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Abstract. The performance of the elliptic curve method (ECM) for in-
teger factorization plays an important role in the security assessment
of RSA-based protocols as a cofactorization tool inside the number field
sieve. The efficient arithmetic for Edwards curves found an application by
speeding up ECM. We propose techniques based on generating and com-
bining addition-subtracting chains to optimize Edwards ECM in terms of
both performance and memory requirements. This makes our approach
very suitable for memory-constrained devices such as graphics processing
units (GPU). For commonly used ECM parameters we are able to lower
the required memory up to a factor 55 compared to the state-of-the-art
Edwards ECM approach. Our ECM implementation on a GTX 580 GPU
sets a new throughput record, outperforming the best GPU, CPU and
FPGA results reported in literature.
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1 Introduction

Today, more than 25 years after its invention by Hendrik Lenstra Jr., the elliptic
curve method [24] (ECM) remains the asymptotically fastest integer factoriza-
tion method for finding relatively small prime factors of large integers. Although
it is not the fastest general purpose integer factorization method, when factoring
a composite integer n = pq with p ≈ q ≈ √

n the number field sieve [32,23] (NFS)
is asymptotically faster, it has recently received a renewed research interest due to
the discovery of an interesting normal form for elliptic curves introduced by Ed-
wards [13]. From a cryptologic point of view the practical performance of ECM is
important since it is used to rapidly factor many small (up to one or two hundred
bits) integers inside NFS. This is illustrated by the fact that it is estimated that
five to twenty percent (cf. Section 2.2 why this is hard to estimate) of the total wall-
clock time was spent in ECM in the current world-record factorization of a 768-bit
RSA number [20] (and it is expected that this percentage will grow for larger fac-
torizations). Using ECM as a tool to factor many small numbers inside NFS is
an active research area by itself. Offloading this work to reconfigurable hardware
such as field-programmable gate arrays is studied in [37,16,11,17,25,40] while [5,4]
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considers parallel architectures such as graphics processing units (GPUs) and the
Cell broadband engine architecture. A comparison between software and hard-
ware based solutions is presented in [21]. Traditionally, ECM is implemented us-
ing Montgomery curves [26] and uses the various techniques described in [39]. The
most-widely used ECM implementation is GMP-ECM [41] and this implementa-
tion, or modifications to it, is responsible for setting all recent ECM record fac-
torizations (see a description of some of these record factorizations in [8]). After
the invention of Edwards curves Bernstein et al. explored the possibility to use
these curves in the ECM setting [3]. Hisil et al. [19] published a coordinate system
for Edwards curves which results in the fastest known realization of curve arith-
metic. A follow-up paper by Bernstein et al. discusses the usage of these “a = −1”
twisted Edwards curves [1] for ECM. The speedup from switching to Edwards
curves comes at a price, addition chains [35] (or addition-subtraction chains [28])
equipped with large windowing sizes [9] are used (cf. [6] for a summary of these
techniques). The memory requirement for Edwards ECM grows roughly linearly
with the input parameters of ECM while a small constant number of residues mod-
ulo n are sufficient when using Montgomery curves.

In this paper we optimize ECM by exploiting the fact that the same scalar
is often used when computing the elliptic curve scalar multiplication (ECSM),
allowing one to prepare particularly good addition-subtraction chains for these
fixed scalars. Our approach is inspired by the ideas used in the ECM implemen-
tation by Dixon and Lenstra [12] from 1992. In [12] the total cost to compute the
ECSM, in terms of point doubling and point additions, is lowered by testing if
the computation of the ECSM using batches of small prime products is cheaper
(requires fewer point additions) than processing the primes one at a time (or all
in one big batch). We generalize this idea: many billions of integers, which are
constructed such that they can be computed using an addition-subtraction chain
with a high doubling/addition ratio, are tested for smoothness and factored. By
fixing different popular elliptic curve scalar values used in ECM inside NFS we
are able to combine some of these integers using a greedy approach. This results
in a more efficient ECSM algorithm with a smaller memory footprint. To il-
lustrate, compared to the cofactorization setting considered by Bernstein et al.
in [5,4] (using the parameter B1 = 213) the techniques from this paper reduce
the memory by a factor 55. This makes our approach particularly interesting
for environments where the memory (per thread) is constrained; e.g. GPUs. We
illustrate the practical benefits by implementing this approach for GPUs: setting
a new throughput speed record compared to the current CPU, GPU and FPGA
based results reported in literature. The best addition-subtraction chains found
for the various popular B1 values can be found online [7].

This paper is organized as follows. After recalling the preliminaries in Section 2
the notation and basic idea behind elliptic curve constant scalar multiplication
is discussed in Section 3. Section 4 explains how to combine these chains such
that they might result in a faster and more memory efficient ECM. Section 5
explains a side-effect why certain chains require more modular multiplications
and Section 6 presents the obtained results. Section 7 concludes the paper.
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2 Preliminaries

2.1 The Elliptic Curve Method

The elliptic curve method (ECM) for integer factorization [24] is analogous to the
Pollard p−1 integer factorization method [33] and attempts to factor a composite
integer n. The general idea behind ECM is as follows (we follow the description
from [24]). First, pick a random point P and construct an elliptic curve E over
Z/nZ such that P ∈ E(Z/nZ) (cf. [22, Sec. 2.B]). Next, compute the elliptic
curve scalar multiplication Q = kP ∈ E(Z/nZ). The positive integer k is selected
such that it is divisible by many small prime powers: e.g. k = lcm(1, 2, . . . , B1)
for some bound B1 ∈ Z. If for a prime p dividing n the order #E(Fp) is B1-
powersmooth (an integer is defined to be B-powersmooth if none of the prime
powers dividing this integer is greater than B) then #E(Fp) | k. In other words,
Q = kP and the neutral element of the curve become the same modulo p. In
this event we have p | gcd(n, Qz), where Qz is the z-coordinate of the point Q
when using projective Weierstrass coordinates. If gcd(n, Qz) �= n then we have
split n.

Hasse proved (see e.g. [36, Theorem 1.1]) that the order #E(Fp) is in the
interval [p + 1 − 2

√
p, p + 1 + 2

√
p]. The advantage of ECM is that one can

randomize the group order by trying different curves. It has been shown in [24]
that the (heuristic) run-time of ECM depends mainly on p, the smallest non-
trivial prime divisor of n, and can be expressed as

O(exp((
√

2 + o(1))(
√

log p log log p))M(log n))

where M(log n) represents the complexity of multiplication modulo n and the
o(1) is for p → ∞. The approach described here is often referred to as “stage 1”.
There is a “stage 2” continuation for ECM which takes as input a bound B2 ∈ Z
and succeeds (in factoring n) if Q = kP has prime order � (for B1 < � < B2) in
E(Fp). This means that #E(Fp) is B1-powersmooth except for one prime factor
which is below B2. There are several techniques [10,26,27] how to perform stage
2 efficiently. In the following we will focus on stage 1 only.

2.2 Cofactorization Using ECM

The relation collection phase, one of the two main phases of NFS, generates a lot
of composite integers which need to be tested for powersmoothness. This is done
using different factorization techniques and is denoted as the cofactorization
phase. To illustrate, the total time spent in the cofactorization procedure was
roughly one third of the sieving time when factoring the 768-bit RSA modulus
in [20]. Note that this one third includes the time of pseudo primality tests and
different factorization methods: quadratic sieve [34], Pollard p − 1 [33] and ECM.
In this cofactorization phase only composites up to 140 bits were considered and
ECM was used only for composites up to 109 bits. The parameters for ECM
varied depending on the size of the composites and ranged from B1 = 150 to
B1 = 500 where often only a single curve was tried with a maximum of around
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Table 1. Performance comparison between GMP-ECM and EECM-MPFQ using the
“a = −1” twisted Edwards curves in terms of modular multiplications (M) and squar-
ings (S) together with the required number of residues modulo n (R) which needs to
be kept in memory.

B1
GMP-ECM [41] EECM-MPFQ [3]

#S #M #S+#M #R #S #M #S+#M #R

256 1 066 2 025 3 091 14 1 436 1 638 3 074 38
512 2 200 4 210 6 410 14 2 952 3 183 6 135 62

1024 4 422 8 494 12 916 14 5 892 6 144 12 036 134
8192 35 508 68 920 104 428 14 47 156 45 884 93 040 550

eight curves. Observing the trend of past record factorizations, it is conceivable
that cofactorization becomes more important in bigger factorizations (cf. [5] for
more detailed arguments about the significance of ECM in NFS).

2.3 Montgomery versus Edwards Curves

The main motivation to use Edwards (over Montgomery) curves is performance.
There is one implementation of ECM using Edwards curves available: EECM-
MPFQ. This implementation includes the “a = 1” Edwards curves approach
from [3] and the “a = −1” Edwards curves approach from [1]. The a = −1
Edwards ECM approach is the fastest in practice and we use this as the base
setting to compare to. Table 1 compares the required number of multiplications
and squarings required in GMP-ECM and EECM-MPFQ for different typical
B1 values used in ECM when used as a cofactorization method in NFS. These
numbers show that using Edwards curves results in fewer modular multiplica-
tions and squarings. However, the required storage for GMP-ECM (Montgomery
curves) is independent of B1 while it grows almost linearly with the size of B1

and is significantly higher, due to the use of windowing based methods, for
EECM-MPFQ (Edwards curves, see [3, Table 4.1]).

3 Elliptic Curve Constant Scalar Multiplication

Most of the addition-subtraction chains based algorithms in practice use a w-
bit windowing technique, for some (optimal) width w, to reduce the number of
required elliptic curve additions. The total number of additions may be signifi-
cantly reduced by using this approach but one also needs to store more points:
2w−1 when using sliding windows [38]. In environments where the available mem-
ory per thread is low, these methods cannot be used or one is forced to settle
for a suboptimal window size. A prime example of such a platform are graphics
processing units (GPUs); one of the latest GPU architectures [29] (Fermi) shares
64 kilobyte fast shared memory per 32 processors and each processor typically
time-shares multiple threads (e.g., 16 to 32 corresponding to 128 to 64 bytes per
thread).
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We investigate two approaches to lower the number of elliptic curve additions
and the storage required to compute the scalar product. Our approach is inspired
by the results reported by Dixon and Lenstra [12]. Suppose we have a scalar
k = lcm(1, . . . , B1) =

∏�
i=1 pi, where the pi are primes which can occur multiple

times. Typically, the ECSM is implemented processing one such pi at a time [39].
In [12] it is suggested to process the pi in batches ; i.e. multiply a batch of pi’s at
a time such that the weight of the product w(

∏
i pi), the number of ones in the

binary representation of
∏

i pi, is (much) lower than the sum of the individual
weights

∑
i w(pi). If this is the case then the number of required EC-additions

is reduced when using the straight forward double-and-add approach (which
does not require to store any additional precomputed points). Such low-weight
products can be constructed by greedily searching through b-tuples of the pi

where b is small. In [12] b was at most 3 which reduced the total weight by
approximately a factor three. As an example the following triple is given

1028107 · 1030639 · 1097101 = 1162496086223388673
w(1028107) = 10, w(1030639) = 16, w(1097101) = 11,

w(1162496086223388673) = 8,

where the product of primes of weights 10, 16, and 11 results in a integer of weight
eight. The resulting composite integer can be computed using an addition chain
requiring only seven additions and 60 doublings using the naive double-and-add
algorithm.

In this section we explore different methods to find numbers which can be con-
structed using even better (higher) doubling/addition ratios. These methods do
not aim to construct sequences by combining the different pi (as in [12]) but we
propose an opposite approach by factoring many integers which are the result of
addition-subtraction chains with high doubling/addition ratios and subsequently
combining these integers such that all pi’s are used. These addition-subtraction
chains are constructed such that they do not require any large lookup tables.
Notice that the information encoding the sequence of arithmetic operations has
to be stored (in all approaches). This does not pose a problem since this in-
formation is constant and can be shared among all the computational units (or
streamed to the units or even hardcoded) and hence does not result in additional
overhead in practice.

In the remainder of the paper we denote addition-subtraction chains simply
as chains.

3.1 Chains with Restrictions

In order to generate integers which can be computed using a chain with a high
doubling/addition ratio we need to construct and denote chains of a certain
length m. A chain is a sequence of doublings, additions and subtractions denoted
by D, A and S respectively. A doubling can always be assumed to apply to the
previously generated element in the chain (instead of doubling any previous
element), since one can reorder the symbols such that doubling always occurs
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on the last element without changing the result of the chain. In some cases this
might result in a shorter (more efficient) sequence when the same element is
doubled multiple times. Let us define the set of symbols O as

O = {D} ∪ {Ai,j | i, j ∈ Z, i > j} ∪ {Si,j | i, j ∈ Z, i > j},
where the subscripts indicate on which element in the chain we compute (this is
made more precise later). The set of all m-tuples, ordered lists of m elements, of
symbols in O with the restriction that no elements can be used which have not
yet been generated is

Om = {(om−1, . . . , o0) ∈ Om |ok ∈ {D}∪{Ai,j | i ≤ k}∪{Si,j | i ≤ k}, 0 ≤ k < m}.
In order to construct a chain from such an m-tuple of symbols we define functions
σm : O × Zm+1 → Zm+2 such that (o, (tm, . . . , t0)) 
→ (tm+1, tm, . . . , t0) where

tm+1 =

⎧
⎨

⎩

2tm if o = D,
ti + tj if o = Ai,j ,
ti − tj if o = Si,j .

Given an m-tuple of symbols (om−1, . . . , o0) ∈ Om the (m + 1)-tuple of integers
associated to this chain is σm−1(om−1, σm−2(om−2, . . . , σ0(o0, 1) . . .)) and the
resulting integer produced by this chain is tm. As an example consider the 7-tuple
of symbols (S6,0, D, D, A3,0, D, D, D) ∈ O7 which corresponds to the 8-tuple of
integers in the chain (35, 36, 18, 9, 8, 4, 2, 1) computed as

σ6(S6,0, σ5(D, σ4(D, σ3(A3,0, σ2(D, σ1(D, σ0(D, 1))))))).

The function σm is the correspondence between a tuple of symbols and the actual
chain. The example shows how to compute the resulting integer 35 using one
subtraction, one addition and five doublings.

The set of tuples Om consists of the most generic type of chains, a signif-
icant amount of tuples corresponds to chains which perform useless (unneces-
sary) computations. An example is computing the addition (or subtraction) of
two previous values without using this result. To address this we define a more
restricted set of tuples Pm ⊂ Om as

Pm = {(om−1, . . . , o0) ∈ Om |ok ∈ {D}∪{Ai,j | i = k}∪{Si,j | i = k}, 0 ≤ k < m}.
These additional restrictions ensure that, just as for the doubling, we only add or
subtract to the last integer in the sequence to obtain the next one. Such chains
are known as Brauer chains or star addition chains [18, Section C6].

In this setting we write Aj and Sj for Ai,j and Si,j , respectively, and k > 0
subsequent instances of D are denoted by Dk. The previous example can now
be written as S0D

2A0D
3 ∈ P7 by abusing the notation: omitting the brackets

and comma’s. In practice we would generate sequences of symbols such that
a number of elliptic curve additions A and doublings D are fixed and look at
sequences of symbols of length m = A + D which use A times Aj or Sj and
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D times D. Different tuples might compute the same integer result. Using our
example, the number 35 can be obtained with D = 5 and A = 2 in different
ways

35 = (23 + 1) · 22 − 1 S0D
2A0D

3 ∈ P7

= (24 + 1) · 2 + 1 A0DA0D
4 ∈ P7.

3.2 Generating Chains

We discuss how to efficiently generate the resulting integers tm in a low-storage
and no-storage setting.

The Low-Storage Setting. Let A be the number of elliptic curve additions
and D the number of elliptic curve doublings (with D ≥ A). The generation
of all the tuples in Pm, with m = A + D results in many identical integers
tm. Removing these duplicate integers can be achieved by first generating and
storing all the resulting integers and subsequently sorting and keeping exactly
one of consecutive equal integers. To avoid storing all the resulting integers for a
given pair (A,D), which requires a significant amount of storage as we will see
later, and to avoid sorting this huge data set we define a more restricted set of
rules Qm ⊂ Pm ⊂ Om as follows

Qm =
{
(om−1, . . . , o0) ∈ Pm | o0 = D, om−1 ∈ {Ai, Si}, and for 0 < k < m − 1:

ok ∈ {D} ∪ {Ai, Si}, ok ∈ {Ai, Si} ⇒ ok−1 = D
∧ (i = 0 ∨ oi−1 ∈ {A�, S�})

}
.

The restrictions used in the definition of Qm ensure that the resulting integer is
odd and only addition (or subtraction) of an odd number to the current (even)
number is allowed. This approach significantly reduces the amount of chains
which produce the same resulting integer at the cost of slightly reducing the
number of unique integers produced. To illustrate, for D = 50 the total number
of tuples generated by P53 is more than 140 times higher compared to Q53 while
the number of unique odd resulting integers is only 1.09 times higher.

The list of m + 1 integers ui corresponding to the m-tuple of symbols from
Qm can be efficiently generated recursively using

ui+1 =
{

2ui

ui ± uj for j < i and 2 | ui, 2 � uj

with u0 = 1 and ensuring that the final operation is not a doubling (to make
the resulting integer odd). Hence, the next integer in the sequence can always
be obtained by doubling or adding a previous odd number uj to the current
even integer ui. The required storage depends on which uj are used in subse-
quent additions and at which indices they are used. In practice we generate all
sequences using a fixed number of doublings D and additions A making sure
that the resulting storage requirement is never too large.

A sequence of additions and doublings corresponding to the chains resulting
from Qm looks like

AiA−1D
dA−1 ... Ai1D

d1Ai0D
d0 =(AiA−1D)DdA−1−1... (Ai1D)Dd1−1(Ai0D)Dd0−1

(1)
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with D =
∑A−1

i=0 di, di > 0, and indices ij that satisfy the restrictions of Qm,
i.e., ij takes one of the values

∑h
g=0(dg + 1) for −1 ≤ h < j. Such a sequence

starts with a doubling, ends with an addition and an addition is always preceded
by a doubling. Hence, there are

(D−1
A−1

)
choices for the order of the A − 1 pairs

(Aij D) and the D − A doublings D. Since every addition can be substituted
by a subtraction the number of possibilities is multiplied by a factor 2A. The
indices ij can be chosen in A! ways, hence the total number of resulting integers
produced by Qm is

(
D − 1
A − 1

)
·A! · 2A = 2A · A ·

A−1∏

i=1

(D − A + i).

The No-Storage Setting. The second setting we consider is constructing
chains which do not require any additional stored points, besides the in- and
output (and possibly some auxiliary variables required to calculate the elliptic
curve group operation). This means we are looking for integers which can be
computed using chains which only use doublings and add or subtract the input
point. We can define the set of tuples Rm ⊂ Qm as Rm = {(om−1, . . . , o0) ∈
Qm | ok ∈ {A0, S0, D}, 0 ≤ k < m}. All resulting integers of no-storage chains
which can be constructed using A elliptic curve additions and D elliptic curve
doublings are of the form

2D +
A−1∑

i=0

±2ni, with 0 = n0 < n1 < . . . < ni < . . . < nA−1 < D.

This follows from (1) by setting ij = 0; we have ni =
∑i

g=1 dA−g. Using the
same argument as in the low-storage setting the number of resulting integers
generated by Rm is

(D−1
A−1

) ·2A. Compared to the low-storage setting the number
is reduced by a factor of A!, reflecting the missing choice of the indices ij.

4 Combining Chains

Recall that, given a bound B1, we want to perform an elliptic curve scalar
multiplication with the integer k =

∏�
i=1 pi = lcm(1, . . . , B1) where the product

ranges over � (not necessarily distinct) primes. We can get rid of the problems
posed by the primes 2 in this product by noticing that they can be handled by a
sequence of doublings at the end of the ECSM and assuming in the following that
all si are odd. The techniques from the previous section provide us with a lot of
integers which can be constructed using a known number of additions (here we
count subtractions as additions) and doublings. Since different chains can lead
to the same integer we pick for each of these integers one chain (preferably the
one with the lowest cost). In this way we get a list of distinct integers, each with
an associated chain. We index this list by an index set I and call si the integer
corresponding to i ∈ I. For i ∈ I denote by add(si) resp. dbl(si) the number
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of additions resp. doublings in the chain and by {si,1, . . . , si,ti} the multiset of
the primes in the prime decomposition of si. Furthermore, let cost(si) be the
cost of performing a scalar multiplication with si using the associated chain. A
reasonable choice for Edwards curves is cost(si) = 7dbl(si)+8add(si)+1 which
will be discussed in the next section.

Ideally, we want to find a subset I ′ ⊂ I such that k | ∏
i∈I′ si and

∑
i∈I′ cost(si)

is minimal. To facilitate our task we will modify this in two ways. If the product
in the first condition is bigger than k we do more work than necessary. This
can lead to a lower cost, but we assume that replacing the first condition by
k =

∏
i∈I′ si will not increase the minimum of

∑
i∈I′ cost(si) significantly. The

second modification is the replacement of
∑

i∈I′ cost(si) by
∑

i∈I′ add(si). To
explain why we think that this does not increase the minimum too much we
consider subsets I ′ for which

∑
i∈I′ cost(si) is close to the minimum. Then most

si have a high ratio dbl(si)
add(si)

and therefore we have for most of them si ≈ 2dbl(si).
Since

∏
i∈I′ si = k the sum

∑
i∈I′ dbl(si) ≈ log2(k) does not vary too much.

Furthermore, the summand 1 in the cost function is the least significant term
and the cardinality of I ′ does not vary much. We are aware that the second
modification is more delicate than the first one, but, as explained below, we will
generate many sets I ′ and will pick the best one amongst them using the more
costly function cost(si).

The condition k =
∏

i∈I′ si implies that every si in this product is B1-
powersmooth which suggests the following two stage approach:

1. Restrict to Î = {i ∈ I | si is B1-powersmooth}.
2. Find a subset I ′ ⊂ Î such that the multisets

⋃
i∈I′{si,1, . . . , si,ti} =

{p1, . . . , p�} coincide and that
∑

i∈I′ add(si) is minimal.

Testing a large list of numbers for B1-powersmoothness can be done using the
method from [15, Section 4]. The main idea is to build a product tree from the
list, replace the root node R (the product of all numbers of the list) by k mod R
(where k = lcm(1, . . . , B1) is precomputed) and then tree-wise replace each node
by the residue of k modulo the node. The leaves resulting in 0 contained B1-
powersmooth numbers and their factorizations can be obtained by other means.

Finding an optimal set I ′ is in general a difficult problem and has been studied
in [31]. We choose to use a greedy approach which produces satisfactory results.
We start with an empty set I ′ and the multiset M = {p1, . . . , p�} of primes to
be matched. As long as M is non-empty we select an integer si =

∏ti

j=1 si,j with
{si,1, . . . si,ti} ⊂ M such that the ratio dbl(si)

add(si)
is high and replace I ′ by I ′ ∪ {i}

and M by M \ {si,1, . . . si,ti}. This may fail because we might not be able to
satisfy the condition {si,1, . . . si,ti} ⊂ M at a given point. There are several ways
to overcome this problem, e.g., we could increase our supply of si by generating
more chains. Another way consists in aborting the greedy search at this point,
getting k = c·∏i∈I′ si for some integer c. Using the method of Dixon/Lenstra, we
can search for a decomposition of c into several factors, each having a good chain.
For the sizes of B1 considered in this paper, namely B1 ≤ 8192, c consisted of
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very few primes and was often 1. Therefore the usually lower doubling/addition
ratio of the c-part does not pose a problem for small B1.

A refinement to this approach is to also take the size of the prime factors
si,j into account. A strategy could be to prefer choosing integers si which have
mostly large prime divisors, since the majority of the primes pi is large. The idea
is to attach a score to a B1-powersmooth integer given its prime factorization
with respect to the currently unmatched prime factors in k. For a multiset N of
primes bounded by B1 the ratio of j-bit primes is defined as

aj(N) :=
#{p ∈ N | �log2(p)� = j}

#M
,

where 1 ≤ j ≤ �log2(B1)�. Given M , the multiset of currently unmatched primes,
the score of si is defined as

score

⎛

⎝si =
ti∏

j=1

si,j , M

⎞

⎠ =
�log2(B1)�∑

h=1:
ah(M) �=0

ah({si,1, . . . , si,ti})
ah(M)

The higher the score the more small prime divisors are likely to be present. In
general, for a given ratio, we select the integers which have a low score.

To illustrate, consider B1 = 1024 where the initial ai are

a2 = 0.032, a3 = 0.037, a4 = 0.021, a5 = 0.053, a6 = 0.037,
a7 = 0.069, a8 = 0.122, a9 = 0.229, a10 = 0.399

(with
∑10

i=2 ai = 1). Almost 40 percent of all the primes fall in the largest (10-
bit) category. An example of a low score-integer is 11529215054666795009 = 743·
719 ·677 ·461 ·457 ·449 ·337 where the size of the smallest prime is 9-bit, the score
is 3.57 and this integer can be computed using 63 doublings and five additions
as A0D

11A0D
12A0D

10A0D
28A0D

2 ∈ R68. On the other hand, an example of a
high-score integer, consisting of mainly small primes, is 1048575 = 41·31·11·52·3,
its score is significant higher (29.62) and it can be computed with 20 doublings
and a single subtraction as S0D

20 ∈ R21.
This approach using scores is outlined in Algorithm 1. Note that the scores are

recalculated each time an si is chosen. In practice one could reduce the amount
of these costly recalculations by picking several si in lines 10-13 of the algorithm;
in this case one has to check that the union of the prime factors of the chosen
si is still a multisubset of M .

A Randomized Variant. In the current state, Algorithm 1 returns a single
solution given a set of input parameters. To increase the amount of different
subsets I ′, and thereby hopefully improving the results, we randomize the se-
lection process of the index that is added in lines 10-13 of the algorithm. With
probability x ∈ R (0 < x < 1) select the si corresponding to score1 or, with
probability 1 − x, skip it and repeat this procedure for score2 and so on. If we
have reached the end of the list (after j trials) one could apply a deterministic
choice.
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Algorithm 1. Given a bound B1 and a set of B1-powersmooth integers {si | i ∈
Î}, which can be computed with a chain using add(si) resp. dbl(si) elliptic curve
additions resp. doublings, together with the prime factorization of these integers
(si =

∏
j si,j) the algorithm attempts to output triples (sj , add(sj), dbl(sj)) such

that lcm(1, . . . , B1) = c · ∏
j sj for a small integer c. This algorithm considers

scores ≤ T only and combines integers si for which
dbl(si)
add(si)

≥ r where r starts

at rh and is decreased until rl.

Input:

⎧
⎪⎪⎨

⎪⎪⎩

Bound B1 ∈ Z, we have lcm(1, . . . , B1) =
∏�

i=1 pi with pi prime.
Set of integers {si | i ∈ Î} with si =

∏
j si,j for si,j prime and i ∈ Î.

Upper and lower bound on the doubling/addition ratio: rh and rl.
A threshold value for the score: T.

Output: Triples (si, add(si), dbl(si)) and c such that c ·
∏

i

si = lcm(1, . . . , B1).

1. M ← {p1, . . . , p�}, I ′ ← ∅
2. for r = rh to rl do
3. found ← true
4. while found=true do
5. found ← false, j ← 0
6. for i ∈ Î do
7. if {si,1, . . . , si,ti} ⊂M and

dbl(si)

add(si)
≥ r and score(si, M) ≤ T then

8. j ← j + 1, scorej ← (score(si, M), i)
9. sort scorei for 1 ≤ i ≤ j with respect to score(si, M)

10. if j ≥ 1 then
11. i← index from score1, output (si, add(si), dbl(si))
12. I ′ ← I ′ ∪ {i}, M ←M \ {si,1, . . . , si,ti}
13. found ← true
14. output {(si, add(si), dbl(si)) | i ∈ I ′} and c =

∏
p∈M p

5 Additional Multiplications

The fastest arithmetic for Edwards curves is due to Hisil et al. [19]. They pro-
pose to use extended twisted Edwards coordinates, which are twisted Edwards
coordinates plus an auxiliary coordinate. This allows faster addition but slower
doubling. Using a mixing technique, by switching between extended twisted Ed-
wards and regular twisted Edwards, the overall cost for scalar multiplication
is reduced [19]. This is realized by performing the doublings using the cheaper
regular twisted Edwards coordinates when a doubling is followed by a doubling.
When an addition is required after a doubling one can use the doubling for-
mula in the extended twisted Edwards coordinates (which does not need the
auxiliary coordinate as input) at the cost of an extra multiplication to compute
the auxiliary coordinate of the result. Next, the fast addition is performed in
extended twisted Edwards coordinates; one multiplication (to compute the aux-
iliary coordinate of the output) can be saved, cancelling the extra multiplication
used when doubling, since a doubling is always performed after an addition in
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Table 2. The left table shows the number of integers (#int) generated with an addition-
subtraction chain using A and D elliptic curve additions and doublings respectively.
All these integers were tested for 2.9 · 109-powersmoothness and, if smooth, the prime
divisors are stored. The bold ranges indicate that 231 random integers per single A,
D combination were tested for smoothness instead of the full range. The right table
shows the number of unique B1-powersmooth integers in the no-storage and low-storage
setting for different values of B1.

No-storage setting Low-storage setting
A D #int A D #int
1 5 − 200 3.920 · 102 1 5 − 250 4.920 · 102

2 10 − 200 7.946 · 104 2 10 − 250 2.487 · 105

3 15 − 200 1.050 · 107 3 15 − 250 1.235 · 108

4 20 − 200 1.035 · 109 4 20 − 250 6.101 · 1010

5 25 − 200 8.114 · 1010 5 25 − 158 2.956 · 1012

5 159 − 220 1.331 · 1011

6 30 − 150 9.150 · 1011 6 60 − 176 2.513 · 1011

7 35 − 66 9.900 · 1010

Total 1.096 · 1012 3.403 · 1012

B1 No-Storage Low-Storage
256 2.423 · 105 9.210 · 106

512 1.470 · 106 3.159 · 107

1 024 5.691 · 106 7.861 · 107

8 192 9.352 · 107 4.400 · 108

2.9 · 109 2.274 · 1010 3.997 · 1010

ECSM-algorithms. This approach assumes that both inputs of the elliptic curve
addition are in extended twisted Edwards coordinates. This is the case for
double-and-add algorithms and (signed) windowing algorithms where the com-
putation of the auxiliary coordinates of the lookup table are a minor overhead.

In both our settings, where we consider low- and no-storage, this does not hold.
The computation of the large elliptic curve scalar product is done by processing
batches of prime products (the si) at a time. All the additions or subtractions
required in the chain to compute si require that the points are in extended
twisted Edwards coordinates. When required, the odd intermediate results are
stored in extended twisted Edwards coordinates at a cost of a single additional
multiplication. The cost of computing a low-storage chain (om−1, . . . , o0) ∈ Qm

resulting in si is increased by x(si) multiplications, where x(si) = #{j | ∃h : oh ∈
{Aj , Sj}, 0 ≤ h < m}; i.e. the unique number of indices used in the additions and
subtractions. Therefore we get for the cost function from the previous section
cost(si) = 7dbl(si) + 8add(si) + x(si). In the no-storage setting we always have
x(si) = 1 leading to the choice for cost(si) given at the beginning of the previous
section. In total we have #{chains used} additional multiplications in the no-
storage setting and a potentially higher number in the low-storage setting. We
can save one multiplication due to the sequence containing the power of 2 (which
consists of doublings only) and another multiplication if we assume that the input
point is already in extended twisted Edwards coordinates.

6 Results

Using the rules given in Section 3.2 for both the no-storage and the low-storage
setting, we generated more than 1012 integers for many choices of the number of
additions A and doublings D. Table 2 summarizes the ranges we have covered
where bold ranges (in the low-storage setting) indicate that only 231 random
integers were generated instead of the full range. All these integers were subjected
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Table 3. The table shows the number of modular multiplications (M) and squarings
(S) required to calculate A elliptic curve additions and D doublings for various B1

parameters when factoring an integer n with ECM. The memory required is expressed
as the number of residues (R), integers modulo n, which are kept in memory. The
performance speedup PS (in terms of #M+#S) and memory reduction MR compared
to the ECM approach from [1] using “a = −1” twisted Edwards curves is given.

B1 #M #S #M + #S PS A D #R MR

256 [1] 1 638 1 436 3 074 69 359 38
No-storage 1 400 1 444 2 844 1.08 38 361 10 3.80
Low-storage 1 383 1 448 2 831 1.09 35 362 14 2.71

512 [1] 3 183 2 952 6 135 120 738 62
No-storage 2 842 2 964 5 806 1.06 75 741 10 6.20
Low-storage 2 776 2 964 5 740 1.07 65 741 18 3.44
1 024 [1] 6 144 5 892 12 036 215 1 473 134
No-storage 5 596 5 912 11 508 1.05 141 1 478 10 13.40
Low-storage 5 471 5 904 11 375 1.06 123 1 476 18 7.44
8 192 [1] 45 884 47 156 93 040 1 314 11 789 550
No-storage 43 914 47 160 91 074 1.02 1 043 11 790 10 55.00
Low-storage 42 855 47 136 89 991 1.03 878 11 784 18 30.56

to 2.9 · 109-powersmoothness tests which reduced the number of integers by
about two orders of magnitude. This large powersmoothness-bound was chosen
to facilitate searching for efficient chains for much larger B1 parameters. From
the reduced set of integers we extracted those that are B1-powersmooth for the
values of B1 used in this paper (see right part in Table 2). These computations
were done on five 8-core Intel Xeon E5430 (2.66GHz) and took more than a year,
i.e., in total over 40 core years. The smoothness testing required most of the run-
time and up to 4.6GB of memory. Using the approach outlined in Algorithm 1
one of these nodes was occasionally used for the combining experiments which
consisted of thousands of runs of the randomized greedy approach, each of them
taking only a couple of seconds for these low values of B1.

Table 3 shows the results obtained using Algorithm 1 on our dataset (see
Table 2). The memory required is expressed in the number of residues (R),
integers modulo n, which need to be kept in memory. Here we assume that
extended twisted Edwards coordinates are used, i.e., every point is represented
by four coordinates. In the setting of EECM-MPFQ [3,1] we assume that an
optimal window size is used and that besides the window table only the input
point needs to be kept in memory while we assume that two points (the input
point and the current active point) are required in the no- and low-storage
setting. The implementation of the elliptic curve group operation is assumed to
require at most two auxiliary variables (residues). Hence, the no-storage setting
requires memory for 2 × 4 + 2 = 10 residues modulo n. The low-storage results
presented in Table 3 require to store at most two additional points (8 more
residues modulo n compared to the no-storage setting). This is still significantly
less compared to the approach used in [3,1].
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6.1 Application to GPUs

When running ECM on memory constrained devices, like GPUs, the large num-
ber of precomputed points required for the windowing methods cannot be stored
in fast memory. Typically one is forced to settle for a (much) smaller window
size reducing the advantage from using twisted Edwards curves. For example,
in [5] no large window sizes are used at all, the authors remark: “Besides the
base point, we cannot cache any other points”. Memory is also a problem in [4],
the faster curve arithmetic from Hisil et al. [19] is not used since this requires
storing a fourth coordinate per point.

From the data given in Table 3 it becomes clear that our approach reduces
the memory requirements significantly. For example, the memory required to run
ECM in the cofactorization setting on GPUs using B1 = 8 192 can be reduced
by a factor 55. This setting was already considered in [5,4] where the authors
were forced to reduce memory requirements by using suboptimal window sizes.
Hence, when using the methods described in this paper less memory is required
allowing the usage of the faster curve arithmetic and reducing the number of
elliptic curve additions required in the computation of the elliptic curve scalar
multiplication.

6.2 Performance Comparison

In order to measure the practical speedup of the methods described in this
paper we implemented the no-storage approach on GPUs. This implementation
uses the Compute Unified Device Architecture (CUDA) which facilitates the
development of massively-parallel general purpose applications for GPUs [30].
Our implementation is targeted at the third generation CUDA GPUs called
“Fermi” [29]. Table 4 compares the performance results of different hardware
platforms for B1 = 960 and B1 = 8192, numbers chosen such that we can directly
compare to results reported in the literature on other (hardware) platforms. For
B1 = 960, which is used as the example B1 value in [40,11] and not spending
as much effort as for B1 = 1024, we were able to construct a no-storage chain
requiring 1 371 doublings and 135 additions. The FPGA and GTX295 results are
quadratically scaled to 192-bit arithmetic to compare the different performance
results. The other GPU results are from [4] and this implementation is optimized
for the second generation CUDA GPUs. The pricing for this card is omitted since
it is no longer sold (this card was launched January 2009). The results on the
Intel i7-2600K CPUs have been obtained with the ECM implementation (using
Montgomery curves) from the NFS software suite [14] which is responsible for
all recent record NFS factorizations (e.g. [20]) and the EECM-MPFQ software
package [2] which uses Edwards curves. The FPGA results are from [11,40] and
the FPGA prices are taken from [40]. Note that the prices are for the GPU, CPU
or FPGA devices only; in order to get a fully operational system more hardware
is required. Note also that for all of the considered devices newer versions with
better price performance ratio exist, but we do not expect that these will change
this comparison significantly.



ECM at Work 481

Table 4. Performance comparison of ECM on different platforms (using the “a = −1”
twisted Edwards curves if available). The first table lists the different hardware proper-
ties. The second and third table state results for B1 = 960 and B1 = 8192 respectively.
The scaled number of curves are when using 192-bit moduli. The performance ratio
is the ratio between the GTX 580 no-storage row and the current row for the scaled
number of curves per 100 USD.

properties GPU CPU FPGA
GTX 295 GTX 580 Intel i7-2600K V4SX35-10 V4SX25-10

#cores 480 512 4 24 1
clock (MHz) 1 242 1 544 3 400 200 220
price (USD) - 400 300 468 298
#threads 46 080 8 192 4 24 1
#bits in moduli 210 192 192 202 135

performance (#curves), B1 = 960 performance
(1/sec) (1/sec, scaled) (1/100 USD, scaled) ratio

GTX 580, no-storage 171 486 171 486 42 872 1.00
GTX 580, windowing 79 170 79 170 19 793 2.17
Intel i7 [14] 13 661 13 661 4 554 9.41
Intel i7 [2] 8 677 8 677 2 892 14.82
V4SX35-10 [40] 3 240 3 586 766 55.97
V4SX25-10 [11] 16 000 7 910 2 654 16.15

performance (#curves), B1 = 8192

GTX 295 [4] 4 928 5 895 - -
GTX 580, no-storage 19 869 19 869 4 967 1.00
GTX 580, windowing 9 106 9 106 2 277 2.18
Intel i7 [14] 1 629 1 629 543 9.15
Intel i7 [2] 1 092 1 092 364 13.65

For the sake of comparison we also implemented Edwards ECM for GPUs
using the same 192-bit arithmetic but using the windowing based approach.
For B1 = 960 (B1 = 8192) we used a signed sliding window of size 26 (28),
precomputing and storing 25 (27) extended twisted Edwards coordinates. These
results are stated in Table 4 as well. On the GTX 580 the no-storage approach
is more than twice as fast as the approach based on windowing techniques.
This is significantly better than the theoretical numbers from Table 3. When
running exactly the same experiment on 96-bit (three 32-bit limbs instead of
six 32-bit limbs) moduli the number of curves per second for the no-storage
and windowing approach is 76 665 and 75 584 for B1 = 8 192 and 649 904 and
618 111 for B1 = 960, respectively. We think that this behaviour can be partially
explained by an increased memory usage for the windowing approach and a
better handling of the no-storage approach by the compiler since this approach
uses fewer variables.

Another interesting observation is that the FPGA performance per 100 USD
is lower than that of the CPU-based approaches. Furthermore, aided by the
no-storage approach outlined in this paper, the GPU performance is almost an
order of magnitude faster per 100 USD than the CPU and more than a order
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of magnitude faster compared to the fastest FPGA results. This suggests that
GPUs are the best platform, i.e. give the best performance / price ratio, for
integer cofactorization.

7 Conclusion

The relatively new Edwards curves combined with the fast arithmetic from ex-
tended twisted Edwards coordinates are faster compared to using Montgomery
curves. This speed-up comes at a price, namely a larger memory requirement
which, when optimizing for speed, grows roughly linearly in the size of B1,
whereas the memory requirement in the Montgomery curves setting is constant
and small. Inspired by the approach from Dixon and Lenstra and using the fact
that only a few popular B1-values are used in practice in NFS, we have presented
techniques to reduce the memory requirement significantly by doing precompu-
tations for these B1-values. In these precomputations we tested over 1012 inte-
gers coming from chains with a low addition/doubling ratio for smoothness and
combined them using a greedy approach. Our results show that we require signif-
icantly less memory compared to the current state-of-the-art Edwards ECM ap-
proach, and are even slightly faster. This makes our approach extremely suitable
for memory-constrained parallel architectures like GPUs. This is demonstrated
by our GPU implementation which sets a new ECM cofactorization throughput
speed record.
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