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Abstract. To provide an effective service-oriented solution for a
business problem by composing existing services, it is necessary to ex-
plore all available options for providing the required functionality while
considering both the users’ preferences between various non-functional
properties (NFPs) and any low-level constraints. Existing service compo-
sition frameworks often fall short of this ideal, as functional requirements,
low-level behavioral constraints, and preferences between non-functional
properties are often not considered in one unified framework. We pro-
pose a new service composition framework that addresses all three of
these aspects by integrating existing techniques in requirements engi-
neering, preference reasoning, and model checking. We prove that any
composition produced by our framework provides the required high-level
functionality, satisfies all low-level constraints, and is at least as preferred
(w.r.t. NFPs) as any other possible composition that fulfills the same re-
quirements. We also apply our framework to examples adapted from the
existing service composition literature.

1 Introduction

Service-oriented architectures [8] have become increasingly popular as a way
to support rapid development of new applications. These applications may be
implemented as composite services (also known as compositions) that are formed
from existing services. The process of developing a composite service that satisfies
a given set of user requirements is called service composition [16].

Requirements for a service composition may be divided into three main types:
functional requirements, behavioral constraints, and non-functional properties.
Functional requirements describe what actions or capabilities are to be provided;
for instance, an e-commerce composite service must have a component that han-
dles online payment options. These include both high-level requirements (e.g.,
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the composition must process online payments) and more detailed low-level re-
quirements (e.g., the composition shall verify the identity of credit-card users).
Behavioral constraints describe how the functionality must be provided by spec-
ifying required interactions and/or ordering of the component services. For ex-
ample, the e-commerce composite service must be composed so that the shipping
service is not invoked before the payment is confirmed and an address is verified.

Non-functional properties (NFPs) may include quality of service (QoS), cost,
scalability, or other desirable properties that are not necessary for the composi-
tion to perform the required tasks. Ideally, a composition would satisfy the entire
set of NFPs, but in practice trade-offs between NFPs must often be considered.
For example, some users might prefer the increased security of locally-hosted ser-
vices over the greater scalability of cloud-based services. A service composition
framework must consider preferences and trade-offs between NFPs in order to
identify a composition that satisfies all functional requirements and behavioral
constraints while fulfilling an optimal set of NFPs.

The Driving Problem. While there exist a number of service composition
frameworks and algorithms associated with them (many of which are surveyed
in [16]), very few of them consider all of these aspects in a single framework.
These existing methods often have one or more other important drawbacks:

– They frequently treat all functional requirements as mandatory, choosing be-
tween several versions of the same low-level functionality instead of consid-
ering diverse low-level implementations of the same high-level functionality.

– They typically do not focus on verifying low-level behavioral constraints.
– They often consider only NFPs that affect the QoS of the composition but

ignore other important NFPs, especially those that are not easily quantified.
– They typically require that the names and/or structures of a service’s ac-

cepted inputs and available outputs exactly match those of other services.

Our Solution. The contribution of our work is a service composition framework
that addresses the above shortcomings in the following fashion:

– A Goal Model (as used in the Goal-Oriented Requirements Engineering
(GORE) [5] methodology) is used to describe the functional requirements
for a composite service. Non-functional properties are associated with the
nodes of the goal model to indicate how satisfaction of each requirement by
an existing service contributes to the satisfaction of the NFPs.

– A Conditional Importance Preference Network (CI-net) [3] is used
to formally describe qualitative preferences and trade-offs between non-
functional properties. We claim that it is more intuitive to express pref-
erences over NFPs in qualitative terms because not all trade-offs may be
naturally quantifiable (e.g., it may be difficult or even impossible to describe
to what extent locally hosted services are preferred to cloud-based services).

– Model Checking is used to automatically construct a composition that sat-
isfies behavioral constraints specified in Computation Tree Logic (CTL) [7].
The final composite service is chosen from a set of preferred candidate com-
positions that satisfy the overall functional requirements. Structural mis-
matches between input/output data types are also resolved in this step.
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Fig. 1. HelpMeOut goal model

We formally prove the correctness of the results computed by our framework.
We also show our framework’s practical feasibility by applying it to produce a
correct composite service that solves a non-trivial service composition problem.

This work advances the state of the art in service composition by consid-
ering high-level functional requirements, low-level behavioral specifications [1],
and NFPs [14] all at once, which allows the search space for candidate composi-
tions to be effectively reduced (relative to considering these aspects separately).
Although a few existing techniques provide such integrated solutions, our frame-
work handles a wider range of problems than those techniques.

Organization. Section 2 introduces the example used to demonstrate our ap-
proach. Section 3 describes the existing concepts that form the basis of our
composition framework. Section 4 presents our framework in detail and proves
its correctness. Section 5 describes our implementation and results from three
case studies. Section 6 discusses related work on similar problems in service com-
position. Section 7 concludes the paper and discusses future avenues for research.

2 Illustrative Example

We motivate our composition approach using the example of HelpMeOut, a pro-
posed service composition (taken and modified from [1]) that makes it easier for
a vehicle’s driver to call for assistance in case of an emergency.

Functional Requirements. Figure 1 presents the functional requirements
for the HelpMeOut system using a goal model (AND-OR graph). They include
collecting the vehicle’s location and problem, searching for a nearby point of as-
sistance, locating a mechanic that can visit the user, receiving payment, and re-
porting the event. Intermediate requirements appear in round-edged boxes, while
basic requirements that may be realized from available services are shown in
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hexagons. The graph illustrates dependencies between the requirements. For in-
stance, the root (level 0) describes the overall functional requirement, which is re-
alizable if all of the requirements at level 1 are satisfied (AND-decomposition).
In contrast, the requirement Receive Payment is satisfied if either of the require-
ments On the Spot or Later On is satisfied (OR-decomposition).

Preferences and Trade-offs. Along with functional requirements, Figure 1
captures dependencies between NFPs and services. These are represented in
boxes which are connected to functional requirements via edges annotated with
“+” or “-”. The “+” annotation represents the satisfaction of the functional re-
quirement having a positive impact on the non-functional property, while the “-”
annotation represents a negative impact. For instance, satisfying the requirement
that the users can contact an operator via a phone call may result in a happier
user (positive impact) but will have a negative impact on reducing operational
cost.

It may not be possible to consider a set of basic requirements such that (a)
they have only positive impacts on the NFPs, (b) all NFPs are considered, and
(c) the root-level requirement is satisfied following the traditional semantics of
“and” and “or”. Therefore, preferences and trade-offs over NFPs are important
for identifying a preferred set of basic requirements that result in satisfying the
root-level requirement. Consider the following preference statements:

1. If robust documentation is used, payment traceability is more important
than reducing operational costs.

2. If costs are reduced at the expense of customer satisfaction, then using robust
documentation takes precedence over ensuring payment traceability.

Behavioral Constraints. While functional requirements describe the neces-
sary functionalities, behavioral constraints ensure correct low-level interaction
or ordering of the services participating in the composition. For example, Help-
MeOut requires that if the EFTPOS or the Cash service is used for payment on
the spot, then a printed report should be sent instead of an electronic report.

Annotated Service Repository. Suppose there is a repository of services
that are available for use in the composition. Each service is specified using a
standard service specification language such as WSDL [4], which describes the
service’s high-level functionality (semantics) as well as its inputs, outputs, and
low-level behavior. From this complete specification, a labeled transition system
(LTS), which captures the dynamics of the service, is extracted manually.

LTSs for the services in our repository are depicted in Figure 3. Because the
PhoneCall and SMS services serve only as interfaces between a user and the
system, their LTSs are not shown to avoid complexity.

3 Preliminaries

3.1 Goal Model: Decomposition of Functional Requirements

The overall functionality of the compositionΘ can be decomposed into a Boolean
combination of individual functionalities θ [14]. The relationships between θs in
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this Boolean combination can be represented graphically as an AND-OR graph
GΘ such as the one for the HelpMeOut service in Figure 1. The basic func-
tional requirements that can be realized from available services are optionally
associated with NFPs to denote their positive or negative impact. This combi-
nation of decomposition of functional requirements and associations to NFPs is
known as a goal model. Goal models are key to the Goal-Oriented Requirements
Engineering [5] methodology, where they are used for the same purposes.

3.2 CI-Nets: Expressing NFP Preferences

In our framework, the user specifies preferences between different sets of NFPs in
a qualitative preference language called Conditional Importance Networks (CI-
nets) [3]. A CI-net P is a collection of statements of the form S+, S− : S1 > S2,
where S+, S−, S1, and S2 are pairwise disjoint subsets of NFPs. Each statement
specifies that if there are two outcomes (two candidate services satisfying all
functional requirements) where both satisfy S+ and none satisfy S−, then the
outcome that satisfies S1 is preferred to the one that satisfies S2. The preference
order induced by the CI-net follows the semantics of these statements as well as
a monotonicity rule, which ensures that an outcome satisfying a set Γ of NFPs
is preferred to outcomes that satisfy the set Γ ′ ⊂ Γ (all else being equal).

The semantics of CI-nets is given formally in terms of a flipping sequence [3].
Given two outcomes γ and γ′, γ′ is preferred to γ (denoted by γ′ � γ) if and
only if there exists a sequence of outcomes γ = γ1, γ2, . . . , γn = γ′ such that for
each i ∈ [1, n− 1], one of the following is true:

– γi+1 satisfies one more NFP than γi.
– γi+1 satisfies S+ ∪ S1 and does not satisfy S−; γi satisfies S+ ∪ S2 and

does not satisfy S−; and there exists a CI-net statement S+, S−;S1 > S2.

Deciding whether one outcome is preferred to another (with respect to the CI-net
semantics) is referred to as dominance testing. It relies on generating an induced
preference graph (IPG), which represents the partial order between outcomes
based on the preference semantics, and then verifying reachability of one outcome
from another: γ′ is reachable from γ if and only if an improving flipping sequence
exists from γ to γ′. In [13], we have presented a model checking-based approach
for dominance testing based on preferences expressed in CI-nets.

Example 1. Consider the preferences given in Section 2. The first preference can
be expressed as CI-net statement

{Robust Documentation}; {} :
{Payment Traceability} > {Reduced Operational Costs} (1)

The second preference can be expressed as CI-net statement

{Reduced Operational Costs}; {Happier User} :
{Robust Documentation} > {Payment Traceability} (2)
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Fig. 2. Induced preference graph for CI-net statements 1 and 2

Figure 2 shows the IPG corresponding to the preferences expressed by these CI-
net statements for the illustrative example in Section 2. Each directed edge in the
graph represents a “flip” from a less-preferred set of NFPs to a more-preferred
set. Solid edges (e.g., from {c} to {bc}) indicate monotonicity flips ; here, the set
{Reduced Operational Costs, Payment Traceability} is preferred because it has
one more NFP than the set {Payment Traceability}. Dashed edges (e.g., from
{bc} to {bd}) indicate importance flips, which are induced by a CI-net statement
(in this case, by statement 2 above). Figure 2 shows that the set of all NFPs is
most preferred, while the empty set (no NFPs satisfied) is least preferred.

3.3 Service Representations and Composition

Labeled transition systems (LTS) [7] represent the low-level behaviors of services
in our system. An LTS is a digraph where nodes model states and edges represent
transitions. It is given by a tuple: (S, s0, Δ, I, O,AP,L), where S is the set of
states, s0 ∈ S is the start state, Δ ⊆ S × (I ∪ O) × S is the set of transitions
where each transition is labeled with an input action ∈ I or an output action ∈ O,
AP is the set of atomic propositions, and L is a labeling function which maps
each state ∈ S to a set of propositions ⊆ AP . The labeling function describes

configurations or states of the LTS. We use the notation s
!a−→ s′ (resp. s ?a−→ s′)

to denote output (resp. input) action a when the system moves from s to s′.
Figure 3 illustrates the LTSs of available services that can be used to realize

the composite service discussed in Section 2. With AP = {t0, t1, t2, t3, t4} and
S = {s0, s1, s2, s3, s4}, the LTS for the Vehicle service moves from the start state

s0 to state s1 after the action Location: s0
Location−→ s1. The state s1 moves to

state s2 when the service outputs the Problem description. This is followed by
the input MechCntct, which contains the contact information for the mechanic,
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Fig. 3. HelpMeOut services. Circled services constitute the final composition.

and then by the output PymntInfo. Finally, the system moves back from state
s4 to state s0 with the output of a Report of the incident.

Formally, given LTSi = (Si, s0i, Δi, Ii, Oi, APi, Li) where i ∈ {1, 2} and AP1∩
AP2 = ∅, the synchronous parallel composition LTS1×LTS2 is defined as
(S, s0, Δ, τ, AP, L), such that S ⊆ S1 × S2, s0 = (s01, s02), AP = AP1 ∪ AP2,

L((s1, s2)) = L(s1) ∪ L(s2), and Δ ⊆ S × [τ ]S: (s1s2)
τ−→ (s′1s

′
2) ⇐ s1

!a−→
s′1 ∧ s2 ?a−→ s′2. In other words, a parallel composition of LTSs representing ser-
vices describes all possible behaviors exhibited by the services via exchange of
messages (output from one is consumed by input to another).

3.4 Behavioral Constraints

We use an expressive temporal logic named Computation Tree Logic (CTL) [7]
to describe the behavioral constraints. A CTL formula ϕ is described over a set
of atomic propositions AP as follows:

ϕ→ AP | true | ¬ϕ | ϕ ∧ ϕ | E(ϕUϕ) | AFϕ

The semantics of a CTL formula, denoted by [[ϕ]], is given in terms of the sets
of states where the formula is satisfied. AP is satisfied in all states which are
labeled with the propositions in AP , true is satisfied in all states, ¬ϕ is satisfied
in states which do not satisfy ϕ, and ϕ1 ∧ ϕ2 is satisfied in states which satisfy
both ϕ1 and ϕ2. E(ϕ1Uϕ2) is satisfied in states from which there exists a path
to a state satisfying ϕ2 along which ϕ1 is satisfied in all states. Finally, AFϕ is
satisfied in states from which all paths eventually end in a state satisfying ϕ.



290 Z.J. Oster et al.

Example 2. Recall the behavioral constraint specified in Section 2, which stated
that if either the EFTPOS or the Cash service is used for payment On the Spot,
then a printed report should be sent instead of an electronic report. This can be
expressed by the CTL statement AG((EFTPOS ∨ Cash) ⇒ AX(PrintedReport)).

3.5 Data Mismatches

A data mismatch occurs when the input and output actions of two services that
can potentially communicate do not match. Data mismatches can be classified
as systemic, syntactic, structural, and semantic [15]. Systemic level mismatches
are no longer a problem due to standardized network protocols like IP, TCP, and
UDP. Syntactic mismatches are automatically resolved by using a standard ser-
vice description language such asWSDL (Web Service Description Language [4]).

A semantic mismatch occurs when communicating services refer to the same
piece of information with different names. For example, in Figure 3 the vehicle’s
location is sent via an output Location, while FuelStation and Mechanic ser-
vices expect to consume the location information via input actions Address and
Destination respectively. We address this problem using a data dictionary [1].
The dictionary elements — expressing distinct concepts — are grouped as sets
of synonyms, resulting in a collection of meaningfully linked words and concepts.

A structural mismatch occurs when the data received by a service is found
in other-than-expected order, style or shape. Differences in number or order of
XML tags of interacting services are examples of structural mismatches. We
utilize the graph-theoretic solution introduced in [1] to address this problem.

4 Service Composition Framework

Our service composition framework takes as input the entire set of functional
requirements, the preferences and trade-offs over non-functional properties, the
given behavioral constraints, and a repository of available services. Given these
inputs, our framework automatically constructs a composite service that is most
preferred (optimal) with respect to the users’ non-functional property preferences
and that satisfies the functional requirements and all behavioral constraints.

4.1 Specifying the Service Composition Problem

The inputs to the service composition framework are:

Θ A goal model, which shows a Boolean (AND/OR) combination of functional
requirements θ and their impact on non-functional properties.

P A preference relation specified using a CI-net, which forms a partial order
over the powerset of all NFPs under consideration.

Ψ A set of Computation Tree Logic (CTL) statements ψ that formally describe
the behavioral constraints as temporal properties of the composition.

R A repository of services, which are each specified in a standard description
language (e.g., WSDL) from which a corresponding LTS has been extracted.
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Fig. 4. Overview of framework

The Composition Problem. The objective is to solve the following problem:
Does there exist a composition C of services ∈ R such that

[C satisfies Θ ∧ Ψ ] and
∀ composition C′ of services ∈ R : [C′ satisfies Θ ∧ Ψ ⇒ C′ �� C]

(3)

In other words, our objective is to identify a composition C such that (1) C
satisfies all functional requirements and behavioral constraints and (2) no other
composition C′ that satisfies these requirements/constraints is preferred to C.

4.2 Selecting, Creating, and Verifying a Composition

Figure 4 illustrates the proposed framework for addressing this problem. The
first module NextPref uses the non-functional properties NFP and the CI-
net statements describing the preferences and trade-offs over them to compute
an ordered sequence γ1, γ2, . . . , γn. Each γi in the sequence represents a subset
of NFP where γi+1 �� γi with respect to the CI-net statements. In other words,
the sequence of γis forms a total order consistent with the partial order of the
induced preference graph. Based on the techniques proposed in [13], this mod-
ule represents the induced preference graph (see Figure 2) as an input model
of a standard model checker (specifically, NuSMV [6]) and identifies sequence
γ1, γ2, . . . , γn by verifying carefully selected temporal properties of the IPG.

Example 3. Consider the IPG in Figure 2. To conserve space, let a = Happier
User, b = Reduced Operational Costs, c = Payment Traceability, and d = Robust
Documentation. Clearly γ1 = {a, b, c, d} is the most preferred set of NFPs. Next,
consider all sets of NFPs with edges pointing to {a, b, c, d}. Figure 2 contains no
edges between three of these sets, which means that none of them are strictly
preferred to each other; however, the graph does contain an edge from {a, b, d}
to {a, c, d}, which is induced by CI-net statement 1. Therefore, we assign γ2 =
{a, b, c}, γ3 = {b, c, d}, and γ4 = {a, c, d} (although these sets could be in any
order). We then assign γ5 = {a, b, d}, as it is strictly less preferred than γ4
according to Figure 2. This process continues until all sets of NFPs (including
the empty set) have been placed into the sequence.
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The second module is ServSelect. This module takes into account the goal
model representing the overall functional requirementΘ and its relationship with
the NFPs, the repository R of available services, and the sequence of γis in order
of preference starting from γ1. For each γi, the module identifies

– the set of services (say X+
i ) that realize functional requirements which have

only positive impacts on the non-functional properties in γi; and
– the set of services (say X−

i ) that realize functional requirements which have
some negative impacts on the non-functional properties in γi.

Example 4. Consider the NFP set γ4 in Example 3 and the goal model in Fig-
ure 1. Based on the dependencies between services that satisfy functional require-
ments (hexagons in Figure 1) and the NFPs that each service satisfies, Serv-
Select identifies X+

4 = {PhoneCall, CreditCard, PrintedReport} and X−
4 =

{SMSCall, Cash, BankChq}. Services in X+
4 have only positive impacts on the

NFPs in γ4, while services in X−
4 have a negative impact on some NFP in γ4.

Next, ServSelect solves the satisfaction problem and identifies the set W of
all sets of services Y such that the composition of all services in Y realizes a
set of functional requirements which, when satisfied, result in satisfaction of Θ.
Note that the presence of OR-nodes in the graph allows Θ to be satisfied in
many different ways. Finally, ServSelect verifies X+

i ⊆ Y and X−
i ∩ Y = ∅.

Satisfaction of these conditions ensures that Y is the most preferred set of ser-
vices that satisfy Θ and the non-functional properties in γi. If the conditions
are not satisfied by any assignment Y , the module considers γi+1 from the se-
quence of γis. This is repeated until a suitable service set Y is obtained. In the
worst case, the least-preferred (empty) NFP set γn will be used; when this oc-
curs, X+

n = X−
n = ∅, making the above conditions vacuously true. Therefore, a

non-empty set Y will always be obtained.

Example 5. Initially, ServSelect uses the goal model in Figure 1 and the repos-
itory of services that includes all services in Figure 3 to identify all possible com-
positions of available services that may satisfy the overall functional requirement
Θ. Recall the sequence of NFP sets identified in Example 3. Observe in Figure 1
that there exists no combination of low-level functionalities that leads to satisfac-
tion of γ1 (all NFPs), γ2, or γ3. Fortunately, the set of services Y = {PhoneCall,
Vehicle, WorkShop, Mechanic, CreditCard, PrintedReport} satisfies the required
conditions for γ4: X

+
4 ⊆ Y and X−

4 ∩ Y = ∅.
The third module, OrchAndVerif, takes as input the set W of sets of ser-
vices Y from the ServSelect module and the set of behavioral constraints
Ψ expressed in CTL. This module verifies whether there exists an orchestra-
tion of services ∈ Y that satisfies Ψ ; it also considers data mismatches when
composing services (see Section 3.5). The core of the verification technique is a
tableau algorithm which takes services in Y and constructs their orchestration
in a goal-directed fashion, possibly including interleaving of services; details of
the technique are available in [1]. If the verification fails, a different Y is selected
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Algorithm 1. Driver Program

1: procedure VeriComp(Θ, NFP, P , Ψ , R)
2: 〈γ1, γ2, . . . , γn〉 := NextPref(NFP,P)
3: for i = 1 → n do
4: W := ServSelect(Θ, γi, R)
5: for all Y ∈ W do
6: C := OrchAndVerif(Y, Ψ,R)
7: if C �= ∅ then
8: return C
9: return false

from W and the process is repeated until a suitable Y is identified (success)
or all elements of W have been considered (failure). Successful termination of
the process results in a set of services which (1) satisfies the functional require-
ments Θ, (2) satisfies all behavioral constraints Ψ , and (3) is most preferred with
respect to CI-net preferences over the set of NFPs.

Example 6. Figure 5 presents the successfully generated orchestration of the
most preferred set of services (given in Example 5) that fulfills the behavioral
constraints (given in Example 2). Recall that the PhoneCall service serves as an
interface only, so it is omitted from Figure 5 to avoid complexity.

The entire process is presented in the procedure VeriComp in Algorithm 1.
Line 2 invokes NextPref. Lines 3–8 iterate over the sequence of γis where
ServSelect in Line 4 identifies a set W , and OrchAndVerif is iteratively
invoked in Lines 5–8 to identify the most preferred orchestration C.

Fig. 5. States and transitions of the synthesized orchestrator. Services are ordered as:
[Vehicle, WorkShop, Mechanic, CreditCard, PrintedReport ].
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4.3 Theoretical Properties

Theorem 1 (Soundness & Completeness). Given an AND-OR combina-
tion of functional requirements Θ, a set of behavioral constraints Ψ in terms of
temporal properties in CTL, a set of non-functional properties NFP, preferences
and trade-offs in CI-nets, and a repository of services R, VeriComp returns a
composition C if and only if C satisfies the condition in (3).

Proof. The ServSelect module identifies all sets of services Y such that if the
services in Y can be composed, the resulting composition satisfies Θ. Further,
given Ψ and a set of services Y as input, the OrchAndVerif module returns
a composition C if and only if the services in Y can be composed in a way that
satisfies all behavioral constraints in Ψ ; this follows directly from results in [1].

It remains to prove that for any composition C returned by our framework
and for all other compositions C′ that satisfy both Θ and Ψ , C′ �� C. Suppose in
contradiction that C′ � C, i.e., C′ satisfies a more preferred set of NFPs than C,
but our framework returns C. Let γC and γC′ be the sets of NFPs satisfied by C
and C′ respectively. By Theorem 1 in [13], γC′ precedes γC in the sequence re-
turned by NextPref; therefore, our framework attempts to compose and verify
C′ before considering C. Because C′ satisfies both Θ and Ψ , OrchAndVerif
succeeds in creating and verifying C′. As a result, our framework returns C′,
contradicting our earlier assumption. ��

Complexity. Let n be the number of leaf-level functional requirements in Θ,
let k be the maximum number of services in R satisfying any requirement θ ∈ Θ,
and let p be the number of NFPs considered. Algorithm 1 (VeriComp) iterates
up to 2p times over the outer loop (lines 3–8), once per subset of NFP. The largest
number of possible compositions returned by ServSelect is kn if all non-leaf
nodes in GΘ are AND nodes and if the composition has up to n services. The
inner loop (lines 5–8) calls OrchAndVerif at most kn times (once for each
possible composition that satisfies the NFP set γ), taking O(2n2|Ψ |) time per
call (where |Ψ | is the number of CTL formulae to be satisfied). The worst-
case complexity of our framework, given an AND-OR tree with only leaf and
AND nodes, is therefore O(2pkn2n2|Ψ |). However, we expect k and p to be small
in most practical applications. Additionally, each OR node in GΘ improves the
worst-case complexity by reducing the number of leaf-level requirements to verify.

5 Implementation and Case Studies

We have implemented our framework as a Java-based tool that is based on
existing components. The ServSelect module is derived from the goal-model
analysis tool in [13], the OrchAndVerif module is based on the composition
tool in [1], and the NextPref module is built on the NuSMV [6] model checker.

Table 1 displays results from applying our service composition and verifica-
tion framework to three case studies adapted from the existing literature. These
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Table 1. Results of Applying Our Implementation to Three Case Studies

High- Total Preference Orch. and
Level CI-net Orchestrator Run Reasoning Verif.

Case Study Functions Services NFPs Rules States Trans Time (s) Time (s) Time (s)

HelpMeOut [1] 9 12 4 2 9 9 2.69 1.44 1.25
Online
Bookseller [13] 5 9 4 3 16 16 3.00 1.59 1.41
Multimedia
Delivery [14] 8 15 3 2 9 10 2.03 0.84 1.19

results were obtained by running our tool on a machine running Windows 7
Professional (32-bit) with 2 GB of RAM and an Intel Core 2 Duo processor
running at 1.83 GHz. Each time shown is the mean of the times observed for
10 runs of that operation on that case study. The preference reasoning and or-
chestration/verification modules each take time on the order of seconds, while
service selection (satisfiability analysis) requires minimal time. This is because
the semantics of CI-nets requires exploration of the entire induced preference
graph, while the behavioral constraints must be verified with respect to all pos-
sible executions of the composite service. These results show the feasibility of
our composition framework for real-world applications.

More information on our implementation and on the case studies used in this
evaluation is available at http://fmg.cs.iastate.edu/project-pages/icsoc12/.

6 Related Work

All service composition frameworks are designed to produce composite services
that satisfy users’ functional requirements. Some also account for low-level be-
havioral constraints or non-functional properties, but very few integrate all three
in a unified way. The TQoS algorithm [9] provides one such framework. TQoS
considers both transactional and QoS properties when composing services, se-
lecting services that have locally optimal QoS for each part of the desired func-
tionality. Additionally, TQoS guarantees by construction that composite services
it produces satisfy a standard set of transactional constraints. Our framework
goes beyond TQoS in two ways: (1) it more accurately represents users’ true
preferences between sets of NFPs by using CI-nets instead of a weighted-average
method, and (2) it can verify that a composition satisfies any behavioral con-
straint that can be specified using CTL, not just a small fixed set of properties.

The composition method presented in [18] is representative of many tech-
niques that consider both functional and non-functional properties. [18] models
the entire problem as an integer linear programming problem, employing sim-
ple syntactic matching of inputs and outputs to form the composite service and
utilizing quantitative preference valuations for NFPs. In contrast, [17] uses qual-
itative NFP valuations to select services to compose based on a set of preferences
expressed by the user in a different language for qualitative preferences, namely
tradeoff-enhanced conditional preference networks (TCP-nets). Our framework’s
strategy for handling NFP preferences is inspired in part by [17].
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In [2], ter Beek et al. focus on verification of functional requirements in a sce-
nario similar to our example in Section 2. The service-oriented architecture in [2]
is modeled as a set of state machines illustrated as UML-like diagrams. Temporal
constraints representing functional requirements and behavioral constraints are
specified in the temporal logic UCTL (an extension of CTL) and verified over the
diagrams using an on-the-fly model checking tool. Though [2] does not consider
NFPs, it shows that model checking is feasible in an industrial-scale service-
oriented computing scenario. Our framework employs model checking for both
verifying behavioral constraints and reasoning over users’ NFP preferences to
construct a service composition that truly satisfies the users’ needs.

The matching of I/O variable names or types, known as semantic or concept-
based similarity matching, is typically performed using a data dictionary. Liu et
al. [10] used the lexical database WordNet [12] to perform concept-based simi-
larity matching, while we use our own universal dictionary [1] for the same pur-
pose. Another data-related operation, data flow (without handling mismatches),
is performed via routing the data among the ports of Web services. An example
of this is the ASTRO approach [11], where data flow requirements are collected
in a hypergraph called a data net, which is then transformed into a State Tran-
sition System to become part of a planning domain for composition. Because
neither semantic matching nor data routing are complete data solutions due to
the complex XML schema associated with Web service data types, we proposed
a graph-theoretic solution [1] that bridges these gaps by addressing the problem
at the XML schema level; this is incorporated into the framework in this paper.

7 Conclusions and Future Work

We have presented a framework for service composition that takes into account
high-level functionalities, low-level behaviors, and non-functional properties in
order to identify and create the most preferred service composition that provides
the required functionality (if such a composition exists). Our framework makes
use of user-friendly representations for specifying functional requirements and
non-functional properties, but it also uses model checking to obtain guarantees
that a composition will satisfy specified low-level temporal properties. We proved
that our composition algorithm is sound, complete, and weakly optimal with
respect to the user’s non-functional property preferences, and we presented initial
results obtained from a prototype implementation of our framework.

The next steps for this work are to refine our current proof-of-concept imple-
mentation and empirically compare our tool’s performance to similar algorithms
such as [2] and [9]. Our future work includes allowing partial satisfaction of
NFPs as in [5], automating translation of WSDL service specifications to LTSs,
exploring different approaches to dominance testing and different semantics for
expressing preferences, and applying our approach for service composition to the
related problems of service substitution and adaptation.
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