures efficiently. To help users with querying hierarchy
closures we again use Minimal RDFS reasoning and 4store’s backward chained
reasoner [19]. Backward-chain reasoning works very well in this case because it
allows us to provide switchable structural rdfs:subClassOf reasoning. Sometimes,
users only care about direct asserted subclasses and superclasses, like when visu-
alizing the hierarchy tree. In this case, they can use an CGI parameter indicating
that the reasoning should be switched off. In other cases, when users need the
full closure, they can just switch it onf

Some applications need to traverse the hierarchy for a fixed number of steps.
For instance, the NCBO Annotator [2I] includes an option to annotate text
including ancestors of the terms that appear directly in the text up to a certain
level. Neither direct superclasses nor structural subclass reasoning can help with
this issue. But, with the SPARQL union operator it is possible to formulate
queries for this purpose. The query in Figure [l uses the UNIONS together with
SPARQL 1.1 BIND operator to provide this functionality. The BIND operator
allow us to identify the provenance of each resulting solution. We show two
solutions at the bottom, “Parasite identification” is the direct superclass and
“Identification procedure for living organism” is the superclass in distance 2. We
can apply ORDER BY to the nstep variable to rank the results. In this case,
classes that are closer to the query term are ranked higher.

The performance of queries like the one in Figure [l is critical to the NCBO
Annotator. Recently, we have measure how these queries perform as we add more
UNION/BIND blocks into the query structure. Figure Bl shows the performance
of queries for SNOMED CT. SNOMED CT contains a rich taxonomy with 539K
subclass axioms, 395K classes and up to 32 levels in the hierarchy. We studied
groups of queries that request terms within 1, 5, 10, 15, and 20 hierarchical levels
from a given term. The average performance of these 5 groups that we studied
remains below 0.11 seconds. Average performance for getting 5 and 10 levels—
common choices by BioPortal users—are 0.019 and 0.13 seconds respectively. For
NCBO Annotator this performance is within an expected range of acceptable
performance. We did not see a drastic performance degradation as we added
more UNION blocks into the queries.

3 https://github.com/msalvadores/4sr/wiki/4sr-reasoning-and-queries
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SELECT DISTINCT ?ss0 Instep ?label {
{ GRAPH <http://bioportal.bioontology.org/ontologies/SNOMEDCT> {
<http://purl.bioontology.org/ontology/SNOMEDCT/122040007> rdfs:subClassOf ?ss| .
Iss| rdfs:subClassOf ?ss0 .
1ss0 skos:preflLabel ?abel
BIND (2" AS nstep) .

1

UNION { GRAPH <http://bioportal.bioontology.org/ontologies/SNOMEDCT> {
<http://purl.bioontology.org/ontology/SNOMEDCT/122040007> rdfs:subClassOf ?ss0 .
1ss0 skos:preflLabel ?label
BIND ('I" AS nstep) .

1}
} ORDER BY ?nstep

<http://purl.bioontology.org/ontology/SNOMEDCT/122069003> "|" "Parasite identification"@EN
<http://purl.bioontology.org/ontology/SNOMEDCT/108266002> "2" "|dentification procedure for living organism"@EN

Fig. 4. SPARQL query to retrieve two ancestors of a given element. The first GRAPH
block retrieves ancestors in distance 2 and the second GRAPH block ancestors in
distance 1.

BioPortal allows users to browse hierarchies that are interconnected by map-
pings. For instance, if we try to find subclasses of term A to extract their labels
and we do not find any, we can retrieve mappings for the term A and look for
subclasses of a related term in a different ontology. Mappings provide connec-
tion paths that can be crossed depending on the application needs. For instance,
when looking at the term “malignant hyperthermia” from the Human Disease
Ontology we do not see any subclasses. But this term in BioPortal has 24 map-
pings. Figure Bl shows the query that would find subclasses from other ontologies
where a term is mapped to “malignant hyperthermia.” The query in Figure
retrieves 13 solutions with terms and labels from 3 other ontologies (SNOMED
CT, MESH and CTV3). We discussed the details of the RDF structure of Bio-
Portal mappings elsewhere [17].

4 Best Practices in Using a Shared SPARQL Endpoint

Our RDF data store contains 203M triples with more than 2,000 different pred-
icates. SPARQL allows the construction of very complex queries. One typical
problem are complex joins that generate very large intermediate results. The
size of our database and some of the queries that our users run make this issue a
recurring one. SPARQL engines are still to improve in terms of query planning
optimisations and we have identified a few best practices that can be beneficial
to develop applications that use shared SPARQL endpoints.

Queries containing non-selective graph patterns tend to generate large inter-
mediate results in SPARQL engines. This issue is particularly problematic in
an open SPARQL endpoint. An open SPARQL endpoint is normally a shared
resource. From the perspective of the publisher, we can optimise resources if we
delegate some of the query processing to the client’s application. Thus, we en-
courage our users to query an open SPARQL endpoint iteratively with selective
queries, which overall provide the functionality of a non-selective query.
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Fig. 5. Performance analysis of queries that retrieve N step superclass elements to-
gether with their labels. X-axis represents the number of steps. We have measured 1,
5, 10, 15 and 20 steps. We processed 2,800 SPARQL queries for each number of steps.
We used 2,800 random leaf classes from SNOMED CT to construct queries like the one
shown in Figure [l

Figure [0 shows two different approaches to retrieving the same information
from our SPARQL endpoint. Figure [[(a) uses a query that contains one non-
selective triple pattern “?a 7p ?b” joined with two other triple patterns. The
combination of these three triple patterns generates large intermediate results
and computationally expensive joins. Queries in Figure[f[b) release the SPARQL
server from some of the processing. Queries like the first one in Figure [(b)
are optimised in most SPARQL engines. The second query, that is part of an
inner loop, becomes more selective. Here we do not argue that one is faster
than the other. Our point is that the second approach, with multiple selective
queries, is more likely to succeed in the open Web. Most triple stores imple-
ment mechanisms to restrict resources used by queries. These restrictions are
often implemented in terms of “query timeouts” or “join space restrictions.”
sparql.bioontology.org uses two 4store mechanisms to limit execution of ex-
pensive queries. These are soft limits and join space restrictions[| Wherever
non-selective queries are likely to fail, there is usually another approach with
selective queries that is likely to succeed.

For the same reasons, we recommend the use of OFFSET and LIMIT to
paginate over results. Queries that return all preferred names from an ontology
(cf. Section [2)) are likely to hit resource limits and fail on some of the largest
ontologies in BioPortal, such as NCBITaxon with more than 500K terms and
4.6M triples. In these cases, paginating the results with OFFSET and LIMIT
will help to return all the solutions. Most triple stores will produce a consistent

4Thttp://4store.org/trac/wiki/SparqlServer
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SELECT DISTINCT ?subClassOf ?label WHERE {
s maps:source <http://purl.obolibrary.org/obo/DOID_8545>;
maps:target Mtarget .
1subClassOf rdfs:subClassOf ?target .
1subClassOf skos:preflLabel ?label .

<http:/purl.bioontology.org/ontology/SNOMEDCT/213026003> "Malignant hyperpyrexia due to anesthetic"
<http://bioonto.de/mesh.owl#C531737>  "Malignant fever"
<http://bioonto.de/mesh.owl#C535695>  "Malignant hyperthermia susceptibility type 2"
<http://bioonto.de/mesh.owl#C538343>  "Native American myopathy"

( 8 results omitted)

Fig.6. SPARQL query that wuses mappings for the term http://purl.
obolibrary.org/obo/DOID 8545|to reach other ontology term and retrieve their labels.
The query returns 13 solutions, in the figure only 4 are shown the rest are omitted.

(a) non-selective SELECT DISTINCT ?p WHERE {
SPARQL queries GRAPH <http://bioportal bioontology.org/ontologies/NIF> {
lalpib.
1
SELECT DISTINCT ?p WHERE { for each $P
GRAPH <http:/bioportal bioontology.org/ontologies/NIF> { ASK {
2 .
f2.a owlClass . GRAPH <http:/bioportal bioontology.org/ontologies/NIF> {

lalpb.

b a owl:Class . la<$P>1b.

?a a owl:Class .

? .
) b a owl:Class . (b) selective

SPARQL queries

1}

}

Fig. 7. (a) shows a SPARQL query to retrieve all the predicates that connect two
resources that are instances of owl:Class. (b) shows two queries, the top query gets all
the distinct predicates in the graph; the bottom query uses ASK to see if a predicate
P connects one pair of instances of owl:Class. Both (a) and (b) are restricted to the
NIF ontology graph.

output when using OFFSET and LIMIT without ORDER BY. The sequence of
the solution will, in most cases, follow the output of the last join operation.
The use of ORDER BY and GROUP BY do not play very well with resource
contention. To compute these two operators, the SPARQL query engine needs
to aggregate or sort all query solutions. Thus, the output needs to be kept in
memory for a longer period of time and disqualifies the engine from streaming out
results. If the solution space is large enough, the query is likely to hit timeouts.
Frequently, very simple queries produce an extremely large resultset. These
resultsets have to be moved from our endpoint to the client application. Even
though sometimes it looks like the issued query is taking a long time to be
processed, in reality, significant portion of this time is spent transferring the
result and parsing the result on the client side. For instance, the retrieval of
all preferred names from NCBITaxon—500K solutions—generates a JSON or
XML output of 97MB or 121MB, respectively. On average, this query takes 7.05
seconds in the query engine. Parsing the JSON output takes 55 seconds using
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Python 2.6 and the built-in JSON parser and 15 seconds using the python-
cjson libraryﬁ With Java, Jena’s ARQ SPARQL client library processes XML
SPARQL results as a stream of solutions adding little memory overhead to the
client. For the previous example, parsing the result adds only 1.6 seconds of
extra processing time[§ Sesame, also for Java, does the same trick and adds 2.4
seconds of processing time when parsing the SPARQL XML result. One can see
that times can differ greatly depending on the mechanism we use to process the
SPARQL results. It is important that we choose the library that performs best
on a given platform; and often a library that will parse the SPARQL resultset
on-demand as rows are read by the application.

We encourage users to implement caching between their applications and our
SPARQL endpoint. They cannot expect that they will always get SPARQL an-
swers within a small response time range. Like many other SPARQL endpoints
in the Linked Data Cloud, [sparql.bioontology.org is a shared resource and
its performance does not depend only on the queries submitted by one user. The
overall load of the server affects all users. In that sense, we do not allow singles
IPs to have more than 6 threads running simultaneously. We require API keys
to grant access to private graphs [I7]. Though we do not yet use API keys to
queue user queries and implement resource contention, this is something that we
have considered for future work.

5 Complex Query Articulation

The normative exchange syntax for OWL 2 ontologies is RDF/XML. The OWL
2 specification contains a document which describes how to map OWL 2 con-
structs into triples that form an RDF graph [I3]. For all ontologies that users
submit to BioPortal in OWL format, we parse and translate them to their RDF
graph representations using this mapping. In the case of OBO ontologies these
are first translated to OWL using the mapping at [22]. In some cases, such
as when OWL axioms contain only class, property or individual names, the
mapping is straightforward. For example if :A and :B refer to class names, Sub-
ClassOf(:A :B) is mapped to one triple :A rdfs:subClassOf :B. Similarly, Ob-
jectPropertyDomain(:R :A) is mapped to :R rdfs:domain :A. However, when
ontology contains complex class expressions or OWL 2 nary axioms, such as
disjoint classes axioms with more than 2 classes, a single OWL axiom may be
mapped into multiple triples. These triples form tree shaped graphs connected
with RDF blank nodes. For example, consider the axiom SubClassOf(:A Ob-
jectSomeValuesFrom(:hasPart :B)) which states that all instances of :A have
hasPart relationships to instances of :B (an extremely common form of axiom
in biomedical ontologies, particularly OBO ontologies). We map this axiom into
the following RDF Graph:

® http://pypi.python.org/pypi/python-cjson
Shttp://jena.apache.org/
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EquivalentClasses( :x ObjectUnionOf( :Class| :Class2 :Class3) ). Functional Syntax

x owlequivalentClass [ owl:Class; RDF Turtle Serialization
owlunionOf (:ClassO :Class| :Class2 ) ].

RDF Model Representation

owl:equivalentClass

owl:unionOf

Fig. 8. Example of an equivalent class definition as a union of three classes using the
OWL language. The top part of the figure shows the functional syntax often used in
OWL documents. The next representation is in RDF/Turtle, a readable RDF serial-
ization. The bottom part of the figure is the representation of the same OWL object
very much as it would look like in triples.

:A rdfs:subClassO0f _:x .

_:x rdf:type owl:Restriction .
_:X owl:onProperty :hasPart .
_:X owl:someValuesFrom :B .

This single axiom requires four triples. Also notice the use of blank nodes to
tie everything together. For axioms that contain sets of objects, it is common
to RDF lists are used to serialize these sets. For example, EquivalentClasses(:A
ObjectUnionOf(:B :C :D)) gets mapped to the graph shown in Figure 8

Ultimately, the mapping of axioms to RDF graphs is non-trivial. Querying
these graphs to explore the structure of axioms requires special knowledge of
this mapping, and understanding of how special RDF constructions such as
RDF lists work, and multiple calls to retrieve the subgraph associated with a
single axiom. From a modeler’s perspective, these constructs look simple when
presented in Functional or Manchester Syntax but appear overly complicated
when represented as an RDF graph. In summary, the triple-based representation
is not an end-user facing representation or presentation syntax.

Figure [0 shows two examples taken from BioPortal ontologies. The left-hand
side is the definition of the term “Vaccine” from the Vaccine Ontology. “Vaccine”
is characterized with several data type properties that give different descriptions
of the term “Vaccine.” “Vaccine” is a subclass of a class name (OBI 0000047@)
but also an equivalent class of an intersection of three classes. Two of these
classes are themselves complex class expressions. The RDF serialization of the

" OBI 0000047: Is a material entity that is created or changed during material
processing.
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obo:VO_0000001

a owlClass ; fra:AAL

rdfslabel "vaccine" ; fma:FMAID "276388"" “xsd:string ;

rdfs:seeAlso "MeSH: D014612" ; a owl:FunctionalProperty,

obo:lAO_00001 15 "A vaccine is a processed (...) "; owl:ObjectProperty ;

0bolAO_00001 6 "Many vaccines are developed (..) "; rdfs:domain [

obo:lAO_00001 17 "YH, BR BS,MC, LC, XZ,RS"; a owlClass ;

rdfs:subClassOf obo:OBI_0000047 ; owlunionOf (

owlequivalentClass [ fma:Segment_of telencephalon
a owl:Class ; fra:Putamen
owlintersectionOf (obo:OBI_0000047 fma:Amygdala

a owlRestriction ;
owl:onProperty obo:BFO_0000085 ;
owlisomeValuesFrom [
a owl:Class ;
owlintersectionOf (obo:VO_0000278
[

a owlRestriction ;
owl:onProperty obo:BFO_0000054 ;
owlisomeValuesFrom obo:VO_0000494

)

fmaRegion_of_cerebral_cortex
fma:Organ_component_of_neuraxis
fma:Neuraxis

fma:Dura_mater
fma:Segment_of_neural_tree_organ
fma:Globus_pallidus
fma:Lobule_of_cerebral_hemisphere
fma:Set_of_neuraxis_structures
fma:Caudate_nucleus

)

1
rdfsrange fma:AAL_term .

]

a owlRestriction ;
owlonProperty obo:OBI_0000312 ;
owlsomeValuesFrom obo:VO_0000590

Fig. 9. Examples of relatively complex OWL constructions formatted in RDF /Turtle.
Left side is an example taken from the Vaccine Ontology. Right side is an example
from the Foundational Model of Anatomy.

term “Vaccine” generates 10 blank nodes and 10 SPARQL queries are required
to browse this graphﬁ The right-hand side of Figure [d shows the construction of
an object property where the domain is represented as the union of a collection
of 12 classes.

Users using |[sparql.bioontology.org often ask how to retrieve ontology el-
ements like the ones that we show in Figure [ It is somehow challenging for
users sitting in front of a SPARQL query editor to articulate queries that will
extract the triples that construct these OWL objects. They need libraries that
recursively browse the RDF graph, libraries that understand the OWL mapping
to RDF graphs by means of sets of SPARQL queries that are connected prop-
erly. To the best of our knowledge, tools that offer this functionality are not yet
available in the open source community. There are tools that can parse ontolo-
gies in RDF but there are no tools that can extract parts of an ontology using
SPARQL.

Browsing recursively an RDF graph with SPARQL can be problematic. Some
SPARQL parsers and triple store databases do not allow the use of blank nodes
as IRI literals in SPARQL queries. In this case, we need to re-articulate the
query that led us to the blank node to retrieve any out-going elements from the
blank node. Because this issue is such a major one, most SPARQL engines have
addressed it with out-of-specification implementations. RDF 1.1 is in the process
of specifying an official solution. The early RDF 1.1 draft says that systems are
allowed to replace blank nodes with IRIs if they follow an IRI pattern that will

8 Assuming that we use only SPARQL 1.0 and the SPARQL 1.1 property path speci-
fication is not available.
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SELECT * WHERE { SELECT ?unionMember WHERE {
fma:AAL rdf.domain ?domain . [ <LIST> rdfrest* Ix.
!domain owl:unionOf ?list .— ] I rdffirst ?unionMember .
} 1
(a) initial query (b) property path query

Fig. 10. Example of two queries that would retrieve the definition in Figure @l-right
side. The initial query instantiates the beginning of the list. The property path query
(b) uses gets as input the beginning of the from (a) and using the * property path
operator traverses all the RDF list blank nodes binding the list elements in the variable
ZunionMember

be IETF registered. This technique is also known as Skolem IRIs [2]. The triple
store used in |[sparql.bioontology.org has already implemented Skolem IRI
replacement and our users can safely traverse RDF graphs with blank nodes [5].

The problem of retrieving RDF lists with SPARQL is, in theory, mitigated in
the SPARQL 1.1 specification. In SPARQL 1.1, the property path specification
defines enhanced navigational functionalities [20]. Property paths are defined as
regular expressions that help to traverse RDF graphs. A property path query
retrieves pairs of connecting nodes where the paths that link those nodes satisfy
a path defined with a regular expression. Figure [I0] shows the use of property
paths to retrieve the definition in the right-hand side of Figure @ Even though
property paths provide a convenient way to query structures such as RDF lists
with SPARQL, many current implementations of property paths—as of Novem-
ber 2011—have poor performance. Arenas and colleagues argued that the poor
performance is not the result of particularly bad implementations but rather is
due to the complexity of the specification itself [I]. Furthermore, according to
the current specification, a property path query using rdf:rest* /rdf:first does not
have to return the elements in the order they occur. The preamble of the prop-
erty paths specification acknowledges this issue but contends that adding order
to property paths would add significant complexity. In OWL, even though the
language uses RDF lists to implement sequences of class expressions, the order
of the elements does not change the “meaning.” A union of classes A and B is
the same as the union of B and A. Thus, many applications could potentially
use property paths without order. However, many ontology visualization and
editing tools like to maintain a fixed order of elements because humans tend to
remember the position of Ul components.

In summary, our experience shows that with or without property paths, re-
trieving OWL objects from a SPARQL endpoint can be challenging. The dis-
cussion that we presented in this section has described how OWL, RDF and
SPARQL converge to solve parts of the problem and which parts are still matter
of discussion in the Semantic Web community.
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6 Conclusions

In general, RDF stores work extremely well as backend technology for quering
ontology repositories due to their schema-less nature. In recent years, triple store
technology has improved dramatically. Our deployment shows that it is feasible
to publish 300+ ontologies—some with hundreds of thousands of classes and
millions of axioms—in a public shared SPARQL endpoint. Triple stores have also
become an important component in the Web of Data due to the standarization
and adoption of RDF and SPARQL.

The BioPortal community had demanded access to our data via the SPARQL
query language and in this paper we describe some of the design issues behind
the implementation and deployment of [sparql.bioontology.org. Our use of
SPARQL is different from many other use cases because our data are primar-
ily ontologies themselves and not data about individuals. Our experience shows
that SPARQL and a small amount of reasoning can be particularly powerful in
providing easy access to common attributes from our dataset, such as preferred
names, synonyms, definitions and taxonomies—even though ontology authors
use different RDF properties to represent these attributes. However, our experi-
ence also highlighted challenges in running a shared open SPARQL endpoint. We
can overcome these challenges if we encourage developers to conform to a set of
simple best practices. Finally, because our dataset includes OWL ontologies, we
need to use/sparql.bioontology.org to query the structure of these ontologies.
Our experience shows that exposing OWL through a SPARQL endpoint poses
a number of challenges. In future work, we plan to develop a set of SPARQL
query templates to make it easier for others to explore the structure of these
ontologies through [sparql.bioontology.org.
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