
Chapter 2
Harmonic Oscillator as an Effective Theory

Abstract The concepts of Effective Theories are illustrated allegorically within the
context of one of themost ubiquitousmodels of oscillating physical phenomena—the
harmonic oscillator.

2.1 Basics of the Harmonic Oscillator

The concepts and issues related to effective theories can be illustrated quite nicely
by the harmonic oscillator problem. The harmonic oscillator is one of the most
ubiquitous mathematical models of physics phenomena. It is present in almost every
systemwith a restoring force,which includes the galaxy, solar system, springs, atoms,
molecules, and innumerable other configurations.

The main point I would like to illustrate is that the lowest order effective potential
for the harmonic oscillator is an excellent approximation to the motion of a system
over a wide range of amplitudes. However, at some point it breaks down when
the amplitude is large enough, and then control over the system is lost unless a
deeper theory is understood. We shall not go into the construction of deeper theories
in this chapter, but rather focus on the domain of applicability of the harmonic
oscillator effective theory, and show how small corrections can be anticipated and
then measured by precise experiments to start building a more complete picture of
the potential governing the system.

To keep the illustration simple, we will restrict ourselves to one-dimensional
harmonic motion of a particle subject to the restoring potential V (x) = kx2/2. The
Lagrangian of the system is then

L =
∫

dt

(
m
ẋ2

2
− k

x2

2

)
. (2.1)

J. D. Wells, Effective Theories in Physics, SpringerBriefs in Physics, 7
DOI: 10.1007/978-3-642-34892-1_2, © The Author(s) 2012, corrected publication 2022

This chapter has been made Open Access under a CC BY-NC-ND 4.0 license. For details on
rights and licenses please read the Correction https://doi.org/10.1007/978-3-642-34892-1_6.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-642-34892-1_2&domain=pdf


8 2 Harmonic Oscillator as an Effective Theory

From the principle of least action the equation of motion gives Newton’s second law
of motion F = ma the form

mẍ = −kx =⇒ mẍ + kx = 0. (2.2)

Defining ω2 = k/m, we can rewrite this as

ẍ + ω2x = 0 (2.3)

which has the solution
x(t) = A sin(ωt) (2.4)

where A is the amplitude, and the boundary condition of x = 0 at t = 0 is enforced.
Let us review a fewbasic facts about the harmonic oscillator solution. The period is

Tperiod = 2π

ω
= 2π

√
m

k
. (2.5)

The amplitude A of motion is related to the initial velocity by equating full potential
energy at maximum amplitude to the full kinetic energy at maximum velocity:

1

2
mv2max = 1

2
k A2 =⇒ A = vmax

√
m

k
= vmax

ω
= vmaxTperiod

2π
. (2.6)

It should also be noted that the period of the harmonic motion is not dependent on
the amplitude of the motion. This is clear from Eq.2.5 where it is shown that the
period only depends on the input parameters m and k. The amplitude and maximum
velocity conspire with each other such that vmax/A is always equal to

√
k/m.

2.2 Ubiquity of the Harmonic Oscillator

The harmonic oscillator problem is ubiquitous in physics, describing small motions
of an object attached to a string, molecules vibrating in crystals, electrical circuit
response, etc. There is a straightforward reason why there are so many examples that
follow simple harmonic behavior. Let us suppose that the equilibrium point (i.e., the
minimum of the potential) is about the origin. Then, the potential for motion is a
power series of the form

V (x) = a2x
2 + a3x

3 + a4x
4 + · · · . (2.7)

We do not write down a constant term or a term linear in x because the first is
irrelevant and the second term cannot be present if x = 0 is a local minimum. If it
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is present, one shifts x to cancel it, which is the place of the new extremum.1 There
are an infinite number of potentials that can be written down, with various relative
weightings of x4, x12, etc. The motions of a particle or entity about the equilibrium
can be very different depending on the potential.

Nevertheless, the universal quality of harmonic motion is ubiquitous because at
values of x below some critical value xcrit the potential is always dominated by the
x2 term. For example, in comparing the a2x2 term to the a3x3 term, the ratio is

a2x2

a3x3
= a2

a3

1

x
=⇒ a2x

2 term dominates over a3x
3 when x < xcrit = a2

a3
. (2.8)

In other words, small enough amplitudes are always very well described by simple
harmonic motion in a x2 potential.

In the following we will investigate an abstract system that has harmonic oscilla-
tion in the “low-energy limit”,when the amplitude is small.We shall see that through a
combination of precisionmeasurements and venturing into the high-energy unknown
we can learn more about the system. In the course of these investigations I wish to
give a sense of the usefulness of thinking in terms of effective theories, as well as
seeing the limitations of it.

2.3 First Theory

Let us suppose that there exists a System2 that appears to be undergoing harmonic
oscillation. For simplicity, the System will be chosen to have lengths of amplitude
and times for the period of motion to be measured most conveniently in meters and
seconds; however, this is only for intuitive concreteness, and one can multiply these
units by orders of magnitude in any direction as appropriate for different systems.

In the earliest stages of investigation of the System we see that it is undergoing
oscillatory behavior with a period of about 10 s. The resolution of the instrumentation
is not good enough to resolve any deviations from pure harmonic motion, and so we
posit that the motion is governed by the potential

V (x) = x2

2
=⇒ ẍ + ω2x = 0 (Theory 1). (2.9)

Let us now suppose that we try to test this theory by precision measurements.
Again, at the early stages of experimenting on a system, the resolution may not be
so good. Let us suppose that is the case for our simple System, and assume that the
period is measured to be

1 If for some reason a2 = 0, then a3 will need to be zero also, otherwise x = 0 is not a local
minimum, and the first term to worry about is x4. This is a complication that we need not worry
about for now.
2 We capitalize System to give it a reference name for rest of the discussion.
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Tperiod = 10 s ± 0.3 s (Measurement 1). (2.10)

This period of motion can be accommodated by our theory as long as

ω = 0.63 ± 0.02 s−2 (Parameter Fit 1). (2.11)

It is no mystery that we could find a value ofω that fit the period. No matter howwell
we measure the period, it is only one observable and the theory has one parameter
that can always be adjusted to match it. We need more observables to test the validity
of the theory more fully.

2.4 Second Theory

Another drawback of having just one observable is that there are an infinite number
of theories that we could write down trivially whose parameters could be adjusted in
an infinite continuum of values to accommodate the measurement. One such theory
has the same potential as Theory 1 except for now we add an x3 correction term to
the potential,

V (x) = k
x2

2

(
1 + 2x

3ΛA

)
=⇒ ẍ + ω2

Ax

(
1 + x

ΛA

)
= 0 (Theory 2) (2.12)

where ωA and ΛA, a new length scale, are two parameters that can have a relation
between them that give the same period. Here are two values:

ωA = 0.63 s−2 and ΛA = ∞ (2.13)

ωA = 0.631 s−2 and ΛA = 250m (Parameter Fit 2) (2.14)

where the first line is equivalent to Theory 1 and the second line is just one parameter
fit out of an infinite number of possibilities.

Upon close inspection of Theory 2 we notice that the correction term always
generates a force of the same direction no matter what the value of x : it pushes the
particle away from the origin when x is negative and pulls it back to the origin when
x > 0, whereas the first term always is restoring. This should create an asymmetry
in the time it takes for the Particle to cross x = 0 half-way through its full periodic
motion compared to the time it takes to cross x = 0 again on its second half of
the motion. We can compute this difference in time. Even though the total period
Tperiod = 10 s stays the same, the first and second halves of the distance covered by
the motion would be asymmetric if x/ΛA is not too suppressed:

T+1/2
period �= T−1/2

period but Tperiod = T+1/2
period + T−1/2

period = 10 s. (2.15)
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Therefore, an important additional observable to measure are these “half periods” to
see if they are antisymmetric as Theory 2 predicts.

Let us now suppose that there are improvements in the experimental instrumenta-
tion such that we can measure each “half period”, T+1/2

period and T−1/2
period , and it can be

done to accuracies of 0.01 s. And let us suppose that after some time of measurement
it is determined that

T+1/2
period = 5.05 s, T−1/2

period = 5.06 s, and

Tperiod = 10.11 ± 0.01 s (Measurements 2). (2.16)

To within the error bars of 0.01 s the two period halves are equal.
The usual scientific approach to the present situation is to say that the simpler

model wins out if it accommodates the data as well as the more complicated theory.
Thus, the community of scholars faced with the measurements above may well
conclude that Theory 1 is correct, or conclude that even if the x/ΛA term is present
it is so suppressed that it is immaterial to the physics.

Aswe shall discuss later, this is the kind of statement that onemight find in particle
physics when considering higher dimensional operators of StandardModel particles.
As in particle physics we may hold firm to the idea that there is no reason why these
extra terms should not exist. Indeed, in an effective theory the full series expansion
of additional terms should exist. But we must acknowledge that their coefficients
may be too small to discern from our experiments.

2.5 Fancy Explanations

Not seeing the effects of the asymmetric x/ΛA term after greatly improving the
experimental situation to look for it would likely get the community thinking hard
for the reasons of that failure. As we already mentioned, the diehard believers would
just say thatΛA has a value just higher than the experimental sensitivities would see.
Others would invent reasons for why x/ΛA should never have been there in the first
place. These reasons need to be based on some kind of symmetry argument.

There are two straight-forward symmetry arguments that would banish the x/ΛA

correction to the potential. The first argument is to presume that the potential has an
x → −x discrete symmetry. This would banish all odd corrections that could give
rise to asymmetric half periods. Our next correction would then be x2/Λ2. We will
investigate the experimental consequences of that potential shortly.

Another symmetry argument that says the harmonic oscillator lagrangian is exact
with a conformal symmetry, x → λx where λ is some arbitrary scaling parameter.
Although the Lagrangian is not invariant under this, the equations of motion are. It is
this scaling symmetry that tells us that time observables are independent of the spatial
scaling. In other words, the (time) period is independent of the (spatial) amplitude.
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There is a temptation of smart people to promote the most sophisticated and
fancy arguments to explain the phenomena. It is not very sophisticated to say “the
additional terms are too small to see”. But it is fancy to say things like “conformal
symmetry” and “discrete symmetry.” And if the experimental situation languishes
long enough theorists can become even more sophisticated with their description of
why these terms must be banished, and look down upon people who do not catch the
fever of fancy explanations. And if it goes on even longer it will be so entrenched in
the highest schools of the land, that few will want to challenge it by proposing ways
to find evidence for non-fancy corrections to the spatial scale-invariant theory.

2.6 Third Theory

Nevertheless, let us suppose that we take courage and wish to press forward in
testing Theory 1 yet again. Odd corrections may exist, but we may need orders of
magnitude more precision to see evidence for T+1/2

period �= T−1/2
period . We may have more

luck introducing only even power corrections to the potential. So we shall do this by
introducing

V (x) = k
x2

2

(
1 − x2

2Λ2
B

)
=⇒ ẍ + ω2

Bx

(
1 − x2

Λ2
B

)
= 0 (Theory 3) (2.17)

What can we do to test and try to strain the theory? We know that measuring
the half-periods does no good. However, being excellent students of the prevailing
scale-invariant idea, we know that the period should not change depending on the
amplitude. We need to find a way to perturb the system to increase the amplitude and
see if the period changes.3

Let us suppose in our system that the particle passes through the origin with
velocity of 10m/s. Changing it requires significant technical skill, but we find a way
to do it. We increase the energy into the system and obtain a new initial velocity of
15m/s, which increases the amplitude by approximately 50%. Upon measuring the
period we get

Tperiod = 10.25 s ± 0.01 s (Measurement 3) (2.18)

which differs by many standard deviations from the 10.11 s value obtained when
vinitial = 10m/s, and is a clear signal for breaking of the spatial scale invariance of

3 It is here Iwould like to remind the reader again that this is a fanciful allegory to howexperiment and
theory interplay on the effective theory stage, and although a simple macroscopic harmonic motion
system can be manipulated and measured in all sorts of ways with ease, sometimes other systems
are significantly more challenging to do the analogy of measuring half periods or of increasing the
amplitudes.
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the equations of motion. This is the first firm proof that the exact harmonic motion
law of V (x) ∝ x2 is not fully respected.

We are likely to be quite excited about this, because we posited a theory that said
there should be violations of scale invariance when the amplitude grows. And now
that we see it we want to fit the parameters. Here is one such choice that works well

ωB = 0.63 s−2 and ΛB = 95m (Parameter Fit 3). (2.19)

The two measurements at two different velocities are accommodated by these two
choices of parameters.

Theory 3 is “better” than the old simple harmonic oscillator law of Theory 1,
because it accounts for all the data. It accounts for equal half periods, and accounts
for the measurements when the initial velocity is at v = 10m/s and at v = 15m/s.
However, Theory 3 is not the only theory that could do this. We could have had an x6

correction, for example, that would have fit just as well this limited amount of data.
Dissatisfaction may set in that we cannot be confident of any precise formulation
of the theory to describe the system. If arbitrary corrections are allowed now, then
anything goes.

This is both the beauty and the frustration of effective theories. Being commit-
ted to the notion that all terms should be allowed in a potential consistent with
the symmetries we believe to be sacrosanct, and then test them with ever increas-
ing experimental sophistication, has given us insight that deviations from the pure
harmonic oscillator potential are possible. However, these ideas of effective theory
appear to have muddied the waters rather than have led to “the theory.” We come
to the realization that this is one of the limitations of effective theories. By itself it
cannot raise you to a deeper physical insight. It is merely a statement that all oper-
ators (i.e., all corrections) should be added to your theory and then experiment can
measure or put limitations on the couplings. However, if you do happen onto a deeper
theoretical insight, that can put order to all the operators that may arise.

2.7 Deep Theory Conjecture

Now let us suppose thatwe let our success get to our heads, andwe become supremely
confident that we know of a deeper theory to explain the data. Nevermind how we
came to it—that is not important here—but suppose the deep theory we become
convinced of is

V = ω2
T LT [1 − cos(x/LT )] =⇒ mẍ + ω2

T LT sin(x/LT ) = 0 (Theory 4).
(2.20)

The data that has been taken to date suggests that

ωT = 0.63 s−2 and LT = 38.8m (Parameter Fit 4). (2.21)
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We note that there is no difference between Theory 3 predictions and Theory 4
predictions as long as the initial speed stays below 20m/s and the timing resolution
is not better than 0.01 s.

However, we can make a bold prediction based on our new deep and fundamental
theory conjecture: if the initial velocity is doubled to 30m/s the period jumps to
11.23 s, whereas for Theory 3 the prediction is 11.36 s. Experimentalists may puzzle
over how to double the initial velocity for many years, but finally are able to do it.
When they collect the data, they find Tperiod = 11.35 s±0.01 s, which is a dramatic
confirmation of Theory 3, and the hubris of the conjecturing Theory 4 is defeated.

2.8 Ultimate Test?

After the extreme test of Theory 3, which was years in the making and passed so
decisively and impressively, the smart people figure out lots of fancy language to
explain why it had to be true and what symmetry properties it has. It is written in
every textbook. However, there was one more experiment that people wished to do.
For years it has been suggested that if you are able to reach initial speeds greater
than 42m/s the Particle will never come back. In other words, the initial energy will
be so great that it will exceed the confining potential barrier of Theory 3. However,
getting to 42m/s is a technological nightmare, and it will take decades to do it.

But let us suppose that after decades of R&D, it has been figured out how to launch
the particle to speeds of 50m/s from x = 0. When the experiment is conducted the
particle flies off into the unknown. Twenty seconds go by, one minute goes by, an
hour goes by, days and months go by, and the particle has never returned. Scientists
are not surprised, but a little disappointed. It would be somuch fun for a new anomaly
to happen, but the theory looks solid and inviolate.

The scientists may move on, and study other things like sandpiles and solar flares.
But one day, many years later, the particle returns! And nobody knows why, except
a bright young student who realizes that the next term in the effective potential may
have been what returned it.
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