

C. Liu et al. (Eds.): ICSOC 2012, LNCS 7636, pp. 718–732, 2012.
© Springer-Verlag Berlin Heidelberg 2012

MapReduce-Based Data Stream Processing
over Large History Data

Kaiyuan Qi1,2, Zhuofeng Zhao1, Jun Fang1, and Yanbo Han1

1 Cloud Computing Research Center,North China University of Technology,
No.5 Jinuanzhuang Road,100144 Beijing, China

2 Institute of Computing Technology, Chinese Academy of Sciences,
No.6 Academy South Road,100144 Beijing, China

{qikaiyuan,zhaozf}@software.ict.ac.cn, yhan@ict.ac.cn

Abstract. With the development of Internet of Things applications based on
sensor data, how to process high speed data stream over large scale history data
brings a new challenge. This paper proposes a new programming model RTMR,
which improves the real-time capability of traditional batch processing based
MapReduce by preprocessing and caching, along with pipelining and localizing.
Furthermore, to adapt the topologies to application characteristics and cluster
environments, a model analysis based RTMR cluster constructing method is
proposed. The benchmark built on the urban vehicle monitoring system shows
RTMR can provide the real-time capability and scalability for data stream
processing over large scale data.

Keywords: data stream processing, large scale data processing, MapReduce.

1 Introduction

With the development of IoT (Internet of Things), real-time sensor data based data
stream processing has become the key to IoT applications. When dealing with conti-
nuous data stream, processing systems must immediately react and response. Because
the finite systems cannot handle the full information of infinite stream, the window
mechanism is usually adopted to designate the boundary, within which the accumu-
lated data is called history data. With the improvement of data acquisition and
transmission technologies, high data stream speed makes accumulating large scale
historical data in a short period possible. Meanwhile, the long-term, comprehensive
and accurate requirements of current data stream processing applications also entail
the enlargement of history data scale. Take the urban vehicle monitoring system as an
example, which collects running vehicle information by sensor devices, and based on
the data automatically identifies fake license cars and other illegal cars. These
applications, in front of the data stream and historical data, should complete the com-
putations between the both inputs in real time. And the expansion of the window, the
increment of data objects (such as vehicles) and the increase of each object data (such
as vehicle information), result in the large scale of historical data. With the trend, how
to guarantee real-time data stream processing over large-scale historical data, i.e. to

 MapReduce-Based Data Stream Processing over Large History Data 719

provide scalable data stream processing for history data, became a new challenge to
IoT and cloud computing.

Traditional study on scalability of data stream processing can be divided into two
categories. In the centralized environments, subject to limited memory, scalability is
guaranteed by sacrificing the quality of service, such as synopsis data [3] and admis-
sion control [1]. In the distributed environments, where the data stream processing
network is consisting of multiple operators, scalability is supported by balancing the
distribution of operators across multiple nodes [2]. However, the processing capacity
is still limited by the window size a single node can handle and scalability is insuffi-
cient in the case of large scale historical data.

Fig. 1. Multi-core cluster architecture

Data stream processing over large scale history data needs breaking limitation of a
single node. Today, in order to support large scale data processing, shared-nothing
architecture is universal used, as well as 4-tier storage structure of cache, memory,
storage and distributed storage. In this architecture, as shown in Fig.1, multi-core
CPU forms the local computing resource, and memory and external storage forms the
local storage. Under shared-nothing architecture, MapReduce [4] programming model
is a core technology to solve large-scale data processing and has been widely adopted.
However, the existing MapReduce methods, such as Hadoop1 and Phoenix [5], are
designed for batch processing for static persistent data. Provided continuous data is
treated in this way, if the batches processed each time are small, then the system
overhead is too large to fulfill real-time requirement, mainly in: 1) the runtime need to
be initialized from the scratch, and history data need to be loaded and processed re-
peatedly, 2) there exists much synchronization and transmission overhead between
Map and Reduce phases. If the batches are large, then the processing latency is added.

To support data stream processing, MapReduce should be extended by preprocess-
ing and caching to avoid the repeated overhead on each data stream arrival, and by

1 Apache Hadoop, http://hadoop.apache.org/

720 K. Qi et al.

pipelining and localizing to reduce the synchronization overhead between stages and
the data transmission cost between nodes. This paper proposes a real-time MapRe-
duce model (RTMR) to support such kind of data processing. Furthermore, from the
view of constructing RTMR cluster, there exists many possible combinations of node
configurations and topologies for different applications and networks, how to build
optimal architecture is a problem. This paper also proposes an adaptive RTMR cluster
constructing method by establishing and analyzing the RTMR performance model.

2 Real-Time MapReduce Model

2.1 Key/value Data

In the era of big data, key/value model gradually replace the relational model to be-
come a mainstream data processing model.

Definition 1.Key/value data is a 2-tuple {key,val},in which key is key word and val is a
set of 2-tuple { attr,con},in which attr is attribute and cont is its content.

Key/value data is only related to data with the same keys, and independent of
processing environment. Because of environment independence, key/value data has
the nature of parallel processing and intermediate results can be saved as current state
without additional information. Furthermore, the details of parallel processing, load
balance and fault tolerance can be hidden from the abstract programming model, pro-
grammer can only focus on operations on key/value data.

Definition 2. Key/value algebra is a kind of abstract language used for operations on
key/value data.

Similar with relational algebra, key/value data algebra also includes set operations
(union, intersection and difference), special operations (Cartesian product, selection,
projection, concatenation and division), comparison operation (>, < and etc) and logic
operations (not, and, or).

2.2 RTMR Theory

The definition of MapReduce model is [4]:

 Map: k1,v1List<k2,v2>
 Reduce: k2,List<v2>list(v2)

in which Map phase turns the key/value pairs <k1,v1> into pairs < k2,v2>, and Reduce
phase performs operation list on the structure List<v2> of each k2. Supposing the
pending data is D, Map intermediate results for D is I, M represents the Map method,
R represents the Reduce method, and list represents Reduce operation, then the above
process can be denoted as MR(D)=R(M(D))=list(I).

MapReduce takes full advantage of key/value model: it provides sufficient seman-
tics to parallelly process large-scale data through a simple programming interface, and
shield task scheduling and data management from programmers. However, the
existing batch processing based MapReduce cannot meet the real-time requirement of
data stream processing. In order to extend the real-time capability of MapReduce, we
prove MapReduce is no less expressive than () key/value algebra at first.

 MapReduce-Based Data Stream Processing over Large History Data 721

Theorem 1. key/value MapReduce

Proof. In MapReduce, selection and projection operators can be implemented in Map,
and other key/value algebra operations can be implemented in Reduce. Therefore,
MapReduce is more expressive than key/value algebra.

Definition 3. For the function F:S→O, if there exists a function P:O×O→O, satisfy-
ing F(D+Δ)=P(F(D),F(Δ)), then F is mergeable.

Definition 4. For the data set D and its subsets D1,D2,...,Dn, if φ=n21 D...DD 
and DD...DD =n21  , then D1,D2,...,Dn is called a partition on D .

Definition 5. For the key/value data set D={<key,value>} and the key set K, the col-
lection },.|{ DdKkeydd ∈∈ is called a selection of D on K, denoted by)(DKσ .

By the above definitions, we can see MapReduce has the following properties:

1. Map is distributive, i.e., the Map of the union of two data sets is equal to the union
of the Map of the two sets, M(D+Δ)=M(D)+M(Δ)

2. Reduce is distributive, i.e., if K1,K2, ..,Kn is a partition on the key set of interme-
diate results I, then list(I)=list(

1Kσ (I))+list(
2Kσ (I))+...+list(nKσ (I))

In the traditional batch processing based MapReduce, overhead for repeated
processing history data is the key factor to restricting real-time capability, therefore,
the large-scale historical data should be preprocessed and cached.

Theorem 2. list is mergeable ⇔ MapReduce is mergeable.

Proof. According to the properties of MapReduce, for data D and increment Δ,

 MR(D +Δ)
=R(M(D+Δ))
=R(M(D)+M(Δ))
=list(ID+IΔ)

If list is mergeable, then

list(ID+IΔ)
=list(list(ID),list(IΔ))
=R(MR(D),MR(Δ))

That is, if list is mergeable, then MapReduce is mergeable, and vice versa.
Theorem 2 shows that by caching MapReduce intermediate results of history data

preprocessing, repeated processing overhead can be avoided every time data stream
arrives. The above process can be denoted as MR(D+Δ)= list(ID+IΔ)=MR(Δ|ID).

In the existing MapReduce, another major factor to constraining real-time
processing capability is synchronization overhead between phases, which caused by
Reduce phase waiting to sort all the Map results. In fact, theorem 2 also shows that
there is no data dependency between Map and Reduce phases, so synchronization can
be eliminated by the asynchronous pipeline. In pipeline, Map and Reduce phases use
buffers to communicate. Each Map task puts the results into buffers immediately after
processing, and Reduce task obtains data asynchronously from the buffer to process.
MapReduce also includes the synchronized method like Partition, Combine and Sort.

722 K. Qi et al.

In pipeline manner, Partition and Sort can be completed respectively in Map and Re-
duce phase. As for Combine method, whether use it or not can be decided by the data
compression effect, the algorithm will be detailed in 4.2.

In addition, the data transmission between nodes constrains the processing capabil-
ity of MapReduce as well. In order to save data transmission cost, local computing
resources should be fully taken advantage of to complete MapReduce.

Theorem 3. If K1,K2,...,Kn is a partition of key set of MapReduce intermediate results
I, then the MapReduce of increment Δ over I satisfies

MR(Δ|I)=MR(Δ|
1Kσ (I))+MR(Δ|

2Kσ (I))+...+MR(Δ|
nKσ (I))

Proof. According to the properties of MapReduce, for intermediate results I and in-
crement Δ,

MR(Δ|I)=list(I+IΔ)
=list(

1Kσ (I+IΔ))+list(
2Kσ (I+IΔ))+...+list(

nKσ (I+IΔ))

For Reduce, the selection of intermediate results on K1 is only relevant to K1, i.e.

MR(Δ|
1Kσ (I))=list(IΔ+ 1Kσ (I))

=list(
1Kσ (IΔ+ 1Kσ (I)))=list(

1Kσ (IΔ+I))

Similarly, MR(Δ|
2Kσ (I))=list(

2Kσ (IΔ+I))

MR(Δ|

nKσ (I))=list(
nKσ (IΔ+I)

Hence, MR(Δ|I)=MR(Δ|
1Kσ (I))+MR(Δ|

2Kσ (I))+...+MR(Δ|
nKσ (I))

Theorem 3 shows that MapReduce can be localized by distributing intermediate re-
sults across the cluster. And because of avoiding data transmission, partitioning the
intermediate results properly can guarantee the scalability of the cluster.

2.3 RTMR Model

Theorem 1 gives the necessary and sufficient condition that MapReduce is mergeable.
However, this condition is only applies to some aggregate operations. For other op-
erations not mergable, an intermediate results cache structure apt to randomly read
and write can also be formed by grouping, sorting and indexing when preprocessing.

Definition 6. In RTMR, the [k2,List<v2>] and list(v2) of MapReduce model are called
intermediate results.

Following the idea of Metis [6], intermediate results are stored in memory using
Hash B+ tree, which is of high performance, as shown in Fig.2. In Hash B+ tree, keys
k2 with the same Hash value are grouped in the same Hash table entry as B+ tree, [k2,
list(v2)] are organized as a linked list in the B+ tree leaf node, and list(v2) is stored in
the B+ tree leaf node. If k2 has a unique Hash value, Hash table can be allocated
enough entries to avoid Hash conflict and tree search, then the complexity of insertion
and search operation is only O(1). If the Hash value of k2 is not unique, the complexi-
ty of insertion and search is just O(1)+O(logn). In order to enlarge the capacity, files

 MapReduce-Based Data Stream Processing over Large History Data 723

in the SSTable [7] structure are constructed at the external storage to store interme-
diate results. SSTable consists of an index block and several 64 KB data blocks, as
shown in Fig.3, which allocates disk space for Hash table entries in blocks. In data
stream processing, if desired intermediate result Hash entry is not in memory but in
the external storage and the memory space isn’t enough, memory replacement occurs.

 Fig. 2. Intermediate result structure Fig. 3. SSTable structure

 Fig. 4. RTMR architecture Fig. 5. Staged pipeline

In order to support data stream processing, RTMR constructs staged pipeline be-
tween Map and Reduce phases, as shown in Fig.4. In pipeline, each stage is com-
prised of the thread pool, input buffer and intra-stage controller, and shared resources
such as threads are allocated by extra-stage controllers. Staged pipeline reduces the
initialization overhead on each batch processing by the thread pools, and eliminates
the synchronization between phases though event driven buffers. Furthermore, the
real-time processing capability of staged pipeline can be improved by intra-stage
batch adjustment and extra-stage thread pool control.

Based on the above designs, we propose a real-time MapReduce (RTMR) model
for data stream processing over large scale data, which works as (Fig. 5):

1. Intermediate result caching. Preprocess history data resulting in intermediate re-
sults, and partition and distribute the results across the worker nodes according to
the Hash value on k2.

724 K. Qi et al.

2. Pipelining. MapReduce proceed in asynchronous way that Map phase groups the
data stream by the Hash function on k2 and transmit the data to corresponding Re-
duce node to compute with intermediate results according to range partitions.

3. Data updating. Update the local results to the distributed storage.

In RTMR, worker is responsible for maintaining the local cache and staged pipeline,
and controller is responsible for RTMR job scheduling, fault tolerant and scalability
guarantee. This paper mainly focuses on the RTMR model and architecture.

3 Adaptive RTMR Cluster

RTMR cluster architecture is decided by the Map/Reduce node configuration and
topology. In RTMR, to take full advantage of local computing resource, Map nodes
also act as Reduce nodes, and the architecture in the configuration of x Map nodes is
called RTMR(x). For an example of 4-node cluster, the architectures RTMR(1),
RTMR(2) and RTMR(4) configured 1, 2 and 4 Map node are shown in Fig.6 (a) (b)
(c), respectively. Under different application characteristics, node capacities and net-
work environments, how to construct optimal architecture is a key issue. For the data
stream processing system, the goal of adaptively constructing architecture is to mi-
nimize the average data processing delay.

Fig. 6. RTMR architectures

3.1 RTMR Performance Model

Because the data stream arrival and processing is very similar with the queuing mod-
el, and thus queuing theory is a natural selection of the performance model of data
stream system [8]. Previous work [3] and our statistics analysis on real scenarios
show that data stream arrival process can be modeled as a Poisson process.

Fig. 7. RTMR performance model

 MapReduce-Based Data Stream Processing over Large History Data 725

Assuming that the arrival data stream is the most simple flow, the Map processing
rate, network transmission speed and Reduce processing rate depends on negative
exponential distribution, then RTMR cluster can be modeled as a cascade of three
queuing system shown in Fig.7. Based on queuing theory [8], for the M/M/c queuing
system which has c service units, when data stream speed is λ and processing rate of
each unit is μ , the average processing delay is

μρ

ρρμλ 1

)1(!

)(
),,(

2
+

−⋅
⋅= P

c

c
cL

x

q
 , (1)

in which

μ
λρ

ρ
ρρ

=













−⋅
+=

−−

=


11

0
)(! ! cc

c

k
P

cc

k

k

.

For a n-node RTMR cluster, supposing the number of Map nodes is x, Map
processing rate of each node is mμ , then Map stage under the data stream speed mλ
is equivalent to a M/M/x queuing system. According to equation (1), the Map stage
average data processing delay is

),,(),,(mmqmmm xLxL μλμλ =
. (2)

For a n-node RTMR cluster, x of n Reduce nodes shared with Map (processing
rate

1rμ) is equivalent to a M/M/x queuing system, the other n-x exclusive Reduce

node (processing rate
2rμ) is equivalent to an M/M/n-x queuing system. Therefore,

the Reduce stage average data processing delay under data stream speed
rλ is

),,(),,(),,,(2121 rrqrrqrrrr n

xn
xnL

n

xn

n

x
xL

n

x
xL μλμλμμλ −−−+= . (3)

In RTMR(x), the output connections of each Map node are n-1, and the input connec-
tions of each Reduce node are x. If nodes is connected by the switch and the
bandwidth between two nodes is nμ , then each connection bandwidth is inversely
proportional to the total number of connections, that is

1
'

−+
=

nx
n

n
μμ .

On each connection, the data speed is xnrλ , according to the M/M/1 queuing model
[10], the network delay of data stream through one Map node is

xnnx

xL
rn

nrn λμμλ
−

−+

=

1

1
),,(' .

726 K. Qi et al.

And the average network delay of data stream parallelly through all Map nodes is

nnx

xx

xL
xL

rn

n
nrn λμμλ

−
−+

==

1

1)('
),,(. (4)

In RTMR, too many threads will cause additional overhead such as context switching
and critical resources competition. Corresponding to the connections, each pair of
Map and Reduce nodes exists n+x-1 threads receiving and sending data. If the delay
factor is ε , then the extra delay of data stream passing through 1 Map node is

ε⋅−+=)1()(' xnxLe ,

And the average extra delay of data stream parallelly through all Map nodes is

x

xn

x

xL
xL e

e
ε⋅−+==)1()('

)(. (5)

Above all, the data stream processing delay of RTMR(x) is

)(),,('),,,(),,()(21 xLxLxLxLxL enrnrrrrmmm +++= μλμμλμλ . (6)

3.2 Model Analysis

In general, adaptive constructing RTMR is to analyze the extreme value of equation
(6) to determine x. Given space limitation, instead of mentioning the solution of the
extreme value of L(x), two more practical architectures are discussed.

In RTMR, Combine method can be used to reduce the data transmission. If the data
compression rate of Combine method is τ , then the data speed of Reduce stage
is rr τλλ =' , and if the Map processing rate is down to 'mμ , then the data processing

delay of RTMR (x) is

)(),,('),,,()',,()(21 xLxLxLxLxL enrnrrrrmmmc +++= μτλμμτλμλ .

Then for applications that exists Combine, whether implement Combine or not is
decided by comparing)(xL with)(xLc .

Under the current IoT environment, the data speed is limited by acquisition termin-
al bandwidth, and the preliminary processing such as filtering and encoding has been
completed by the communication servers, so it only occupy a small part of CPU time
to accomplish the data receiving, transformation, selection and projection as well as
partitioning and combining. In this case, the impact of Map Processing on Reduce
performance on the shared node can be ignored, i.e. 21 rrr μμμ ≈= .Then the Reduce

stage can be considered as M/M/n system, the processing delay is

),,(),,(rrqmrrr nLxL μλμλ = ,

which is independent of x. Due to equations (2) (4) (5) are monotonically decreasing
functions of x. Thus, L(x) is a monotone decreasing function, i.e., for a n-node cluster,
RTMR(n) contributes to the minimum delay by the most highly parallel processing.

 MapReduce-Based Data Stream Processing over Large History Data 727

Besides, by theorem 3 we know another architecture shown in Fig.6 (d): the inter-
mediate results are cached across distributed nodes; each node redundantly receiving
the data stream, in pipeline manner, filters the data in the charge of itself at Map
phase and processing the data over the local cache at Reduce phase. This architecture
is defined as RTMR(0). In RTMR(0), if the existing computing and storage resources
cannot satisfy the real-time requirements, the cluster can be scaled up to more nodes
by repartitioning and moving the cache data. Due to avoiding data transmission and
extra latency, the data stream through each node is equivalent to passing through a
M/M/1 Map stage plus a M/M/1 Reduce stage, the delay of RTMR(0) is

n

L
r

r
mm

λμλμ −
+

−
= 11

)0(' .

And the processing delay of data stream parallelly passing through n nodes is

rrmm nnnn

L
L

λμλμ −
+

−
== 11)0('

)0(.

Apparently for these applications, adaptively constructing RTMR cluster is compar-
ing)(nL with)0(L .

4 Evaluation

In this section, we utilize the real-time urban traffic data processing applications as
the benchmark to evaluate RTMR.

In a large city, where license plates reach 107, the peak will reach 10 MB/s if com-
prehensively capturing running vehicle data (1 KB for each item, about 10 000
items/s). Meanwhile, if the data have been stored for 1 day, history data will reach 1
TB. In the benchmark, three typical applications are adopted, which are all from real
scenario of urban traffic monitoring system and can be regarded as the representative
use cases out of related references[9-14].

Fake-licensed car is determined by space-time contradiction. For each item of real-
time vehicle data at certain points, retrieve all the historical items at other points with-
in the maximum time threshold, and if the time difference between the two items is
less than the time threshold for the two points, the vehicle is suspected to be fake-
licensed. The RTMR algorithm is implemented as: for each license plate of item, Map
indexes its entry in Hash table grouped by plates; Reduce locates its list in the B+
tree, checks time difference with each historical data, and updates the list.

Traffic statistics application reports the vehicle counts of all the monitoring points,
the RTMR algorithm is: for each item of real-time data occurred at certain point, Map
indexes its entry in Hash table grouped by monitoring points; Reduce finds the imme-
diate result in the B+ tree to merge and update it.

Traffic flow analysis application calculates the average travel speeds between two
points to provide traffic guidance, the RTMR algorithm is: for each item of data cap-
tured at certain point, Map transforms the data into GPS coordination data and index-
es its entry in Hash table grouped by monitoring points; Reduce finds the list in the

728 K. Qi et al.

B+ tree, inserts the real-time data, eliminates the overdue data, and periodically merge
immediate results within the window to compute the average travel speed.

In the above 3 RTMR algorithms, Hash function hash(k)=k mod 220 can be used to
group data items, and the intermediate result Hash table has 220 entries, each storing
data of 107/220≈10 license plates.

RTMR cluster is set up on the 2×4 cores 2.0 GHz CPU, 32 GB RAM and 250 GB
disk servers, using a 4×4 cores 2.4 GHz CPU, 64 GB RAM server as control node,
and the cluster is connected by 1 Gbps Ethernet and switches. Additionally, Load
Runner 9.0 is deployed in a dual-core 3.0 GHz CPU and 4 GB RAM server to simu-
late data stream. In order to evaluate the scalability, on the basis of random and local
characteristics of vehicle data stream, we evenly partition immediate result ranges
across the cluster and simulate the uniform distribution stream. The method is: First,
use the decimal interval (0,108] to simulate license plates. Second, if there exists n
nodes, select n subsets on immediate result ranges of n nodes P1',P2',...,Pn', satisfying
|P1'|+|P2'|+...+|Pn'|=105, and then generate loads for each node cyclically. Third, for
node i, select a random entry t in Pi', select a random number x in the interval(0,10)
and regard 220x+t as the license plate of the data item, at last, randomly set its point
and add its timestamp.

Base on the benchmark, each experiment is conducted 10 tests, and at each test we
sample results for 10 minutes at steady state of the stream processing system, taking
the averages as the final results.

4.1 Adaptive Architecture Analysis

First, we analyze the adaptive architecture of the 3 applications shown in Table 1.

Table 1. Benchmark applications

Application Map Reduce

Traffic count The compression rate of Combine method is effective Merging

Fake-licensed car No combine Comparing and updating

Traffic flow analysis
Data transform costs much overhead,

and compression rate is 0
Merging and updating

For the traffic statistics application, compression ratio can be effective to reduce
the cost of data transferring, so the Combine method should be adopted.

For the fake-licensed car monitoring, because of the absence of the Combine and
other operations in Map phase, satisfying 21 rrr μμμ ≈= , then the only thing for adap-

tion is to compare L(n) with L(0). Experiment 1, under a 4-node cluster, compares the
data processing performance of RTMR(0),RTMR(1), RTMR(2) and RTMR(4) over
different history data scale. As Fig.8 shown, no matter what scale, the processing
capabilities of RTMR(1), RTMR(2) and the RTMR(4) are promoting with the in-
crease of Map nodes. In addition, when the data speed exceeds 15 MB/s, RTMR(0) is
less powerful than the other 3 architectures, this is because in the broadcast mode,

 MapReduce-Based Data Stream Processing over Large History Data 729

when it come to high speed data stream, receiving data and processing Map stage on
each node occupies too much CPU time, which reduces the CPU time for the Reduce
and thereby constrains the overall performance. With the history data scaling up, per-
formances of all the architectures decrease, when the speed drops to 15 MB/s,
RTMR(0) starts to be the most powerful, this is because the receiving and Map
processing overhead on each node no longer affect the Reduce stage, and meanwhile
avoid the data transmission cost.

For traffic flow analysis, although there exists Combine method, it cannot reduce
the data transmission significantly because its Reduce need to maintain all the data
within the window. Furthermore, its Map method includes expensive GPS coordinate
transformation operation, dissatisfying

21 rrr μμμ ≈= .The results of the extreme value

analysis of L(x) under the 4-node cluster are: from 0 to 200 GB data scale, x = 2; from
200 to 600 GB, x = 3; from 600 to 800 GB, x = 1. Experiment 2 compares the data
stream processing performance of RTMR(1), RTMR(2), RTMR(3) and RTMR(4)
over different historical data scale. Fig.8 shows the empirical results are consistent
with the model analysis.

0

10

20

30

40

50

0 5 10 25 50 100 200 300 400 500 600 700 800

F
a
k
e
-l
ic

e
n
s
e
d

 c
a
r

d
a
ta

 s
tr

e
a
m

(M
B

/s
)

Data scale(G）

RTMR(1) RTMR(2)

RTMR(4) RTMR(0)

0

10

20

30

40

50

0 5 10 25 50 100 200 300 400 500 600 700 800

T
ra

ff
ic

 f
lo

w
 a

n
a
ly

s
is

 d
a
ta

 s
tr

e
a
m

(M
B

/s
)

Data scale(G)

RTMR(1) RTMR(2)

RTMR(3) RTMR(4)

Fig. 8. Analysis of adaptive architecture

4.2 Scalability Analysis

Experiment 3 and 4 compare the scalability of RTMR(0) and RTMR(n). Experiment
3, at the fixed data stream 2 MB/s, tests historical data scale the cluster can handle
when adding nodes. Fig.9 shows, the promotion trend of RTMR(0) capacity is ap-
proximately linear, which is because RTMR(0) minimize the data transmission and
synchronization between nodes which affects the enhancement of parallel throughput
by distributing intermediate results and localizing. And the reason why RTMR(0)
doesn’t achieve linear scaling is that local file read and write overhead increases when
intermediate results scaling up. As for RTMT(n), as the nodes are added, data receiv-
ing and transferring cost between nodes increases significantly, thus limiting histori-
cal data scale that can be handled. Experiment 4, at the fixed intermediate results 50
GB for each node, tests the data stream the cluster can process when adding nodes.

730 K. Qi et al.

Fig.10 shows that, as the node increases, although the data sending-receiving and
transmission costs increase, but RTMR(n) is more scalable than RTMR(0) in data
stream speed, this is because RTMR(n) distributes data stream to be processed paral-
lelly across nodes, while RTMR(0) is restricted by the increasing CPU overhead of
receiving data and processing Map. Specifically, when the data stream speed is less
than 15 MB/s, the growth of RTMR(0) processing capability is approximately linear,
and when the speed is more than 15 MB/s, the growth slows down.

From the experiences of using RTMR to solve vehicle monitoring, the data stream
speed in current IoT environment, constrained by the bandwidth, is far less than 15
MB/s. In the situation of large scale history data, RTMR(0) is more adaptive.

0

5

10

15

20

25

30

35

40

0 5 10 15 20

D
at

a
st

re
am

sp
ee

d
(M

B
/s

)

Node

Linear Scaling
RTMR(0)
RTMR(N)

0

500

1000

1500

2000

2500

3000

3500

4000

0 5 10 15 20

D
at

a
sc

al
e

(G
B

)

Node

Linear scaling
RTMR(0)
RTMR(N)

 Fig. 9. Scalability analysis for data stream Fig. 10. Scalability analysis for history data

0

1000

2000

3000

4000

5000

6000

0 100 200 300 400 500

Th
ro

g
hp

ut
 (i

te
m

s/
s)

Data scale (GB)

HOP
S4
RTMR

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500

E
rr

o
r r

at
e

Data scale(GB)

HOP
S4
RTMR

Fig. 11. Real-time capacity and Error rate

4.3 Real-Time Performance Analysis

Experiment 5 compares the real-time capacity of the architecture S4, HOP
and RTMR(0). Due to the lack of preprocessing, S4 and HOP process history data
repeatedly on each stream arrival. Hence, in order to compare data stream processing

 MapReduce-Based Data Stream Processing over Large History Data 731

capacity over large-scale data, preprocessing logic is inserted into the benchmark
implementation of S4 and HOP. All architectures are set up on 2 nodes, the data
stream is fixed at 5 MB/s. Fig.11 show that when the scale of intermediate results is
less than 32 GB, the throughputs of HOP and S4 are fairly high because a single node
can accommodate all the intermediate results, while the RTMR(0) is higher due to the
utilization of staged pipeline. When the intermediate results are more than 32 GB and
distributed to two node memory, the throughputs of HOP and S4 decrease rapidly
because of increasing data transmission and synchronization overhead between nodes,
while RTMR(0) is still very high owing to localization. When the intermediate results
reach 64 GB, since the scale is beyond the cache capacity, throughputs of S4 and
HOP are steady and the error rates increase with the data scaling up, whereas
RTMR(0) can reduce the error rate and maintain a relatively high throughput due to
the expansion of local intermediate result storage.

4.4 Related Work

Real-time improvement for MapReduce has become a research hotspot. Increment
processing Percolator [10] and iteration processing Twister [11] and Spark [12]
promote performance of large scale data processing in the way of random storage
access and intermediate result cache. However, these methods are still batch based
processing for static data increment. HOP [13] and S4 [14] extends the real-time
processing ability of MapReduce by pipelining and distributed processing elements
respectively, but they still do not focus on large scale history data, due to the lack
of the support to preprocess history data and cache immediate results, and the
mechanism to adaptively configure the cluster instead of relying on experience or
experiment way.

5 Conclusions

The difficult of data stream processing over large scale historical data is guaranteeing
both real-time capacity and scalability. And the contributions of this paper are:

• Improving the real-time data stream processing performance of MapReduce by
caching, pipelining and localizing.

• Proposing a model analysis based RTMR cluster constructing method which can
configure the Map/Reduce nodes and topologies adaptively according to applica-
tion characteristics and network environments.

• Showing that RTMR(0) is practically effective to support data stream processing
over large scale data in current IoT environment.

Programming model and cluster architecture is the basis of RTMR, and in addition,
load skew is another key factor to restrict the scalability of the RTMR cluster. So the
next work is to guarantee load balance of RTMR by static history data distribution
and dynamic date stream load adaption.

732 K. Qi et al.

Acknowledgments. This research has been funded by the National Natural Science
Foundation of China under Grant No. 60903137, No. 61033006.

References

1. Motwani, R., Widom, J., Arasu, A., et al.: Query processing, resource management, and
approximation in a data stream management system. In: 1st Biennial Conference on Inno-
vative Data Systems Research, pp. 176–187. ACM Press, New York (2003)

2. Abadi, D.J., Ahmad, Y., Balazinska, M., et al.: The design of the Borealis stream
processing engine. In: 2nd Biennial Conference on Innovative Data Systems Research, pp.
277–289. ACM Press, New York (2005)

3. Jin, C.Q., Qian, W.N., Zhou, A.Y.: Analysis and management of streaming data: A survey.
Journal of Software 15(8), 1172–1181 (2004)

4. Dean, J., Ghemawat, S.: MapReduce: Simplified data processing on large clusters. ACM
Communication 51(1), 107–113 (2008)

5. Ranger, C., Raghuraman, R., Penmetsa, A., et al.: Evaluating MapReduce for multi-core
and multiprocessor systems. In: 13th International Conference on High Performance Com-
puter Architecture, pp. 13–24. IEEE Computer Society, Washington (2007)

6. Kaashoek, F., Morris, R., Mao, Y.: Optimizing MapReduce for multicore architectures.
Technical Report, MIT Computer Science and Artificial Intelligence Laboratory (2010)

7. Chang, F., Dean, J., Ghemawat, S., et al.: Bigtable: A distributed storage system for struc-
tured data. In: 7th Symposium on Operating Systems Design and Implementation, pp.
205–218. USENIX Association, Berkeley (2006)

8. Diao, Z.J., Zheng, H.D., Liu, J.Z., et al.: Operational Research. Higher Education Press,
Beijing (2010)

9. Shah, M.A., Hellerstein, J.M., Chandrasekaran, S., et al.: Flux: An adaptive partitioning
operator for continuous query systems. In: 19th International Conference on Data Engi-
neering, pp. 25–36. IEEE Computer Society, Washington (2003)

10. Peng, D., Dabek, F.: Large-scale incremental processing using distributed transactions and
notifications. In: 9th USENIX Symposium on Operating Systems Design and Implementa-
tion, pp. 251–264. USENIX Association, Berkeley (2010)

11. Ekanayake, J., Li, H., Zhang, B., et al.: Twister: A runtime for iterative MapReduce. In:
19th ACM International Symposium on High Performance Distributed Computing, pp.
810–818. ACM Press, New York (2010)

12. Zaharia, M., Chowdhury, N.M., Franklin, M., et al.: Spark: Cluster competing with work-
ing sets. In: 2nd USENIX Conference on Hot Topics in Cloud Computing, pp. 1–10.
USENIX Association, Berkeley (2010)

13. Condie, T., Conway, N., Alvaro, P., et al.: MapReduce online. In: 7th USENIX Sympo-
sium on Networked Systems Design and Implementation, pp. 313–328. USENIX Associa-
tion, Berkeley (2010)

14. Neumeyer, L., Robbins, L., Nair, A., et al.: S4: Distributed stream computing platform. In:
10th IEEE International Conference on Data Mining Workshops, pp. 170–177. IEEE
Computer Society, Washington (2010)

	MapReduce-Based Data Stream Processing over Large History Data
	Introduction
	Real-Time MapReduce Model
	Key/value Data
	RTMR Theory
	RTMR Model

	Adaptive RTMR Cluster
	RTMR Performance Model
	Model Analysis

	Evaluation
	Adaptive Architecture Analysis
	Scalability Analysis
	Real-Time Performance Analysis
	Related Work

	Conclusions
	References

