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Abstract. We develop a conceptual approach for probabilistic analysis of adap-
tive adversaries via Maurer’s methodology of random systems (Eurocrypt’02).
We first consider a well-known comparison theorem of Maurer according to
which, under certain hypotheses, adaptivity does not help for achieving a certain
event. This theorem has subsequently been misinterpreted, leading to a misrepre-
sentation with one of Maurer’s hypotheses being omitted in various applications.
In particular, the only proof of (a misrepresentation of) the theorem available in
the literature contained a flaw. We clarify the theorem by pointing out a simple
example illustrating why the hypothesis of Maurer is necessary for the compari-
son statement to hold and provide a correct proof. Furthermore, we prove several
technical statements applicable in more general settings where adaptivity might
be helpful, which can be seen as the random system analogue of the game-playing
arguments recently proved by Jetchev, Ozen and Stam (TCC’12).

1 Introduction

One of the key concepts in cryptographic security definitions and proofs is the notion
of indistinguishability [3]. In the information-theoretic setting, the simplest example
is how easy it is for a computationally unbounded adversary to distinguish two ran-
dom variables X and Y based on a single sample from either of the two variables. It
is not hard to see that the success probability of the optimal distinguishing algorithm
(the distinguisher’s advantage) is simply the statistical distance of the two probability
distributions for X and Y. Yet, the analysis of current cryptographic systems typically
requires much more than distinguishing two random variables. For instance, the related
cryptographic primitive of a pseudo-random function allows an adversary to make mul-
tiple queries and hence, obtain multiple related samples in order to distinguish between
either a truly random function or a pseudo-random one. Moreover, the distinguisher can
interact with the system by choosing the queries adaptively, i.e., based on the previous
queries and corresponding responses. Adversarial adaptivity is notoriously difficult to
deal with, not only in the context of pseudorandomness, but across the cryptologic land-
scape.

With the increasing number of sophisticated cryptographic schemes appearing in
the literature (e.g., authenticated encryption, compression functions, message authen-
tication codes), the level of complexity of proving even relatively straightforward se-
curity notions such as pseudorandomness or collision resistance becomes ever more
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involved and complicated. Even though the building blocks of the proofs rarely extend
beyond basic notions such as conditional probabilities, Bayes’ rule or basic concepts
from stochastic processes, combining these building blocks into a rigorous proof poses
a challenge in many cases. Consequently, developing a more conceptual approach to-
wards rigorous security analyses of adaptive adversaries is an important challenge in
theoretical cryptology.

Games and Random Systems. One of the general methods for security proofs is based
on “game-playing” [2l)8/16]. A common technique involves the introduction to the game
of a flag bad (initially set to false). The fundamental lemma of game playing (2,
§3.4] states that for games that are identical until bad, distinguishing between these
games is at most as hard as setting bad to true. Several common and a few new
techniques employed to prove preimage and collision security of compression functions
based on ideal primitives were recently abstracted using game playing by Jetchev, Ozen
and Stam [[7]].

A different approach to indistinguishability and probabilistic analysis of adaptive ad-
versaries is through the concept of random systems, as introduced by Maurer [11]. This
abstraction unifies many existing security proofs and it allows for proving new indistin-
guishability results. Intuitively, a random system takes a generally unbounded sequence
of inputs (queries) and produces an output (response) for each input using a specific
source of randomness. Random systems are rigorously modeled in such a way that they
exploit the input-output behavior via specifying (abstractly) a set of conditional proba-
bility distributions (see Definition [Tl for more details).

A distinguisher (see Definition[d)) can be thought of as another random system that
is allowed to query either one of the two random systems and that outputs a binary
decision bit at the end. Estimating the advantage in the case of non-adaptive adversaries
is often much simpler than estimating the advantage for adaptive ones. Maurer gave a
two step approach to deal with adaptive distinguishers effectively.

First, in analogy with the fundamental lemma of game playing, it is always possible
to rephrase the problem of upper bounding the advantage of any adversary in distin-
guishing two arbitrary random systems into one where an adversary has to provoke
an event instead [11,[14, Thm.1]. Most of the indistinguishability proofs indeed follow
along these lines.

Next, Maurer [11, Thm.2] presented a result stating that, under certain hypotheses,
adaptivity does not help to cause an event. Throughout the paper, we often refer to this
statement as the adaptive—non-adaptive (ANA) switching lemma (see Section [.1)). It
can also be used in the context of events that are meaningful in their own right, such as
finding collisions for a hash function.

Our Contribution. In this paper, we revisit and refine the currently existing tech-
niques based on random systems for bounding the advantage of an adaptive adversary
for provoking a certain event. Our contribution is twofold. On the one hand, we show
that Maurer’s phrasing of the ANA switching lemma has been been misinterpreted,
in the sense that an essential hypothesis has been omitted in subsequent applications.
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This applies to the only proof given in the literature (by Pietrzak [15, §3.2]) which
consequently contains an incorrect step. We restate and prove a corrected version that
luckily works for most uses of the lemma in the literature. We explain why the original
hypothesis is indeed necessary by providing a simple example where adaptivity does
help, yet, where the remaining hypotheses have been satisfied. On the other hand, we
examine existing techniques to bound the advantage of adaptive adversaries directly in
the context of random systems. This can be seen as a generalization of the earlier work
by Jetchev, Ozen and Stam [77].

The example is rather simple and intuitive: finding a fixed point in a uniformly
random permutation. Here, one can easily see that adaptivity is helpful after the first
query/response pair is obtained since (assuming that the first query has not produced a
fixed point) an adaptive adversary can choose its second query based on the response
to the first query and the condition that there is no fixed point yet (see Section [F.T).
Indeed, an adaptive adversary can already eliminate one choice for the second query
(two for the third and so on), as opposed to a non-adaptive adversary who commits
all of its queries in advance. Thus the best adaptive adversary will have a significantly
better advantage than any non-adaptive one. Nevertheless, as we demonstrate, the hy-
potheses of Pietrzak’s (mis)interpretation of the ANA switching lemma are satisfied,
thus completing our counterexample.

We proceed to examine Pietrzak’s proof of the lemma to determine what underlies
the mistake and whether the proof can be fixed. To some extent, the problem originates
from the elliptical notation that the theory of random systems occasionally suffers from.
We propose a restatement of the lemma (Theorem[I2)) together with a correct proof. We
then perform the important (if somewhat tedious) task of investigating known exam-
ples in the literature where an incorrect version of the ANA switching lemma has been
exploited (see the full version). Fortunately, to the best of our knowledge, the flaw un-
covered by us does not lead to a violation of any security claim based on the incorrect
ANA switching lemma (as the modified hypotheses are still satisfied).

Our second contribution is a string of technical statements, all phrased in the lan-
guage of random systems, that are applicable in the more general setting where adap-
tivity might be helpful in triggering an event. The first result (Proposition B) is the
random system interpretation of a well-known technique, where a union bound is com-
puted over the subevent that an adversary provokes the event at the jth step, where the
required “stepwise” probabilities (for the subevents) are maximized in a greedy-type
manner. This is a standard and often-used argument from security proofs that has not
been previously linked to random systems. It makes derivation of the overall bound rel-
atively easy. Yet, in many cases the overall upper bound is not tight enough due to the
maximal probabilities occuring for rather unlikely query/response histories or due to
overcounting.

Several proofs in the literature tackle the problem of “bad” query/response history by
the introduction of an auxiliary event explicitly bounding such a bad history occuring
(e.g., [10417]). Subsequent bounding of the probabilities of on the one hand the auxiliary
event and on the other of the actual event conditioned on the auxiliary bad event not
occurring, leads to a tighter bound. Proposition[I3]generalizes this method in the context
of random systems.
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Lee et al. [9] recently introduced “wish lists” to the analysis of adaptive adversaries
to limit the effect of overcounting. The idea is to cut up the analysis in two parts. First,
one upper bounds the maximum size W of the wish list, i.e., the total number of query-
response pairs that could ever lead to an adversarial win (to get useful bounds, one
typically needs to introduce an auxiliary flag as in the discussion above). Next, one
upper bounds the probability p of any particular wish to be granted, i.e., the probability
that a query on the wish list gets to the wished for response when actually being asked
by the adversary. Finally, one observes that in order to win, at some point an adversary
needs to have some wish granted. Intuitively, a union bound over all wishes in the list
means the advantage of an adaptive adversary is then at most pI¥. We formalize this
approach in Proposition[T4] which assumes as a hypothesis an upper bound on the sum
of the stepwise probabilities of success for each query/response history and thus avoids
the greedy-type argument. We refine this in Proposition [13] by adding an auxiliary flag
event.

Yet, the most subtle and useful (in terms of applications) bounds are provided in
Proposition Here, an adaptive adversary is trying to achieve a certain event more
than once. A simple example is an adversary trying to obtain more than « fixed points
in a random permutation, but it could also relate to a scenario where an adversary needs
to see multiple wishes being granted. The techniques we develop here are very similar
to those used for the analysis of a recent incidence-based compression function con-
struction [7]. We illustrate the usefulness of our result by revisiting the analysis of an
auxiliary collinearity event needed for the security proof of that construction (see the
full version). The strong emphasis on conditional probabilities in the random systems
methodology makes it very natural to express the various bounds on an adaptive adver-
sary’s advantage, providing a different and arguably clearer perspective on the original
proof.

Related Work. Modification of the adversary is an important technique, orthogonal
to our work, that is often used to bound the advantage of an adaptive adversary. In
particular free queries have been used to great effect in the analysis of double length
hash functions [[1,/6,9]. A typical proof will first modify the adversary—adding the free
queries with the somewhat paradoxic effect of taking away some of the adaptivity of the
adversary by making it more it more powerful—followed by an analysis of the advan-
tage of this modified adversary. For bounding the advantage of the modified adversary
our work comes into play.

Very recently, during their analysis of key-alternating ciphers, Bogdanov et al. [4]
uncovered an interesting scenario where a distinguisher surprisingly benefits from adap-
tivity. While it would be straightforward to describe their problem (and the support-
ing counterexample) in the random systems framework and subsequently applying the
first step of Maurer’s two step approach to move it from distinguishing to causing an
event, the resulting event cannot be expressed as a predicate, ruling out direct applica-
tion of many of our theorems. It is an interesting open problem to see if our approach
can be extended to improve upon the bounds already obtained by Steinberger [18] and
Bogdanov et al.
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2 Preliminaries

Notation. Following the terminology and notation of [11}[15], we denote random
variables by capital letters (e.g., X), their values by lower-case letters (e.g., ) and
their finita] sampling spaces by calligraphic letters (e.g., X). For a fixed sample space
X, let X* be k-fold Cartesian product of X. The corresponding random variables
and their values are denoted analogously (i.e., X* and z*, respectively). For brevity,
we use P 4[a] to denote the probability Pr[A = a] and similarly, P, p[a; b, c] for
Pr[A = a|B = b A C = ¢|. If it is clear from the context, we sometimes omit the
specific values and simply use, e.g., P, 5 to denote Pr[A=a|B=bAC =c|.

Random Systems. Various cryptographic systems can be seen as random systems [[11]]
that are modeled as the mathematical abstraction of interactive systems: an (X', ))-
random system takes the inputs X;, Xs,... € X and for each input X; it generates
an output Y; € ) depending probabilistically on X* = (Xj,...,X;) and Y1 =
(Y1,...,Y;_1). Random systems have been used in the literature (see e.g., [TTHI4]) to
unify, simplify, generalize, and in some cases strengthen security proofs.

Definition 1 (Random System). An (X, Y)-random system F is a (possibly infinite)
sequence of conditional probability distributions Pfﬁl Xiyi-1 fori > 1; specifically, the
distribution of the outputs Y; conditioned on X' = x* (i.e., the ith query x; and all
previous queries '~ = (x1,...,2;_1)) and Y~1 = 471 (i.e., all previous outputs

vt = (y1,...,vi—1)). Define

7
F R F
PYox: = [T P xovor,
j=1

where, for completeness, Pf,l‘leo = Pgl\Xl = Pf,l‘Xl. Two (X, Y)-random systems
F and G are said to be equivalenf (a"enotec{ by F. =G)if PEHXiYi’l = P%Xiwfl
Sforalli > 1 and all arguments (z*,y") € X* x Y

Example 2 (Random system). Random functions and random permutations are special
cases of random systems. If (X', ) is any pair of sets, a random function X — ) is
a random variable whose values are functions X — ). For any finite set X', a ran-
dom permutation is a random variable taking values in the set of permutations of X'. A
uniformly random function R is a random function with uniform distribution over all
functions X — ). Using random systems, we have the following:

o 1 if x; = x; forsome j < iandy; = y; ,
P%‘Xiyi_l[yi;x’,yzfl] =<0 ifz; =x; forsome j <iandy; #y;, (1)
1/1Y| else.

A uniformly random permutation is defined analogously.

! Most of the results and arguments in this paper generalize to infinite sampling spaces; for
simplicity, we restrict to finite spaces as the latter are the ones relevant for cryptographic ap-
plications.
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Distinguishing Random Systems. In order to distinguish two (X', })-random sys-
tems F and G, we use the notion of a distinguisher that can be regarded as a random
system itself. A distinguisher interacts with random systems by making queries to ei-
ther F' or G and outputs a binary decision bit after a certain number of queries. In the
sequel, we consider information-theoretic distinguishers only; they are computation-
ally unbounded and the only measure of complexity is the number of queries made
by them.

In the literature, distinguishers are classified based on how they interact with the
random systems. For instance, adaptive distinguishers choose their ith query X; de-
pending on the history (i.e., all previous query-response pairs), whereas non-adaptive
distinguishers commit all their queries in advance. Throughout, we let Ad and NAd be
the classes of all adaptive and non-adaptive distinguishers, respectively. Definition ]
formally introduces the concept of a distinguisher as well as its interaction with random
systems via probability theory.

Definition 3 (Distinguisher). An (X, Y)-distinguisher D is a (Y, X)-random system
defined by a sequence of conditional probability distributions P% yi-1xi-1- That is, it
is a (Y, X)-random system that is one query ahead. A (X,Y)-distinguisher D and an
(X', Y")-random system F are said to be compatible if X' = X and )’ = ).

One models the interaction of a distinguisher with a random system via a random ex-
periment that is a sequence of conditional probability distributions. This is denoted by

P?%f‘xi,lyi,l and defined simply as

DOF _ pF D
PXiYL.‘Xi—lyi—l = Py[.‘xiyi—l PXi‘Xi—lyi—l .
Intuitively, this models the probabilities of the distinguisher choosing a given query z;
at the ith step and the random system returning a given response y; conditioned on the
history. Moreover, we define
i
DOF _ DOF
Piivi = H ijmxd—le—l :
j=1

We are now interested in distinguishing two random systems F and G where we as-
sume that both systems are compatible with the distinguisher D. The performance of
D (known as the advantage of D in distinguishing F from G) is generally measured as
follows:

Definition 4. Let F and G be two (X, ))-random systems that are compatible with a
distinguisher D. Given an integer ¢ > 0, the advantage of D in distinguishing ¥ from
G in i queries is defined to be

1
AP(F,G) := ) > IPROE, — PROS).
(mi’yi)exixyi

Let C be a class of distinguishers trying to distinguish ¥ from G. We define the advan-
tage of the best C-distinguisher making i queries to F and G as

C L D
A (F,G) := %gé{{Ai (F,G)} .
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Random Systems with Monotone Conditions. One of the similarities between ran-
dom systems and game-playing is a notion known as monotone condition or monotone
event. Intuitively, it represents an event that once set, it cannot be “reset" by additional
queries. The notion of monotone event/condition is more general and should not be con-
fused with monotone predicate (or monotone binary output as discussed in [5, §2.3]).
To explain the difference, let A = {a;} be the sequence of events a;, as, . . ..

Monotone predicates (or binary outputs) are simpler and less general since the
query/response pairs (x?,y*) at step i uniquely determine whether the corresponding
event a; holds or not, whereas the former could be more complex (e.g., a; could be the
(monotone) event that a certain flag is set in at most 10 steps). In other words, in the
case of monotone predicates, the conditional probability of a; occurring conditioned on
X' = 2 AY? = ¢ is binary, whereas monotone events could be more general. For
simplicity, we assume that our monotone events are monotone predicates and consider
a sequence of boolean predicates a; indicating whether a; holds (i.e., a; < a; holds;
equivalently, —a; < a; does not hold) with the property that —a; = —a;11 (the latter
guarantees monotonicity).

As an example, consider the monotone event a; that after the ith query to a uniformly
random function, all distinct inputs result in distinct outputs (i.e., there exists no output
collisions). It is not difficult to see that A = {a;} is a monotone binary output as —~a; =
—a;+1 and a; is completely determined from (z*, y*). Equivalently, if there is an output
collision for the ith step, there is also an output collision for all the subsequent steps.
The monotonicity condition gives rise to a sequence of binary probabilities PaF Ixiyi €

{0, 1} with the property that
Vi > 1, PaFi|Xiyi =1= PaFiil‘Xi—lyi—l =1. 2)

Associated to a random system with a monotone binary output, we have the following
data:

— D.0 (data defining F): these are simply the probability distributions Pg |Xiyi-1s
— D.1 (binary probabilities for A): these are the binary probabilities Pg Xy (de-
scribing the predicates a; and —a;) satisfying @).

F

Remark 5. In the case of monotone conditions, the defining probabilities Pa,, iy can

be arbitrary real numbers in the interval [0, 1].

We can derive various other probabilities using conditional probabilities/Bayes’ rule as
well as D.0 and D.1:

Event Probabilities for A: These are the probabilities denoted by be_‘aiil Yiyi-1-
Intuitively, P]a?ilai,—l yiyi—1 models the probability of the predicate a; conditioned on
the query/response history, as well as on the predicate a;_;. We derive it from D.0 and
D.1 as follows:

Pimi,lxiw—l = Z PEL-\XW@‘ P§i|xiw—1~

Yi
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F N
—agla; 1 X*¢

It is important to note that if the condition a;_1 X*Y*~! evaluates to

Here, one can also derive the probability distributions P yi—1 simply as 1 —

PF A
ailai—1 X?Yi—1
false for all y; for a given (z%,3°~!), this probability is set to zero (for reasons that
will become clear later). We remark that in a similar manner, one can adjoin yet another

monotone condition B to a random system with a monotone condition A.

A Random System Conditioned on .A not Failing (denoted by F|.4): These are prob-
ability distributions P; la; Xiyic1 and can be derived from Bayes’ rule as follows:

F F _ pF _ pF F
PY.xivi-1Pa,1xivi = P,y xivit = Py o, xivi-1Pa, xivio1 3)

where the middle term (which has not been defined yet) is a formal symbol for the
corresponding probability. Assuming that Pfi |xi-lyi-1 = 1 together with the mono-

-1
tonicity of 4, we see that Pf |

Jxiyi-1 — ng\a,-,lXiYi—l # 0. One can thus derive the
conditional probabilities

pF o P§i|xwmpfi\xm.

Yila; XYi—1 pF o

ailaj—1 X?Yi—1
Intuitively, this looks like a random system except that we have conditioned on the pred-
icate a;. Note that this need not be a probability distribution: for instance, consider the
example of a random function R.: {0,1}" — {0, 1}" and define the a; as the event of
having a collision between an input and an output. It might occur that x5 = y; in which
case az XY will always evaluate to false and thus, the probability Py, vyt =0
for all ys, so it will not represent a well-defined distribution on the variable Y. In cases
when this degeneracy does not occur, we can consider F|.4 as a true random system G
(see Hypothesis[B)), denoted F|.A = G. Note that this particular notion of equivalence
of a random system and a random system with a monotone condition can be extended
slightly in the case of degeneracies too. As described in [[11, Defn.6], we say that F|.A
is equivalent to G if PgilaiXiYi—l = P%‘Xiyi_l for any ¢ and any values of the pa-
rameters for which Pfﬁ-lai yiyi-1 18 notidentically zero (i.e.., is a distribution). Finally,
we note that F|.A appeared in, e.g., [15, Defn.7].

A Random System with a Condition A (denoted by F-*): This is the random system
corresponding to [[15, Defn.6]) and can be derived by

F .— pF F
PaiYilailei’Yi’_l T PY,L-\aiXiYi’—lPai\ai,lX"Y"—l N
We also define '
K3

F o F
PaiYilxi " H Paj%‘\aj—lXjY"_l :
i=1

Moreover, we consider distinguishers trying to provoke the negated event —a; again
via a sequence of probability distributions. To indicate the link with a;, we denote
these distributions by PE@I @ Xi-lyi-1- As in the case of true random systems, this
models the probability distribution of an adversary choosing the ith query based on the
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previous responses and the predicate a;_; (meaning that the desired event —a;_1 has
not occurred after the (¢ — 1)st query/response pair).

Using this data, we can derive various probabilities and distributions by imposing Bayes’
rule. We define the probabilities for the random experiment DOF by

DOF — pF ..PD o
a; X;Yila;—1 Xi1Yi=1 "7 T a;Yila; 1 XY Xla o XYoL

Intuitively, this models the probability of choosing a particular query, obtaining a par-
ticular response and the predicate a; (resp., —a;) conditioned on the history and the
predicate a;_1. Finally, let

PD(}F o DOF
O.LX‘Y‘ T anij|aj,1XJ'*1Yj*1'
j=1

Similarly, we define an expression for —a;. We are now ready to define the advantage
of the distinguisher (adversary) D in provoking the desired event —a;:

Definition 6. Let C be a class of distinguishers D that are trying to provoke —a;. Given
i > 0, define vP (F, —a;) to be the advantage of the distinguisher D in provoking the
event —a; in the random experiment DOF. That is

VP (F, —a;) = Z PE)CXI;Y .
(zt,y?)eXixY?

Furthermore, for all i > 1, define v°(F, —a;) = max vP(F, —a;) to be the maximum
€

advantage over all distinguishers in the class C trying to provoke —a;.

Finally, we explain the analogue (in the context of random systems) of the fundamental
lemma of game-playing and comment on why the random-system statement is more
general. Suppose that F' is a random system with a monotone condition .4 and let G be
another random system. The analogue of the hypothesis of the fundamental lemma of
game-playing (that two games are equivalent up to statements that are evaluated only
if a; is set to true) is simply F|.A = G. Under that hypothesis, we expect that one
can bound the distinguishing advantage AP (F, G) via the advantage v° (F, =a;) of
an adversary to provoke —a;. Interestingly enough, one can deduce the latter from a
weaker hypothesis, namely the hypothesis that

Pijj\xj < P;%\va Vi <.
The following lemma is proven in [[15, Lem.6] (see also [11, Thm.1]):

Lemma 7. Assume that PaFJ_Y”Xj < P}c,;jlxj holds for all j < i. Then for any distin-
guisher D,
AP(F,G) < vP(F,—a;) .

In the following sections, we develop techniques to upper bound v'P (F, —a;).
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3 A Standard Method for Probabilistic Analysis of Adaptive
Adversaries

Let A be a monotone condition and let F be an (X', )-random system. Our goal is to
compute an upper bound for A4(F, —a;). The standard way to deal with the overall
probability of setting —a; is to bound it by a sum (over 5 < %) of the maximum (over all
adversaries) probability of winning at the jth step, where these “stepwise" probabilities
are only taken over the probability distributions describing F. In other words, for each j,
we maximize individually the probability of winning at the jth step assuming that we
have not won at step j — 1. This greedy-type approach for producing an upper bound
can be formalized in Proposition[9] (see Appendix of the full version for its proof). We
first state an hypothesis that is commonly used throughout the paper.

Hypothesis 8. Let F be an (&X', ))-random system and let .4 be a monotone condition
on F. There exists an (X', YV)-random system G such that F|.4 = G, i.e., foralli > 1
and all (z%,y%) € X" x )",

F _ pG
PYi‘aiXi’Y’_l - PYﬁlX’Yi’_l :

Proposition 9. Let F be an (X,Y)-random system and let A be a monotone condition

on F. Assuming that Z;Zl Max ;i yi—1) PFa-|a- 1Xij_1} < 1, we have
’ majlag—

g

Ad F
V(F, ma;) < max {Pﬁa.mv_lxjyj—l}«
— (@yih) I

4 When Adaptivity Does Not Help

4.1 Revisiting the Result of Maurer and Pietrzak

Maurer [11]] and Pietrzak [[15] provide a general method for proving that under certain
hypotheses, adaptive strategies are no better than non-adaptive ones in forcing a condi-
tion to fail. In other words, if these hypotheses are satisfied, the advantage of the best
Ad- and NAd-distinguisher are equal. Here, we show that the hypothesis (Hypothesis[S))
used by Pietrzak is not sufficient for the comparison result of [11,[15] (ANA switching
lemma) to hold by providing a particular counterexample in Proposition [L0l where the
hypothesis is clearly satisfied and where adaptivity does help. We then explain the prob-
lem in the ANA switching lemma in detail and suggest different ways to remedy it in
Section[4.2l The following statement appears in [135, Lem.6]:

Adaptive-Non-Adaptive (ANA) Switching Lemma. Let .4 be a monotone condition
and let F be an (X, )V)-random system. If Hypothesis[Blholds for F, A and an (X, ))-
random system G, then adaptivity does not help in provoking —a;. More precisely,

V(R —a;) = vN(F, —ay).
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Now, we present an example of a random system where adaptive adversaries have better
advantage than the adaptive ones in provoking a welldefined monotone event.

Proposition 10. Let X = {0,1}" and let P: X — X be a uniformly random permu-
tation. Let a; be the event that y; # x; for all j < i where y; = P(xz;). Then A is
monotone and

AP, —ay) > V(P —ay) .

Proof. The sequence of predicates {a;} is monotone by definition. We calculate the
probability of obtaining a fixed point for P after at most two queries; the case for general
1 follows by inspection. After querying P with any X; = z; € {0, 1}", the response
y1 € {0, 1}" is uniformly random. Thus, with probability 1/2™ a fixed point is found
after the first query. Hence,

PPD/Q =z VY = 131] = PP[Y2 =19 ANY] #.’L‘ﬂ —|—PP[Y1 :.’L‘l] =
= PP[Ya = 2o AL # 2] +1/27.

The distinction between an adaptive and a non-adaptive strategy shows up after the sec-
ond query: the latter commits the second query in advance whereas the former chooses
it adaptively based on the first query and its response.

Case 1: Non-adaptive adversary. If the adversary were non-adaptive, she would have
fixed xo # x; prior to obtaining the response y; and since P(x2) # P(z1) and P is a
uniformly random permutation, P(x2) € {0, 1} —{y1 }. Note however that if z5 = ¥4,
no yo could lead to a fixed point. Hence (by Bayes’ rule),

PP[Y2 =29 AY] 7£ xl] = PP[Yé = X9 | Y; 7£ xl,xQ]PP[Yl 75 1'1,1'2} .

Clearly, PP[Y; # x1, 2] = (2" — 2)/2". Moreover, ¥ is uniformly random among
{0, 13" = {y1}, 50

1 2n—2
PP[Ygzxz/\Y17éx1]:2n_1~ o =PPlYo =2 VY =) =
1o2n—2 1 1

gn 1 g0 Ton S g1

Since the above analysis holds for any non-adaptive adversary, we conclude that
NAY(P | —ay) < 172771,

Case 2: Adaptive adversary. Knowing x1,y; and y; # xp from the first query, an
adaptive adversary can eliminate one choice for the second query x5 different from x1,
namely zo = y;. Thus, a clever adversary will choose z2 € {0,1}™ — {x1,y1} so that
the chance of finding a fixed point after the second step is 1/(2™ — 1). Thus,

PP[Y2 =z AY] # 131} = PPD/Q = X9 | Yi#£x1 A #zg]PP[Yl#.’L‘l /\}/17&%‘2} =
1 2" —1
2n —1 on
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and we conclude that

1 1 2n —1 1
Ad NAd
v (P’ a2) 2 on on 1 ' omn gn—1 >v (P’ a2) :
O

We now explain why Hypothesis[8 holds for the monotone event sequence .4 and the
random system P.

Proposition 11. Let P and A be as in Proposition[[Q Then, Hypothesis[8 holds using
the monotone condition A, along with taking P as F.

Proof. Let ¢ = 2. We simply need to define the distributions (i) P%l y1 forally; € Y
and z! € X!, and (i) PXC/;Q|X2Y1 forallys € Y, 22 € X% and y' € Y'. For (i), define

1 .
Pic/; X1 = 2oy i 7 o
1l 0 otherwise.

Clearly, Pfﬁ\ale = P}C/;1|X1' For (ii), assuming y; # x1 and x1 # x2, define the
distribution in the following two cases:

Case 1: x5 = y;. There are 2™ — 1 possible values for yo = P(z3) occurring with equal
probabilities and none of these values can lead to a fixed point, so we have

pG _Jo ifyo = y1 = o,
Ya| X2yl = 1 .
gn_q Otherwise .

Case 2: xo # y1. Here, the case of yo = x2 # y1 causes —ag, so one can define:

pG _J0 ifyg =y1ory2 =22 #11
Ya|xevt 2%,172 otherwise .

We easily verify that in all cases, PY, |, v2y1 = PY | xoy1.

4.2 Another Look at the Comparison of Adaptive vs. Non-adaptive Adversaries

Propositions [I0] and [I1] show that the ANA switching lemma cannot hold as stated
in 15} Lem.6]. We now analyze in detail the proof of the ANA switching lemma given
in [[15], identify the step that causes the discrepancy and propose a fix.

The Mistake in the Original Proof [15]. The ANA switching lemma first appears
in [11, Thm.2] with the correct hypothesis (see (1) of loc. cit.), but without a proof. A
slightly different version referring to the original claim is given in [12, Prop.2] (again
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without a proof). The only proof, to the best of our knowledge, appears in [[15, Lem.6]
and is based on a chain of equalities and inequalities starting with

i
Ad o F D
1—1"F,—a;) = Jnin E H Pa,v,1xivi-1PxXijyi
(i) \i-1

Similarly to Proposition[9, the proof is based on applying Bayes’ rule to PaFij |XiYi-1-
The application of the Bayes’ rule in [[15, Lem.6] is, however, incorrecﬂ. The correct
application yields (assuming that the conditional distributions are well-defined)

F _ pF F
PY,a;1xivi-1 = Py ja,xsvi-1Pa; xivi-1 -

The problem is that the term PEL-IX" = H;=1 Pal“:_‘ijj_1
of Y1 (see the top line of [[13] p.30] - step (2.26)). There is no reason why (for a fixed
%) this term should be independent of Y~ 1; yet, this is used implicitly in the argument.
We have seen in Proposition [IQ] that the probability PaF2| 2y depends on Y, so the
ANA switching lemma does not apply.

is assumed to be independent

Strengthening the Hypotheses. We now propose a simple fix to the ANA switch-
ing lemma by adding an extra hypothesis, essentially stating that the probability of
achieving a success on the jth query is independent of the answers to all the previous
queries. This statement (albeit in a different formulation) already appears as (1) in Mau-
rer’s original [11, Thm.2], as well as a rephrased reproduction [12, Prop.2]. Neither of
these statements comes with a proof and both omit mention of Hypothesis[8] although
in [[L1, Thm.2] an alternative condition (2) is given such that (2) is claimed to imply
both (1) and Hypothesis[8l

Our proof of Theorem [12] follows largely along the lines of the (incorrect) proof
of Pietrzak, but obviously with fixes applied where necessary. Here, Hypothesis [g] is
needed to guarantee that all conditional probabilities Pl“;j la; Xiyi-1 are well-defined and
are also distributions when considered as functions on y; € Y. The second hypothesis
simply says that if there is no dependency of the conditionals PF[aj|aj_1 ANXI =
29 A YI~1 = y3=1] on the previous outputs then adaptivity should not help at all.

Theorem 12. Let F be an (X,))-random system and let A be a monotone condition
on F. Let i > 0 be an integer. Suppose that Hypothesis [8| holds for ¥ and A. If, in
addition, for every j < i and 9 € X7, P¥[ajlaj_1 AN X7 = 27 ANYI™E = yi7 s
independent of y' ! € YJ~1, then adaptivity does not help in provoking —aj, i.e.,

VAM(F, —a;) = N(F, —ay).

Proof of Theorem[I2] We first note that vA4(F, =a;) > vNAY(F, —a;) holds. The rest
of the proof follows by showing the other direction of the inequality; we have that
1 — vA(F, —a;) equals

2 Furthermore, the argument in [15, Lem.6] does not state whether the conditional probabilities

Pf,j‘ajxjyj,l are well-defined, for all j < 4.
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i
: 2 : F F D
DeAd — H PY;‘l'le’Yj_lPag‘laj—lx’y’_lPleaj—lx’_ly’_l
(zty) \7=1
i

: G F D
= min E HP ivi—1P P —1yi—
DeAd Y| X9Yi—1  ajla; 1 X7 Xjlaj_1 XI—tYyi—1

—
*
N

(aty) \i=1
7 7
_ s F G D
T Ded Y A TIPS o, x| D22 | TIPS ovimiPR jo, o xim1vims
zt \Jj=1 yt \J=l
7
— e F ,
= g 4 2 | TIPe
zi \j=1
i
> . H F ) D _ . DQF
> min 9 Pajla;-1x0PX 10,0 DeAd Pacx:
2t j=1 i

> = (1 - vNM(F, —ay)) .

Here, (*) uses Hypothesis[8] as well as the extra hypothesis that PaFj IXiyi-1 is indepen-
dent of y/~1. Hence, vNA(F, —q;)) > vA4(F, =a;)) and the claim follows. O

5 Towards Obtaining Better Bounds

5.1 Using an Auxiliary Flag

The standard approach given in Section 3| has the disadvantage that for more complex
constructions, the maximal probabilities can get too large. This is often due to the fact
that the maximum is achieved for rather degenerate values of (z%,y*) that occur with
very low probability. Assuming that one can bound the probability of the degeneracy,
one way to refine the analysis of the adaptive adversary is to introduce an auxiliary
event (flag) that is set only for non-degenerate pairs (z*,y*). More precisely, if a; is
the monotone event to be studied, we introduce a flag event b; (together with a corre-
sponding predicate b; indicating whether b; has occurred or not) and we use the fact
that
—-a; & (—|ai AN bz) \Y (—|ai A ﬁbz) = (—|ai AN bz) V —b;.

Now, bounding the advantage of achieving —a; amounts to bounding the advantage of
achieving —a; A b; together with bounding the probability of degeneracy (or, of —b;).
The latter can be done via Proposition [0} yet for the former we need to introduce new
definitions.

All this can be rigorously modeled using random systems as follows: suppose that
F is a random system with a monotone condition 5 (here, 3 represents the flag event).
Suppose further that F|B is equivalent to another random system G (i.e., F|B = G).
Now, we simply impose a monotone condition .4 on G. Equivalently, we need to specify
the corresponding probabilities and distributions from Section 2l Suppose that we are
given the following data:
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— Event probabilities PaG71|a7¢_1 yiyi-1 also denoted by P

better what they are supposed to model),

— The random system G|.A, namely, probabilities P%I W Xiyi-1 that we also denote
F

bY Py a6, xivi-1s
— Distinguisher relative to A, namely, probability distributions denoted by

pD ;
Xi‘aiflbile’_lyi_l'

F

ailai_1bi Xiyi-1 (to indicate

PD()F _
—ailb;
PDOG) following exactly the same steps as in Section[2] (for the random system G and
the monotone event .4). Moreover, we assume all the corresponding notation. The fol-
lowing proposition provides an upper bound on the adaptive advantage (see Appendix

of the full version for its proof):

This data allows us to upper bound the advantage A4 (F, =a; Ab;) (by defining

Proposition 13. Let F be a random system with a monotone condition B with the prop-
erty that there exists a random system G- such that F|B = G. Let A be a monotone
condition on G. Assuming that

F
max, {Pﬁaj\aj_lbjxjyjfl} <1,

we have
i

Ad F
v (F’ 4y /\ bZ) S (mgny%}—il) {Pﬁa,‘\a,‘_ijjYﬂ'—l} :
=1

5.2 Improving the Bounds Obtained from Step-Specific Maximization

The greedy approach based on step-specific maximization often has limitations in the
sense that the produced bounds are not tight enough. One can obtain better bounds
via the simple observation that the advantage of an adversary in provoking —a; for a
monotone event .A can be bounded by the sum of the event probabilities for the negated
events —a; for j < i that are part of the data defining the monotone condition .4. Conse-
quently, if one is able to provide upper bounds on these sums, one would automatically
obtain an upper bound on the adaptive advantage.

In order to carry out this idea rigorously, we consider two methods that are formally
stated in Propositions[14] and [T (see Appendix of the full version for the proof of the
former; the proof of the latter follows from the proof of Propositions [13] and [[4)). We
first give ourselves an upper bound B on the sum of the event probabilities and then
show that the same By bounds the adaptive advantage as well. The second method
is a variation of the first where one uses an auxiliary event. These two techniques are
important whenever the bounds given in Propositions[land[I3]are not sufficiently tight).
A good example of that is the analysis an adaptive adversary trying to achieve a collision
in the compression function of [[7]] (see Appendix of the full version for the details).
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Proposition 14. Let F be a random system with a monotone event A. If there exists a
value Bs; € (0, 1) such that for all (z°,y") € X* x Y
i
F
Z Pﬂaj|aj,1xa‘w‘—1 < Bs,
j=1
then v™(F, —a;) < By.

The following proposition shows the natural generalization of the above proposition to
the case of auxiliary events (its proof follows from the proof of Propositions[I3and [14):

Proposition 15. Let F be a random system with a monotone condition I3 with the
property that there exists a random system G such that F|B = G. Let A be a mono-
tone condition on G. Suppose that there exists a value By, € (0, 1) such that for all
(xz’yz) e Xix Yt
i i
F _ G
Pﬁa,‘|aj_1ijdYa‘—1 = Pﬁaj\aj_1XJYJ—1 <Bsx.
j=1 j=1

Then v (F, —a; A b;) < Bs.

Counting Successes. In Proposition [[4 we are mainly interested in estimating the
maximal probability of the event (success) occurring once. Nevertheless, in some cases
the major monotone event .4 might depend on an auxiliary condition that intrinsically
requires an event (success) to occur more than once. As a simple example, consider
a generalization of the case studied in Proposition let P be a uniformly random
permutation P: X — X for ¥ = {0,1}" and let —a; be the event that y; = x; for
more than x values of j < i where y; = P(z;) and & is a positive integer. More
precisely, a; is the predicate that there exist at most « fixed points after the ¢th query.

Such a general problem can be modeled and studied using random systems as fol-
lows: suppose that F' is an (X, ))-random system. We then attach an event called hit; to
the random system F - this is the success event at step <. Note that hit; is not monotone.
Moreover, we introduce a random variable ctr; to indicate the number of successes up
to step 7. In other words, ctry = 0 and for every j > 1, ctr; = ctr;_; 4 1 if hit; occurs
and ctr; = ctrj_; otherwise. Finally, we can associate monotone events A, = {an,:}
for every integer x > 0, so that a,, ; is event that there are at most x successes after the
ith query. In other words, a,, ; is the event that ctr; < k.

In order to attach the success event to the random system, we provide the following
additional data to D.0:

H.1: Binary probabilities Pfimxiw forevery x* € X% and i € V.

We can derive the following probabilities from D.0 and H.1 via Bayes’ rule:

— Probabilities Pfimxiwfl for every ' € X% and yy*~! € Y~ ! defined by
F _ F F
Phi, | xiyi-1 = Z Prit: | xivi Py, xiyi-1-
Yi

— The data for each of the monotone events A,..
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Proposition I8 sets an upper bound on vA4(F, —a; ,;) (see Appendix of the full version
for its proof).

Proposition 16. Let x be a non-negative integer and suppose that there exists a value
By € (0,1) such that for all (x%,y") € X* x V',

K2
E F
Z Phit, xivi-1 < Bs  and  Puy viyion > 0.
J=0

Then v™(F, —a; ) < Bg‘“.

Remark 17. We should indicate the analogy between Proposition[I4]and Proposition[T6]
with [7, Prop.7] and [[7, Prop.9], respectively. We believe that having such statements
and techniques developed in the general context of random systems could serve as a
guiding tool for more conceptual security proofs for other constructions in the future.
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