
Chapter 3
Effective Theories of Classical Gravity

Abstract If the concepts underlying Effective Theory were appreciated from the
earliest days of Newtonian gravity, Le Verrier’s announcement in 1845 of the anom-
alous perihelion precession of Mercury would have been no surprise. Furthermore,
the size of the effect could have been anticipated through “naturalness” arguments
well before the definitive computation in General Relativity. Thus, we have an illus-
tration of how Effective Theory concepts can guide us in extending our knowledge
to “new physics”, and not just in how to reduce larger theories to restricted (e.g.,
lower energy) domains.

3.1 Introduction

The purpose of these lectures is to introduce the concepts of Effective Theories
to students of Philosophy, Mathematics and Physics who have a shared interest
in the philosophy and history of physics. The concept I wish to discuss, Effective
Theory, is a thoroughly modern notion; nevertheless, I wish to illustrate it with a very
old and intuitively accessible problem in physics: Mercury’s anomalous perihelion
precession.

Le Verrier announced in 1845 a small discrepancy in the precession rate of
Mercury’s perihelion compared to Newton’s theory, even after taking into account
all the disturbing influences throughout the solar system such as the effect of other
planets’ orbits.1 This came as a surprise, and more or less nobody believed at
the time that it was the fault of Newton, but rather the fault of observers who
had not seen the other celestial bodies that must surely be perturbing Mercury’s
orbit. Historically, that is the beginning of the problem. Le Verrier believed that
an as-yet unobserved mass distribution inside the orbit of Mercury was the source

1 In 1859 Le Verrier gave a number for this advance: 35 arcseconds per century (Le Verrier 1859).
It was later reevaluated by S. Newcomb (Newcomb 1882), who determined the correct value of 43
arcseconds per century.
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16 3 Effective Theories of Classical Gravity

of the discrepancy. He and others advocated the existence, for example, of a new
small planet (“Vulcan” as it was sometimes called) that would be observed when
astronomers developed the instruments necessary to find it (Roseveare 1982). Such
was not the case. By the 1890’s it became clear to most that new large-scale object(s)
was not the explanation (Oppenheim 1920), despite some ill-fated protestations oth-
erwise (Poor 1921). The resolution of the problemcamewithEinstein’sGeneralRela-
tivity, which predicted precisely the 43” of arc per century observed, and the case was
closed.

However, I want to argue that anticipation of the “problem” could have occurred
much before Le Verrier. What prevented scientists from anticipating Mercury’s peri-
helion precessionwas not lack ofmathematical skill, or lack of experimental abilities.
It was solely due to not having the right mindset. Unlike perhaps in decades and cen-
turies gone by, no competent scientist should retain an unfailing commitment to any
theory. All theories are incomplete, even given that some theories are better than
others. The code phrase of this mindset is Effective Theories. The concept is a pow-
erful one that has born much fruit in theories of particle physics, condensed matter
systems, and even cosmology.

These notes are meant to be a somewhat pedagogical and technical exposition of
theMercury problem and the application of Effective Theory ideas to the problem. In
some parts of this lecture I will follow an “alternative history” path with the scientists
Alice and Bob who vaguely understand the importance of Effective Theories and
who will devise a theory that can accomodate the perihelion precession rate well
before Einstein’s General Relativity comes along, and may even be able to predict
roughly the numerical rate of the precision and make predictions for other planets
through “naturalness” arguments. The latter could have been possible after diligent
reflections on the philosophical challenges of Newton’s theory. I will compute the
General Relativity rate at the end, in order to show how elegantly it comes out of that
more complete theory, and to show that it matches the Effective Theory “predictions”
byBobandAlice.Andfinally Iwill concludewith somemore remarks on themeaning
of the results.

3.2 Orbits in Newton’s Theory

To remind some students who have not seen celestial mechanics for some time,
we begin with the computation of particle orbits in Newton’s gravity. The reader
familiar with these basics should feel free to skim the section only for definitions
and conventions that I will use later.

We know that the orbits predicted by Newton’s law of gravity are respected quite
well by the planets, and so any change in the equations of motion for the orbits will
need to be small perturbations. In Newton’s gravity, a test particle with massm orbits
around a particle of mass M � m according to the equations of motion derived from
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the lagrangian

L = 1

2
mṙ2 + α

r
(3.1)

where α = GMm with G being Newton’s constant. M represents the sun’s mass in
this lecture, andm the planet’s mass, most often Mercury. It is appropriate to assume
that M � m such that any correction is negligible due to the difference of m from
the reduced mass μ = Mm/(M + m), which is technically the precise mass one
should use in the kinetic energy term. Lagrange’s equations of motion are

mr̈ = − α

r2
r̂ (3.2)

where r̂ is the unit vector in the r direction.

3.2.1 Orbital Solution

The lagrangian is rotationally invariant, and so the motion of the particle is most
conveniently evaluated by casting the vector equation of motion into the two polar
component equations

m(r̈ − r φ̇2) = − α

r2
(radial equation) (3.3)

m(2ṙ φ̇ + r φ̈) = 0 (angular equation). (3.4)

The second equation is equivalent to

d

dt
(mr2φ̇) = 0 (3.5)

which implies that mr2φ̇ is a constant in time. At the apogee (furthest) or perigee
(closest) point of the orbit the radius vector r̂ is exactly perpendicular to the angular
vector φ̂ and the magnitude of the angular momentum vector � = r × p, where
p = mr φ̇φ̂, is exactly mr2φ̇. Since angular momentum is conserved and mr2φ̇ is
conserved, if they are equal at one point they are equal at all points in the orbit. Thus,
the constant value inside the time derivative Eq. (3.5) is none other than angular
momentum: � = mr2φ̇. This also proves that the motion is in a plane. Since angular
momentum is a conserved vector quantity, the directionmust also be preservedwhich
is only possible ifpperpetually lies in the sameplane as r. This justifies our evaluation
of a three-dimensional problem in terms of just two variables (r, φ) in the plane of
motion.
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Let us now solve the radial differential equation to obtain an exact solution of
the orbit for particle m. By rewriting r ≡ 1/u, recasting all time derivatives as
d/dt → φ̇d/dφ when possible, and recognizing that φ̇ = l/r2m from conservation
of angular momentum, one finds that the governing differential equation of motion is

d2u

dφ2 + u = αm

�2
. (3.6)

Interestingly, this equation takes the form of the harmonic oscillator equation. The
solution is

u(φ) = u0 cosφ + αm

�2
, (3.7)

where u0 is a constant that is not determined by the theory but the particular circum-
stances (i.e., initial conditions) of the system. In terms of the more direct variable r ,
the solution is

r(φ) = ρ

1 + e cosφ
, where ρ = �2

αm
, and e = u0ρ, (3.8)

and it is assumed that φ = 0 is at perigee. ρ is sometimes called the lactus rectum
of the orbit.

The constant e is called the eccentricity with which one can classify an orbit as
circular (e = 0), elliptical (0 < e < 1), parabolic (e = 1), or hyperbolic (e > 1).
Focusing on the 0 ≤ e < 1 case of elliptical or circular orbits, we find that

rmin = ρ

1 + e
, and rmax = ρ

1 − e
. (3.9)

The relationbetween the semimajor axisa of the elliptical orbit and the other variables
is given by

a = rmin + rmax

2
which implies ρ = a(1 − e2). (3.10)

3.2.2 The Hamiltonian and Vef f Description

An alternative way to approach the problem is to compute the Hamiltonian and
consider the orbit from the perspective of a one-dimensional effective potential for
radial motion. I provide the very basics of this to remind the students of the formalism
which is used by some papers relevant to the perihelion precession. We first expand
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the lagrangian in terms of radial and angular coordinates starting from the identity

ṙ2 = ṙ2 + r2 sin2 θφ̇2 + r2θ̇2

=⇒ ṙ2 + r2φ̇2 (valid in the sin θ = 1fixed orbital plane) (3.11)

The Hamiltonian is constructed as

H =
∑

i

q̇i pi − L (3.12)

using the momentum factors

pr = ∂L

∂ ṙ
= mṙ , and pφ = ∂L

∂φ̇
= mr2φ̇, (3.13)

which implies

H = p2r
2m

+ p2φ
2mr2

− α

r
. (3.14)

The Hamiltonian is independent of φ, which implies from Hamilton’s equations of
motion,

ṗ = −∂H

∂q
, and q̇ = ∂H

∂p
, (3.15)

that ṗφ is a conserved quantity:

ṗφ = ∂H

∂φ
= 0 =⇒ pφ = const. (3.16)

This of course is just a restatement of the conservation of angular momentum

� = pφ = mr2φ̇. (3.17)

We can substitute Eq.3.17 back into Eq.3.14, which gives a one-dimensional
Hamiltonian as promised:

H = p2r
2m

+ �2

2mr2
− α

r
. (3.18)

The Hamiltonian is a constant of the motion—the energy of the system—and it is
useful sometimes to consider the dynamics of particle motion from this considera-
tion where E ≡ H = T + V and T and V are the kinetic and potential energies
respectively. Here the potential for the one dimensional motion is often called the
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effective potential and is given by

Vef f (r) = �2

2mr2
− α

r
. (3.19)

It is this potential that governs the radial potential with the first term pushing the
particle away from the origin and the second term attracting the particle to the origin.
The balance giving orbital motion between two turning points of zero radial kinetic
energy, the apogee and perigee.

3.3 Perihelion Precessions from Perturbations

From the previous section we know that the orbit from Newton’s simple 1/r2 force
law is

u(φ) = 1

r(φ)
= 1

ρ
(1 + e cosφ). (3.20)

This obviously does not allow any advancement of the perihelion. The minimum is
where du/dφ = 0, which implies sin φ = 0 and therefore φ = 0, 2π, 4π, . . . mark
the successive perihelions. The discovery of the anomalous perihelion precession of
Mercury, if it can be established, would signal the end of the Newtonian era and
initiate the search for a better theory. As the reader is no doubt aware, perihelion
precessions exist for every planet’s orbit (see Table3.1), but for the present let us
continue on our theoretical discussion.

3.3.1 1/r2 Correction to the Central Potential

Let us look at how the orbits change if we add a 1/r2 correction to the potential of
the gravitational interaction lagrangian. Let us call this Bob’s theory with lagrangian

L = 1

2
mṙ2 + α

r

(
1 + Rbob

r

)
(3.21)

where α = GMm, with G being Newton’s constant, M is the mass of the sun, andm
is the mass of the planet under consideration. This new law requires the introduction
of a new fundamental length scale Rbob, which is a priori unknown. However, we do
know, as will be shown below, that it leads to a perihelion precession of the orbits
governed by this law.

Lagrange’s equation of motion for this theory is
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radial : m(r̈ − r φ̇2) = − α

r2

(
1 + 2Rbob

r

)
(3.22)

angular : m(2ṙ φ̇ + r φ̈) = 0 (3.23)

The angular equation yields conservation of angular moment � = mr2φ̇ = const
just as before. Using this, we can write the radial differential equation as

d2u

dφ2 + u = αm

�2
(1 + 2Rbobu) (3.24)

This can be rewritten as

d2u

dφ2 +
(
1 − 2Rbob

ρ

)
u = 1

ρ
, where ρ = �2

αm
. (3.25)

The general solution to this equation, assuming perihelion is placed at φ = 0, is

u(φ) = u0 cos

(
φ

√

1 − 2Rbob

ρ

)
+ 1

ρ − 2Rbob
, (3.26)

or, written differently,

u(φ) =
(

1

ρ − 2Rbob

) [
e cos

(
φ

√

1 − 2Rbob

ρ

)
+ 1

]
(3.27)

where e = u0(ρ − 2R).
The u(φ) solution describes themotion of a precessing ellipse. The first perihelion

by definition is at φ = 0 and the second perihelion occurs when

φ

√

1 − 2Rbob

ρ
= 2π =⇒ φ = 2π√

1 − 2Rbob
ρ

= 2π + 2π
Rbob

ρ
(3.28)

The small perihelion advance is the deviation of φ from 2π and is δ = 2πRbob/ρ.
Given our previous computations, we are now able to evaluate the relationship

between the extra length scale Rbob and the perihelion advance of an orbit. In one
case, if we have made a measurement of the perihelion advance, we can derive what
value Rbob must be to reproduce that value

Rbob = (1.16 km)

(
δ/Torbit

arcsec · century−1

)( ρ

1 au

) (
Torbit
1 year

)
(3.29)

where ρ is related to the common parameters of the semimajor axis a = (rmin +
rmax)/2 and eccentricity e by the relation ρ = a(1 − e2).
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Table 3.1 Data for planetary orbits

Planet Torbit (years) e a (au) ρ (au) rmin (au) rmax (au)

Mercury 0.241 0.206 0.387 0.371 0.307 0.467
Venus 0.615 0.007 0.723 0.723 0.718 0.728
Earth 1.000 0.017 1.000 1.000 0.983 1.017
Mars 1.881 0.093 1.524 1.511 1.382 1.666
Jupiter 11.86 0.048 5.203 5.191 4.953 5.453
Saturn 29.46 0.056 9.539 9.509 9.005 10.07
Uranus 84.02 0.047 19.19 19.15 18.29 20.09
Neptune 164.8 0.009 30.06 30.06 29.79 30.33
Pluto 247.7 0.249 39.46 37.01 29.63 49.29

Torbit is the time for one full revolution in earth years, e is the eccentricity of the orbit, a is the
semimajor axis in astronomical units (1 au = 1.496× 1011 m), ρ = �2/GMm2 = a(1− e2) is the
orbital latus rectum in astronomical units (and is independent of m ultimately), rmin = a(1 − e)
is the distance of perigee in astronomical units, and rmax = a(1 + e) is the distance of apogee in
astronomical units

On the other hand, if we have a theory for what Rbob should be, we can make a
prediction for the perihelion advance in units of arc seconds per century:

δ

Torbit
= 2πRbob

ρTorbit
= (0.866 arcsec · century−1)

(
1 au

ρ

)(
years

Torbit

)(
Rbob

1 km

)
(3.30)

3.3.2 1/r3 Correction to the Central Potential

Alice’s theory has a 1/r3 correction to the potential

Lalice = 1

2
mṙ2 + α

r

(
1 + R2

alice

r2

)
, (3.31)

which gives a 1/r4 correction to the gravitational force law. Lagrange’s equations
for her theory are

radial : m(r̈ − r φ̇2) = − α

r2

(
1 + 3R2

alice

r2

)
(3.32)

angular : m(2ṙ φ̇ + r φ̈) = 0 (3.33)

Here again the angularmomentum � = mr2φ̇ is conserved from the angular equation,
and the radial equation becomes



3.3 Perihelion Precessions from Perturbations 23

d2u

dφ2 + u = αm

�2
(1 + 3R2

aliceu
2). (3.34)

We’ll solve this equation employing techniques of perturbation theory. We treat
the last term of Eq.3.34 as a small perturbation and solve first the equation

d2u

dφ2 + u = αm

�2
(3.35)

which is just the standard Newtonian orbit solution

uN (φ) = 1

ρ
(1 + e cosφ), where e = u0ρ (3.36)

where the subscript N refers to the Newtonian solution, u0 is an initial condition
constant and ρ = �2/αm is the usual value.

The next step is to now substitute u → uN + δu into Eq.3.34 where we only keep
one order in perturbation theory. Since uN part of this expression cancels the usual
part of the differential equation from Newton’s law, we are left with a differential
equation for the perturbation δu:

d2δu

dφ2 + δu = 3

ρ
R2
aliceu

2
N (φ) (3.37)

= 3

ρ3 R
2
alice(1 + 2e cosφ + e2 cos2 φ) (3.38)

To obtain the complete solution we need to solve for δu. The theory of ordinary
differential equations tells us that all we need is any particular solution, and here is
one:

δu = 3

ρ3 R
2
alice

(
1 + eφ sin φ + e2

3
cos 2φ + e2 sin2 φ

)
(3.39)

The perihelians of the orbit can be obtained by solving for φ in

ρ
du

dφ
= −e sin φ + 3

R2
alice

ρ2

×
(
e sin φ + eφ cosφ − 2

3
e2 sin 2φ + 2e2 sin φ cosφ

)
= 0 (3.40)

The existence of the φ cosφ term in this equation, which came from the φ sin φ term
in δu, is causing the perihelion on the next cycle to shift away from 2π . Defining
φ = 2π + δ we can solve for δ in the perturbative expansion:

δ = 6π
R2
alice

ρ2 . (3.41)
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Given our previous computations, we are now able to evaluate the relationship
between the extra length scale Ralice and the perihelion advance of an orbit. In one
case, if we have made a measurement of the perihelion advance, we can derive what
value Ralice must be to reproduce that value

Ralice = (7.58 × 106 m)
( ρ

au

)(
Torbit
years

)1/2 (
δ/Torbit

arcsec/century

)1/2

(3.42)

On the other hand, if we have a theory for what Ralice should be, we can make a
prediction for the perihelion advance in units of arc seconds per century:

δ

T
= 6πR2

alice

ρ2Torbit
= (1.74 arcsec · century−1)

(
Ralice

107 m

)2 (
1 au

ρ

)2 (
1 yr

Torbit

)
. (3.43)

3.4 Philosophical Challenges to Newton’s Theory

We pause here to describe some foundational questions that Newton’s theory faced.
There are three main philosophical problems: (1) What is the nature of absolute time
and space, and is it necessary to invoke it? (2) Why should the gravitational mass
be equal to the inertial mass in the equations of motion? And (3) how does nature
enable action at a distance responses?

Regarding Absolute Space and Time, Newton sets forth his ideas in the first
Scholium of Principia. Almost immediately upon the publication of his book,
Newton faced criticism from noted physicists and mathematicians. The most famous
adversary regarding this was Leibnitz, who claimed that the only thing that need be
talked about, and which ultimately defines space and time, is the relative motions of
objects (relativism). Appeals to absolutes make no sense. Newton’s friend Samuel
Clarke argued vociferously for the absolute viewpoint (substantivalism). Their cor-
respondences are famous, and illuminating in the history of science. Over time these
discussions progressed from what some might think is word quibbling to important
physics principles emphasized by Mach and Einstein to name just two. Pedantic
rigor of thinking can lead to the thought processes that generate significantly better
theories, and this philosophical problem is arguably an illustration of that.

The second problem, why is the gravitational mass equal to the inertial mass in
my mind is the problem that should have kept everyone sleepless for those many
centuries when there was not an answer. Newton’s theory has nothing to say on
the matter, except well, there it is. These masses are two separate beasts, and why
they should be the same? The resolution of this issue is one of the core motivating
principles behind General Relativity, which succeeds in giving a deeper explanation
for this curious equality.

The third philosophical problem is sometimes called the problem of action at a
distance. There are two aspects of action at a distance. The first is why should two
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bodies far removed from each other with nothing in between them feel gravitational
attraction. Should not there be some “touching” or medium that carries the gravity
force from one body to the other? This action at a distance occurs between particles
separated by a large vacuum of nothing. This is hard to take. Even Newton was
disturbed by it, especially the latter aspect. In 1693 he wrote his friend Richard
Bentley “It is inconceivable that inanimate brutematter should,without themediation
of something else which is not material, operate upon and affect other matter without
mutual contact ....” (Thayer 1953).

The second aspect of the problem, which is related to the first, is how can two bod-
ies far removed from each other in space instantaneously feel the effect of another’s
gravitational force. Newton’s theory implicitly assumes that all particles feel all other
particles’ gravitational attraction strength by the exact separations of those particles
at each moment of time. If a particle moves just a little, everybody knows about
it instantly and the resolution of forces are adjusted instantly. To Newton and oth-
ers, action at a distance was intolerable, but the Newtonian system was the best
thing going, and it had tremendous practical value, so it was not to be abandoned
despite its flaws.

The issue of instantaneity was noted from the start, and Laplace touched upon it
in his highly influential Traité de Mécanique Céleste, published from 1797 to 1825.
He stated that instantaneous propagation did not appear convincing,2 and noted that
Bernoulli had suspicions as well. But Laplace knew that if the propagation were
indeed finite it would have to be extraordinarily fast, and even suggested, incorrectly
as it turns out, that some observations imply that it is eight million times that of light.
Laplace briefly brought up the possibility of modifying the inverse square law based
on this potential objection but ultimately dismissed it, stating that the simplicity of
Newton’s theory authorizes us to think of it as a rigorous law of nature.3

Nevertheless, the philosophical challenges to Newton’s theory are enough to real-
ize that it was not a complete theory. As we say often in physics today, there must
be “physics beyond the Standard Model”. How might signal of “new physics” show
up beyond Newton’s theory? Let us consider, for example, the disturbing underly-
ing assumption of action at a distance. As we implied above, there are two different
issues with action at a distance. There is the aspect of reaching across themediumless
vacuum, and there is the aspect of instantaneous transmission of information to all
particles in the universe when one particle moves.

Transforming our theory from reaching across the vacuum action at a distance
to action by local contact is the subject of the theory of fields. Particles source
fields that permeate spacetime, and other particles experience those fields. Thus,
action at a distance is replaced by particle-field interactions in this classical point of

2 “La propagation instantanée qu’ils supposaient à cette forceme parut peu vraisemblable” (Laplace
1805).
3 “En général, on verra dans le cours de cet ouvrage que la loi de la gravitation réciproque au carré
des distances représente avec une extrême précision toutes les inégalités observées des mouvement
célestes: cet accord, joint à la simplicité de cette loi, nous autorise à penser qu’elle est rigoureusement
celle de la nature” (Laplace 1805).
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view. The emanating field propagates at finite velocity, which is incorporated self-
consistently into modern field theories, retaining causality and introducing the more
acceptable action by local contact.

We do not need to fast forward all the way to the field theories of today to ask
howNewton’s theory can be pressured experimentally by applying our philosophical
worries. The most obvious way one should have thought to do it is by testing the
instantaneous aspect of action at a distance. If one doubts that it is to be rigorously
upheld, then we should expect that a quick movement of a body in a mechanical
system might yield unexpected results since it might be significantly displaced from
its original position by the time the other bodies “get word” of its flight, and it
becomes ambiguous to knowwhat direction andmagnitude of force should be applied
at all times. Thus, at some sufficiently high speed we might expect to see something
unusual—something unplanned for in the Newtonian world. The trouble is, we do
not know a priori what speed this breakdown would occur, and we certainly do not
know what new description would be applicable.

In circumstances like this, it is often best to write down effective theories that
satisfy the symmetries of your worldview and do precision measurements to find
deviations. The pattern of deviations or the values of couplings in the effective theory
can lead to new insight when explained by a deeper theory. Bob’s 1/r2 correction
theory and Alice’s 1/r3 correction theory to the gravity potential in the preceding
sections do precisely that. They are Galilean invariant, and satisfy all the symmetries
cherished even then: rotational invariance and translation invariance.

We apply this approach of writing down corrections to planetary motion because
this is our greatest hope to find cracks in the old classical world view. Since no
cherished symmetries are violated by the additional terms we have found before, we
may even expect to find breakdowns of Newton’s theory by the orbits of the planets,
especially since they are accessible and moving faster with respect to each other and
the sun than any laboratory system that could have possible been created on the earth
at the time. Precision measurements of fast planetary motions thus had good reason
to be the first place to find breakdown of Newton’s theory. No planet moves faster
thanMercury. Indeed, it is Mercury where the first fissures arise, as we shall describe
in the following sections.

3.5 Effective Theories

It is my contention that the concepts of Effective Theories, if understood and held
by the early Newtonian scientists, would have led to a prediction that there must
necessarily be an anomalous perihelion precession of Mercury and other planets,
and that even the order of magnitude could have been guessed well before Le Ver-
rier’s announcement in 1859. There was no barrier to adopting these ideas in New-
ton’s day, as it requires no new special experimental knowledge, nor knowledge of
Einstein’s relativity, but rather a more mature approach to how we think about the
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laws of nature. In order to present this viewpoint, I shall first give a précis of the
modern notions of Effective Theories.

At its core, the term Effective Theory is short for a body of evidence that has led us
to understand that “everything depends on everything else” may be true in principle
but certainly not true in practice. In a restricted domain, the theory manifests sym-
metries and properties that provide the ability to calculate observables without the
requirement of making reference to features outside the domain. A simple example
of this is that we can compute the trajectory of a football to any practical precision
without needing to know the location of Uranus. The effects of Uranus on the tra-

jectory are suppressed by a relative factor of mer2e
mUd2U

∼ 3 × 10−14, where re is the

radius of the earth, dU is the distance from Uranus, and me (mU ) is the mass of the
earth (Uranus). This is much too small to take into account for any practical need.
The diminishing effect of Uranus as dU → ∞ is the principle of decoupling, which
is at the core of Effective Theory utility and is the central reason why science works
and we are able to compute and predict observables.

A central concept of Effective Theory is the recognition that a full theory with
heavy and light degrees of freedom can be written at low energies in terms of
just light degrees of freedom after “integrating out” the heavy states or “coarse
graining” over the small scales. We use “heavy” and “light” abstractly here, as it
could refer to masses, momenta, velocity, etc. The chiral lagrangian of QCD, the
Fermi theory of electroweak interactions, the Landau-Ginzburg theory of supercon-
ductivity (Polchinski 1992) can all be recognized as an Effective Theory of a more
fundamental theory.

This top-down approach to understanding Effective Theories can give us a multi-
tude of theoretical insights into the nature of simplified low-energy theories. It is this
top-down approach that is traditionally how the power of Effective Theory concepts
is demonstrated in particle physics (Cohen 1993; Rothstein 2003), fluid mechanics
(Delgado-Bucalioni et al. 2005), material science (Abrams 2005), and essentially
any other field that has a separation of scales. However, when considering theories
from bottom up, the concepts we learn from Effective Theories can help us deduce
modifications and additions to our present theories that can be tested by experiment.
Success then can lead to motivations for inducing a more fundamental theory that
reproduces the Effective Theory when restricted to its domain. It is this direction in
theory analysis that I emphasize here for our present purposes.

The insight that I would like to focus on, which I believe is the most powerful one
when it comes to divining additions and modifications to theories, is the role that
symmetries and naturalness play in the construction of the “complete” Effective The-
ory. A symmetry is a recognition that something (a triangle, an equation, etc.) stays
the same even if you make a closed set of transformations (i.e., group operations) on
that object (rotations by 180◦, interchange of x and y variables, etc.). All of our fun-
damental theories have inherent recognized symmetries in them. We cannot proceed
without these recognitions in the Effective Theory, because even the names we give
to objects aremerely shorthand notation for their symmetry properties (e.g., electrons
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are spin-1/2 representations of the Lorentz Group with additional gauge symmetry
representation labels).

Oneof the principle consequences of theEffectiveTheory approach to establishing
natural law is that all possible interactions (or “terms”) consistent with the recognized
symmetries of the Effective Theory are generically expected. There may or may not
be additional terms that violate the symmetries, but terms that do not violate the
symmetries must be included. In the realm of Effective Theories within quantum
field theory, Weinberg, reflecting on the last three decades of work on the subject,
has made the equivalent point that an Effective Theory may be considered self-
consistent and not sick “as long as every term allowed by symmetries is included”
(Weinberg 2009).

In short, the precise form of a theory or law is not what is to be taken most
seriously—it is the recognized symmetries. Upon sorting out the symmetries, the
Effective Theory is to be developed with all possible terms consistent with the
symmetry, and then qualitative expectations for experiment can be presented. What
remains is measurement and pinning down the actual values of the coefficients to
each symmetry preserving interaction term.

3.5.1 Application to Newton’s Gravitation

Newton’s law of gravitation is that the force between two bodies of masses m and
M is inversely proportional to the square of the distance between them, with the
proportionality constant being Newton’s constant G:

F(r) = GMm

r2
, or V (r) = GMm

r
(3.44)

where V (r) is the potential. In Book 3 of Principia, Newton states categorically that
the inverse square law is “proved with the greatest exactness from the fact that the
aphelia are at rest” and that “the slightest departure from the ratio of the square would
necessarily result in a noticeable motion of the apsides....” (Newton 1999). Thus, the
theory was created and solidified as a proposition to the world.

Newton’s inverse-square law was so sacrosanct that few would ever doubt it.
Immanuel Kant in 1747 used the inviability of the inverse-square law to derive
that space had three dimensions. This is due to what we would say today is the
conservation of gravitational flux lines emanating from a point mass through the
surface of a sphere of arbitrary radius. God could have chosen a different gravity law,
Kant says, and the number of spatial dimensions thenwould have had to be different.4

4 “Zweitens, dass das Ganze, was daher entspringt, vermöge dieses Gesetzes [inverse-square law]
die Eigenschaft der dreifachen Dimension habe; drittens, dass dieses Gesetz willkürlich sei, und da
Gott dafür ein anderes, zum Exempel des umgekehrten dreifachen Verhältnisses [i.e., inverse-cube
law], hätte wählen können; dass endlich viertens aus einem andern Gesetze auch eine Ausdehnung
von andern Eigenschaften und Absmessungen geflossen wäre” (Sect. §10 in Kant 1747).
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This rigid adherence to “god-given” specific law is ultimately incorrect reasoning,
and it is in conflict with modern views of Effective Theories.

The modern sensibility says that we should focus more on the symmetries, and
then refashion the complete Effective Theory using them.What are the symmetries of
the Newtonian world? The symmetries are that the laws of physics cannot be affected
by one’s orientation in space, by one’s location in space, nor by one’s location in
time. The laws must be invariant to any transformation of rotation, spatial transla-
tion, or time translation. These symmetry properties go under the name of Galilean
invariance. As a side comment, the Lorentz invariance of Einstein’s special relativity
asymptotes to Galilean invariance in the low velocity limit (i.e., when v 
 c).

The interaction term of Eq.3.44 is merely one term in an infinite number of terms
that could be written down that are completely consistent with Galilean invariance.
An Effective Theory approach would be to introduce them all and investigate the
consequences. There is no meaningful symmetry that demands only the inverse
square law interaction. Assured of this, one example would be to embellish Newton’s
law by

VET (r) = GMm

r

[
1 +

∞∑

n=1

λn

(r0
r

)n
]

+ · · · (3.45)

where r0 is some dimensionful Effective Theory length scale and λn are dimen-
sionless coefficients, which together with r0 can be found by performing precise
experiments. We should note that there are an infinite variety of other terms that
could be added, including r j and ṙ k interactions, but we streamline the argument by
looking only at one class of corrections that decouple as r → ∞.

3.5.2 Inevitable Perihelion Precession

An extremely important conclusion can already be presented from the rules of Effec-
tive Theories. Any deviation from the pure inverse square lawwill lead to a perihelion
precession of the planets, and as the constructed Effective Theory demands additions
to the inverse square law there will be an anomalous perihelion precession of the
planets. On the other hand, we know that the inverse square law is approximately
correct and thus we have added terms that decouple as r � r0. The perihelion pre-
cession of Mercury is very small, and so we expect that r0 should be much less than
the orbital radius of Mercury around the sun. In that case, we are justified in looking
at the first-order corrected potential, which we can write as (λ1r0 → R):

V1(r) = GMm

r

(
1 + R

r

)
. (3.46)

By these arguments of Effective Theory, an anomalous perihelion precession ofMer-
cury is inevitable. It is only a question of what value does R take, which then sets
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the numerical value of the precession. In the subsequent sections we discuss some
arguments for what R might be, from the vantage point of pre-special relativity and
pre-general relativity days, and make rough quantitative predictions for the preces-
sion rate.

Up to this point we have argued that the focus should have been more on the
symmetries of the gravitational theory rather than the concretization of the theory.
A more complete Effective Theory for Newtonian gravity would have been accepted
and one would have fully expected anomalous perihelion precessions of the planets.
A potential similar in form to Eq.3.46 would have been put forward, and the task of
theoretically diviningor experimentallymeasuring Rwouldhavebeen the consuming
activity.

3.6 Mercury’s Anomalous Perihelion Precession

Let us imagine that Bob and Alice are two physicists who are working in the post
Le Verrier and pre Einstein era. They are smitten by the Newtonian worldview.
They do not wish to do radical things to explain this perihelion precession. They are
well-versed in the concepts of Galilean Invariance, Hamilton’s Principle, and have
an inkling of the ideas of effective theories. Naturally, they want to describe this
precession through a Galilean invariant effective theory of gravity. Bob announces
that he wishes to add a 1/r2 correction to the lagrangian. Not wanted to follow in
Bob’s footsteps, Alice declares that the force law should be even powers of 1/r2 and
so her first correction to the lagrangian is 1/r3. The two lagrangians are

Lbob = 1

2
mṙ2 + α

r

(
1 + Rbob

r

)
(3.47)

Lalice = 1

2
mṙ2 + α

r

(
1 + R2

alice

r2

)
(3.48)

where α = GMm, with G being Newton’s constant, M is the mass of the sun, and
m is the mass of the planet under consideration. These are the two lagrangians of
Bob and Alice that we studied in a previous lecture. These new laws of Bob and
Alice require the introduction of a new fundamental length scale Ri . They do not
know what that length scale is, but they have hopes that the new data will pin it down
for them.

Before we look more closely at Bob and Alice’s theories, we should remark again
that in the classical history of gravity, there were early attempts to explain anomalies
by changing Newton’s laws, even in the manner of Alice and Bob. Such theories
go under the name of “Clairaut laws”. Clairaut proposed in 1745 that Newton’s law
should be corrected by a 1/r4 force term in order to explain some thought-to-be
anomalies in the movement of the lunar perigee. However, he found in the end there
was not a discrepancy, which buried such laws deeper into the dustbin of history.
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Table 3.2 Anomalous perihelion precession rates of the planets compared to expectations from
Newton’s law of gravity and taking into account all other sources of precession (effects of other
planets orbits, etc.) (Duncombe 1956)

Planet δ/T (arcsec/century)

Mercury 43.11 ± 0.45
Venus 8.4 ± 4.8
Earth 5.0 ± 1.2

More modern references test gravity (including precession rates) through the parameters of the
so-called parametrized post-Newtonian (PPN) approach (Will 2005)

Newcomb commented in 1882 that such laws were “out of the question” because
they disrupted the gravitational strength so wildly at very close distances where
the correction term would come to dominate (Newcomb 1882). As late as 1910
Newcomb, the world’s leader on this issue, was stating that all the data up to that
point “... seems to preclude the possibility of any deviation from that law [Newton’s
inverse-square law]” and that Mercury’s perihelion advance is best explained by
“the hypothesis of Seeliger” (Newcomb 1910), which was a zodiacal light theory
that contained intra-Mercurial distributions of orbital matter minimally disruptive to
all other astronomical observations except Mercury’s perihelion advance (see, e.g.,
Chap. 4 of (Roseveare 1982)).

Bob and Alice’s theory are a return to the Clairaut law in some ways. In the
next few subsections we merely state the effect they would have on planetary orbits.
After a discussion of Effective Theories and how they apply to this problem, we
shall proceed with a somewhat fanciful alternative history of how deviations from
Newton’s laws could have been explained and interpreted from the point of view
of Effective Theories after the anomaly was announced by Le Verrier. But it should
be kept in mind, and will be emphasized again in the concluding section, that these
theories could have been anticipated, and perhaps even should have been anticipated,
before Le Verrier’s announcement.

3.6.1 Analyzing Bob’s 1/r2 Correction Theory

From Eq.3.30 we can compute in Bob’s theory that it is necessary that Rbob =
4.4 km if Mercury is to have the measured 43s of arc per century in its perihelion
precession. Given this value of Rbob, Bob can make predictions for the perihelion
advance of other planets. Using Eq.3.28 he finds δ/Torbit = 8.6′′ of arc per century
for Venus’s perihelion precession and 3.8′′ for the earth. These predicted values
compare favorably to the measurements for Venus and Earth presented in Table3.2.
The predictions are well within the errors, and Bob is pleased because he has found a
way to explain the anomaly while yet retaining Galilean invariance as a fundamental
symmetry of spacetime. He has done this through the means of a simple expansion
correction to Newton’s law of gravity. Nothing radical was done.
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Despite the successes, Bob is not totally satisfied. He wants to know if he can
argue for this new length constant in nature Rbob. It’s a very strange distance 4.4km.
Hewonders howhe can formulate this distance fromall the invariants swirling around
him. It should not depend on the mass of each planet, he reasons, because we have
just shown that one value of Rbob appears to work universally well for all planets.
The other options we have to build a length scale are from Newton’s constant G, the
mass of the SunM and angular momentum. Bob fails to find any natural combination
that will give 4.4km.

Before giving up he recalls that his intuition has told him that there is some
characteristic high speed such that Newton’s simple laws become strained (see
Sect. 3.4). He does not know what that speed value is, and his new law is just
as much action at a distance as the old one, but he carries on by giving this new
speed a name, vbob. With this new undetermined speed in hand he realizes imme-
diately that he can form a new length scale GM/v2bob. Can this be the origin of
Rbob? What value must vbob be to recover Rbob = 4.4km? A simple calculation
yields

vbob =
√

GM

Rbob
= 1.7 × 108 m/s. (3.49)

This quantity vbob that Bob has derived is a very curious number! His colleagues
down the hall have been working on the theory of electromagnetic phenomenon and
a speed very close to that keeps showing up in their equations, c = 3.0 × 108 m/s.
This is the propagation speed of light. He decides this cannot be a coincidence, but
he is not sure what to make of it. He decides to define a new scale based on these
thoughts, the “sun’s electro-gravity scale” REG ≡ GM/c2. Rbob can now be written
in terms of this definite scale Rbob = λbobREG . It is very curious that the data fits
very well if λbob = 3 is an integer. He writes on a piece of paper his new theory of
gravity

Lbob = 1

2
mṙ2 + GMm

r

(
1 + 3

GM/c2

r

)
, (3.50)

and he is pleased with its simplicity, elegance and symmetry. He does not know how
the speed of light c crept in, but he is satisfied since his lagrangian looks “natural”
given that there are no really big or really small numbers populating it. Furthermore,
he knows that if he must construct a new length scale with a speed, the “natural” next
known threshold of speed is the speed of light, and so this correction is “natural” to
explore. He feels he is on to something big.

Bob finds another interesting connection with this scale GM/c2. He recognizes
that there is a small radius RE of a infinitesimal (i.e., radius less than RE ) spherical
body of mass M for which an object going the speed of light would not be able to
escape. This light-speed trapping radius is a curiosity: if light were corpuscular in
any sense, as Newton and others thought it might be, then we could see no light
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emanating from within the radius RE of the massive body. This sets a mystery scale
to gravity that requires further scrutiny and may be a length scale associated with
changes in gravity. The computation of this scale is simple in the Newtonian world,
and is

RE = 2GM

c2
(light non − escape radius) (3.51)

This is only a factor of two different than the value of R he has derived from the
perihelion precession rate. It should be noted that RE is the precisely the Schwarz-
schild radius derived in General Relativity, which is a well-known special scale for
spherically symmetric objects for more reasons than just what was stated above
(Schwarzschild 1916; Wald 1984). Furthermore, it should be recalled that the speed
of light was being quantitatively estimated (Rømer 1676) even before Newton’s
Principia, and by 1729 it was known to within a few percent (Bradley 1729),
and so this scale had precise meaning from the very beginning days of Newtonian
gravity.

Despite these interesting connections, Bob gets nervous looking over his equa-
tions. Equation3.27 seems to indicate that if ρ < 2Rbob = 6GM/c2, the orbits do
not make sense anymore, as the equations formally say r < 0 which is nonsensical.
He relaxes briefly when he realizes that 2Rbob is only 9km, which is well below the
orbital radius of any planet, and furthermore it is even below the radius of the sun,
which is 7×105 km. Thus, there is no danger that some small object rotating around
the sun would have no chance to be described by Bob’s theory, since it would be
inside the sun.

Nevertheless, he is still a bit uncomfortable. Nowhere in his derivation was the
radius of the sun ever required. In principle, all that mass of the sun could have
been at one infinitesimal point for all the equations knew. Nevermind how to pack
all that mass in with a radius less than 9km, it is a possibility in principle that
such a tightly packed object exists, and if it did, there is no way his theory could
describe close-by orbits with characteristic orbital latus rectum size ρ < 9 km. He
knows his theory cannot be the end all of all the theories anyway due to not knowing
why c crept into his equations, despite that being the natural next “speed scale” to
consider, but now he is evenmore discomfited because he can imagine configurations
where his theory just cannot even give an answer. But that is for another day. He has
succeeding in explaining the precessions of Mercury, Venus and Earth and that is
enough for a day’s work. And that is what Effective Theories do. They explain the
day’s work—Bob clearly has made progress—but there is more to be learned and
understood. Effective Theory practitioners understand that all possible questions
cannot be resolved instantly, and that there are necessarily deeper effective theories
to come.
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3.6.2 Analyzing Alice’s 1/r3 Correction Theory

Alice now wishes to make definite her lagrangian with 1/r3 potential corrections by
specifying the value of Ralice from Mercury’s anomalous perihelion precession and
then predicting what the other precession rates are. Upon fitting Mercury data she
finds Ralice = 9.04 × 105 m. Using that fixed value for all planets she then predicts
δ/Torbit = 4.43′′ of arc per century for Venus and 1.4′′ of arc per century for the
Earth. The Venus result is nearly 2σ off compared to the measurement, and the Earth
result is about 3σ off of the measurement (see Table3.2). Alice has a choice now.
She can say her theory predicts that further refined measurements of the precession
rates will yield smaller central values of the precession rates for Venus and Earth in
concert with her theory. Or, she can take the 3σ discrepancy seriously and attempt
to modify her theory.

Alice makes the right choice and seeks to modify the theory. She computes what
Ralice needs to be for each planetary case to precisely hit the measured values. She
finds

Rmercury
alice = 90 × 107 m, Rvenus

alice = 1.3 × 107 m, Rearth
alice = 1.5 × 107 m. (3.52)

Similar to Bob, she begins to think about how these length scales can be identified
with all the quantities that she has available to her in the problem: M , mplanet, and �.
She cannot come to a satisfactory answer. These constants alone are not enough to
form the length scales of Eq.3.52.

However, in Alice’s trials she notices something interesting. The Ralice lengths are
proportional to angular momentum divided by mass of the planet, Ri

alice ∝ �i/mi ,
with the sameproportionality constant. This constant has the dimensions of an inverse
velocity. She decides to call it valice and solves for its value:

Ri
alice = v−1

alice
�i

mi
=⇒ valice = �i

mi Ri
alice

= 3.0 × 108 m/s (3.53)

Alice also has colleagues that work on electromagnetism and she recognizes this
value as exactly the speed of light, valice = c. How did that happen? She does not
know, but she is surely excited about the result, as she too recognises that c is the next
fundamental “speed threshold” and so is a “natural” value in the Effective Theory
correction. She has explained all the planetary precession data. She writes down on
a piece of paper her new theory of gravity,

Lalice = 1

2
mṙ2 + GMm

r

(
1 + 1

c2
�2/m2

r2

)
. (3.54)

which like Bob’s theory possesses symmetry and has a measure of elegance and
simplicity.
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As she reflects on her theory she realizes that since angularmomentum is � ∼ mrv,
where v is the velocity of the planet orbiting the sun, the second term inside the
parenthesis can be thought of as anm-independent v2/c2 correction to the Newtonian
gravitational potential. Thus, she believes that she will be the first to show that the
simple inverse-square law of Newton is corrected by factors of v2/c2. As the speed
of the planet gets closer to the speed of light, Newton’s theory begins to crack. So
far the basic assumptions of spacetime symmetries—Galilean Invariance—are not
breaking down, just the simple form of Newton’s theory of gravity. Despite these
successes of her theory, she remains slightly dissatisfied with one aspect. How can
she convince herself, much less others, that her theory is better than Bob’s? Surely
one or the other or some combination of these corrections are required by nature,
she reasons, but can they be determined from deeper theory principles? The answer
is yes, and Einstein’s General Relativity is that theory.

3.6.3 Gerber’s “Utterly Worthless” Theory

Before going to Einstein’s General Relativity, let us comment briefly on velocity
dependent approaches to augmentingNewton’s law.Manipulations of the Newtonian
potentialwere initiated in earnestwell afterLaplace’sworkwith the goal of rigorously
incorporating finite speed effects of gravity. The most straightforward approaches
failed. However, Paul Gerber proposed in 1898 (Gerber 1898) a velocity dependent
potential correction that correctly accounted for Mercury’s perihelion precession:

V (r, v) = −M

r

(
1 − v

c

)−2
(3.55)

where c = 3 × 108 m/s is the speed of light, and v is the velocity of Mercury in the
Sun-Mercury center of mass system.

Gerber’s theory captured the attention of many due to its combined simplicity and
effectiveness in accommodating Mercury’s anomalous perihelion precession rate.
For example, Mach wrote, “Only Paul Gerber [reference to 1898 paper] studying the
motion ofMercury’s perihelion ... did find that the speed of propagation of gravitation
is the same as the speed of light” (Mach 1901). He was attacked for not giving good
reasons for his theory—a topic we shall take up below—but he did provide a simple
theory that worked. It was also a “natural” theory due to its utilization of c as the
next fundamental speed scale of the theory.

Seventeen years after Gerber’s potential, the question of Mercury’s perihelion
precession was resolved powerfully by Einstein’s GR (Wald 1984). At low velocities
the first-order correction to gravitational attraction of Gerber’s theory matches the
first-order correction of Einstein’s theory. However, Einstein’s approach had coher-
ent principles and unassailable logic, and thoughts about Gerber’s theory quickly
faded away.
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Despite the success in accommodating Mercury’s perihelion precession, Gerber
was roundly criticized for his theory. The strength of the reaction that Gerber faced
seems harsh for somebody who actually did write down a simple theory of no free
parameters with the speed of light in it that worked. It is as though the deep thinkers
at the time knew there was something appealing about Gerber’s work, but could
not quite put their finger on it, and so harshly criticized it as a community building
exercise to dismiss that kind of apparently principle-less approach to physics.

Einstein, commenting on Gerber’s theory well after he had developed his own
theory of General Relativity summarized the attitudes well: “But specialists in the
field agree not only that Gerber’s derivation is thoroughly incorrect, but that the
formula cannot even be obtained as a consequence of Gerber’s leading assumptions.
Mr. Gerber’s paper is therefore utterly worthless” (Capria 1999) (italics are mine).
This appears to be an overly strong dismissal of Gerber’s simple theory that gained
so much attention.

Pauli, in his famous Encyclopedia article on Relativity said,

Recently, an earlier attempt by P. Gerber has been discussed which tries to explain the peri-
helion advance of Mercury with the help of the finite velocity of propagation of gravitation,
but whichmust be considered completely unsuccessfully from a theoretical point of view. For
while it leads admittedly to the correct formula—though on the basis of false deductions—it
must be stressed that, even so, only the numerical factor was new. (Paul 1981) (italics mine)

Whatever can be said of Gerber and his theory and the faulty logic behind his
theory, it was not “utterly worthless” or “completely unsuccessful”. I believe it was a
crude attempt at effective theory analysis. It was something he may have intuited but
was unsuccessful in articulating well due to the mindset and style of physics of the
day. Back then, no term was allowed to augment a theory without it being derived
first from a deeper principle. The standard rigor of the day was that laws were exact
by argument and deduction, and any deviations or changes must be accounted for by
a replacing new principle.

An excellent example of this prevailing attitude is provided by Max Born in his
book on Einstein’s theory of relativity (Born 1924). He describes briefly the case of
Mercury’s anomalous perihelion precession and then goes on to harangue all those
people before Einstein who generated ad hoc solutions to the problem:

Changes in the laws [Newton’s laws] have been proposed, but they have been invented
quite arbitrarily and can be tested by no other facts, and their correctness is not proved
by accounting for the motion of Mercury’s perihelion. If Newton’s theory really requires a
refinement we must demand that it emanate, without the introduction of arbitrary constants,
from a principle that is superior to the existing doctrine in generality and intrinsic probability.
Einstein was the first to succeed in doing this.

This attitude is partially in conflict with our understanding of Effective Theories
today. The introduction of arbitrary constants is a key step in the construction of
Effective Theories, and the role of experiment is to pin those down. If anything, the
ad hoc inventors of changes in Newton’s law were too sheepish about introducing
arbitrary parameters, and instead got tangled up with incoherent “deep reasons” for
their particular laws.
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Effective Theory is an intermediate step between an old regime (e.g., Newton’s
laws) and a new regime (e.g., Einstein’s General Relativity), and this intermediate
step necessarily has “arbitrary couplings” and does not “emanate from a principle
that is superior to the existing doctrine”. Instead, it says that the existing doctrine
should be taken to its utmost seriousness (e.g., Galilean invariance) and data should
fit the parameters of all allowed interactions, and perhaps a deeper new theory can
come along later to explain the relations among those parameters.

Although Gerber’s theory was not worthless, it is not as valuable as Einstein’s
General Relativity. Alice and Bob’s effective theories would not have been worthless
either had they written it down much earlier. They would have been an intermediate
stepping stone from one principled theory to the next that would have predicted the
existence of Mercury’s perihelion precession and motivated earlier discovery of the
phenomena.

3.7 Perturbation from General Relativity

We have talked about Einstein’s General Relativity being the deeper theory that
explains Mercury’s perihelion precession. It is worthwhile in these lectures to go
through that computation to see how it comes about.

We wish to compute the trajectory of a particle subject to a central, radially
symmetric gravitating source in the general approach followed, for example, by (Hartl
2003). The metric applicable for this computation is the Schwarzschild metric:

ds2 = −η(r)c2dt2 + dr2

η(r)
+ r2dθ2 + r2 sin2 θdφ2 (3.56)

where

η(r) = 1 − 2GM

c2r
= 1 − rs

r
, where rs ≡ 2GM/c2 (3.57)

The quantity rs is the Schwarzschild radius. This defines the metric tensor to be

gαβ = diag(−η(r), η(r)−1, r2, r2 sin2 θ) (3.58)

in the (t, r, θ, φ) basis. Note that the signature of the metric (asymptotically weak
field far away) in normal rectilinear coordinates is gαβ = diag(−1, 1, 1, 1).

The Schwarzschild metric is unperturbed by making shifts in the time direction
and by making shifts in the angular direction φ. These define Killing vectors ξλ

time =
(1, 0, 0, 0) and ξλ

rot = (0, 0, 0, 1). The nice property of a Killing vector is that when
dotted into the four-velocity vector dxα/dτ the result must be constant along the
geodesic motion:
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ξλ dxλ

dτ
= gαβξα dx

β

dτ
= const. (3.59)

Applying this theorem to the Schwarzschild metric gives

gαβξα
time

dxβ

dτ
= η(r)

dt

dτ
= c1 (3.60)

gαβξα
rot

dxβ

dτ
= r2 sin2 θ

dφ

dτ
= c2 (3.61)

where c1 and c2 are mere constants. We know that independence of time implies
conservation of energy, and we also know that independence of rotation implies con-
servation of angular momentum. Thus, we know that c1 is some function of energy,
and we know that c2 is some function of angular momentum as we usually define
the quantities. However, at this stage we do not know the precise correspondence, so
it is prudent to just carry the constants c1 and c2 with us until the precise relations
become obvious.

From Eq.3.61 we solve for dt/dτ = c1/η(r) and dφ/dτ = c2/r2 sin2 θ . Now,
we should simplify this all by taking the orbit in the θ = π/2 plane and so dφ/dτ =
c2/r2. Please note, conservation laws have given us this, and this is where deep
physics lies. Now, let’s expand out the defining equation of the four-velocity

gαβ

dxα

dτ

dxβ

dτ
= −1, which gives (3.62)

− η(r)

(
dt

dτ

)2

+ 1

η(r)

(
dr

dτ

)2

+ r2
(
dφ

dτ

)2

= −1 (3.63)

for the Schwarzschild metric. Substituting the values of dφ/dτ and dt/dτ that we
obtained above from the Killing equations, we find

− c21
η(r)

+ 1

η(r)

(
dr

dτ

)2

+ c22
r2

= −1 (3.64)

After carrying out some algebra one finds

mc2

2
(c21 − 1) = 1

2
mc2

(
dr

dτ

)2

− GMm

r
+ mc2c22

2r2
− GMmc22

r3
(3.65)

The form of Eq.3.65 is very suggestive of our equation for energy of a particle in
an orbit, and the correspondence becomes precise if we make the identifications

mc2

2
(c21 − 1) ≡ E and c22 ≡ �2

m2c2
. (3.66)
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We also can identify τ = ct in the non-relativistic limit. It turns out that this substi-
tution is acceptable for the problem at hand as long as ṙ 
 r φ̇, which is generally
the situation for low eccentricity orbits, and certainly the case for the planetary orbits
of our solar system. Making these identifications the energy equation becomes

E = 1

2
m

(
dr

dt

)2

+ �2

2mr2
− GMm

r

(
1 + �2/m2c2

r2

)
. (3.67)

This is the energy equation for a particle in Newtonian gravity except for the small
shift in the effective potential

ΔVef f (r) = −GMm

r

(
�2/m2c2

r2

)
(3.68)

which is precisely the same correction to Newton’s theory we derived earlier from
Alice’s effective theory approach to explain Mercury’s precesion in Eq. 3.54.

There are multiple ways to derive the correction to Newton’s gravity law for the
particular problem of perihelion precessions. In our derivation, we found Alice’s
theory correction. This is also the result derived in General Relativity by many other
authors (see e.g., Schutz 1990; Goldstein et al. 2002; Hartl 2003). However, another
approach to the General Relativity derivation gives Bob’s theory, and that has been
demonstrated by a set of different authors (see e.g., Paul 1981; Landau and Lifshitz
1975; Iwasaki 1971; Donoghue 2009). These two theories, if treated as god-given
complete theories, are not equivalent. However, they are equivalent results for this
problem as all approximations and culling of the General Relativity terms have been
carried out with the sole purpose of finding the perihelion precession. In the end, the
precession rate angle per orbit period from either correction is the same:

δ = 6πGM/c2

a(1 − e2)
(3.69)

Algebraically, the orbital identity

�2 = GMm2a(1 − e2). (3.70)

is what guarantees that the two solutions predict the same anomalous perihelion
precession rate. So, we see that Albert explains both Alice’s theory and Bob’s theory,
and puts them on firmer footing.
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3.8 Conclusions

At the beginning of these lectures we decided that Newton’s law of Gravitation
was very successful in describing the orbits, but that it is not the precise law that
captures our most profound admiration. Rather, it is the symmetries that the theory
possesses. We elevated those to the highest principles and constructed reasonable
effective theories that could be expected by the data. We illustrated the results with
two theories: Bob’s 1/r2 andAlice’s 1/r3 potential correction theories. Both theories
were able to account for the perihelion rate naturally. We even made the case that
philosophical challenges to Newton’s world view, if taken seriously, could presage
the size of Mercury’s correction that was actually measured by Le Verrier. This is
done with the aid of “naturalness” arguments about the speed of light being the next
speed scale of nature by which to construct corrections to Newton’s potential. In this
way the concepts of natural effective theory have some predictive power. That power
is certainly qualitative, but also to some degree quantitative.

Einstein had keen insights into the nature of space and time and developed the
theory of General Relativity based on them. It describes gravity at a deeper level, and
one of its first orders of business was to compute the anomalous precession rate of
Mercury to see if it could account for the discrepancy between Newton’s theory and
measurement. The answer is yes, and we have shown that this correction matches
nicely the effective theory results of Alice and Bob.

Einstein’s General Relativity theory is “better” thanAlice’s theory or Bob’s theory
for two reasons. First, it gives a deeper principles understanding of the correction
with no additional free parameters. This deeper understanding is nothing other than
further assumptions on spacetime symmetries that panned out. Second, Einstein’s
theory is a more complete theory of gravity that makes additional predictions (such
as bending of light, and binary pulsar spin-down) that are confirmed by data. Alice
or Bob’s theory clearly cannot match the riches of General Relativity and so cannot
be considered as fundamental as Einstein’s.

Despite Bob and Alice’s theory coming up short, the general lesson remains.
Newton’s theory was an effective theory, which is in some aspects superceded in
success by Bob and Alice’s effective theory, and Bob and Alice’s effective theo-
ries are superceded in success by Einstein’s General Relativity. The obvious next
question is whether Einstein’s General Relativity theory can be succeeded in suc-
cess by another theory. A deeper theory that perhaps could be explained as effective
theory expansion of Einstein’s theory for the purposes of solving some lower energy
precision measurement problem. There is little doubt that is the case (Donoghue
1994).

Finally, one of the most profound shifts in our thinking over the decades, illus-
trated well by the Perihelion precession example, is that it is really no longer appro-
priate to speak of “the correct theory.” There is no correct theory. Our tasks are
to improve theories via the effective theory approach, to seek deeper and simplify-
ing assumptions that account for it, solidify those into a new theory, and then treat
that new theory as an effective theory, and repeat. These steps are accomplished by
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continually improving and refining observations and theory computations that enable
us to choose between effective theories, followed by deducing deeper new symme-
tries that force its inevitability. Theories are never to be trusted—they are always
“wrong” in the end—and with concerted effort we can even anticipate when and
how they will break down.

The concepts of Effective Theory lead one to predict qualitatively that a perihelion
precession of Mercury was a priori guaranteed even knowing only the experimental
facts of the Newtonian era. In particular, elevating symmetries above the concretiza-
tion of hypothesized law, in this case the rigid devotion to the inverse square law,
is the basic ingredient that would have led unambiguously to this conclusion. The
general approach to science during the Newtonian era required almost complete
devotion to concrete laws and their propositional justifications, which impeded its
progress toward developing theory enhancements guided by symmetries and natu-
ralness. Gerber, a school teacher who was perhaps not as indoctrinated in this more
rigid fashion, found a potential that worked yet then made unjustified arguments for
why it should be true. Effective Theories give the best of both words: deep but modest
justifications for theories that can anticipate data and fit the data.

We have also shown that even during the time of Newton a reasonably well
supported hypothesis for the perihelion precession of Mercury could have been put
forth that is close to the actual experimental result of 43′′ of arc per century. This is a
clear illustration of how the ideas of Effective Theory can be utilized to extrapolate
modestly beyond the rigidly set forth laws of fundamental physics.
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