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The field of provenance in computer science arose from the need to capture the
lineage of software data outputs in an automated manner that is semantically
consistent across various applications that participated in producing the said
outputs. This vision being outside the capabilities of simple text logs, a series of
Provenance Challenges investigated the suitability of different approaches, in the
process giving rise to the Open Provenance Model (OPM) [3], currently being
reworked into PROV, a W3C standard.

Provenance data brings with it a new set of security considerations, since
the access permissions to data and to its full lineage may not always coincide.
Clinical trial auditor may not be allowed to see a patient’s full electronic health
record used to gather data for the trial, but may see the trial results, while the
patient owns their health record, but may not necessarily access the full trial
information. Given that provenance information is commonly represented, and
therefore browsed, as causal graphs, access to any individual node in the graph
is potentially affected by other nodes connected to it.

Motivation for our work is to provide access policy language and query eval-
uation method that will offer to the user the maximum permissible amount of
information. To that goal, we define ACLP, an extension to XACML, to sup-
port such policy definitions, and introduce graph transformations that hide the
restricted graph items from the user.

ACLP1 takes as its starting point the language defined in [1], which is itself
an extension of XACML with regular expressions to represent terms of random
depth in provenance graphs. Our extension retains their work, and introduces
the transform construct to support the new query evaluation strategy. SPARQL
1.1 property paths are used for describing complex graph patterns expressions.

A policy in ACLP (Figure 1) is described by a target and an optional con-
dition, the scope, effect and transform descriptors associated to the target. Full
description of these is available in [1], and we only focus on novel elements.

The effect element specifies the intended outcome if the applicable rule matches
some part of the provenance graph. It can take four values: Absolute permit guar-
antees access to the graph regardless of other policies’ outcomes, Deny guaran-
tees that certain parts of the graph will never be accessed by users in the subject
element, Necessary permit describes parts of the graph that need explicit per-
mission to be accessed, andPermit describes those graph segments that can be
accessed if there are no other policies denying access.

1 The full ACLP XSD is available at:
http://www.doc.ic.ac.uk/~rdanger/aclschema_new.xsd.
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<?xml version ="1.0" encoding ="UTF -8"?>

<policies>

<policy >

<target >

<subject >ocld:Patient </ subject >

<record >ocld:DiagRecommProcess </ record >

<restriction >ocld:Patient.patId <> ocld:User.id </ restriction >

<restriction >rdf:property */ocld:Diagnosis /opm :wasGeneratedBy *</restriction >

</target >

<scope >transferable </scope >

<effect >deny </effect >

<transform>

<type >subgraph </type >

<tranformation_scope >ocld:clinicalEvidence </ tranformation_scope >

</transform >

</policy >

</policies >

Fig. 1. Example of access control definition for an EHR system

The transform element specifies if and how the graph is transformed to allow
access to a subgraph when either deny or necessary permit policies apply to
some nodes within the scope. There are three possible values: None denotes that
transformations are not allowed and no part of the graph can be returned, Single
means that the graph may be transformed and modified version returned, and
Subgraph which also allows graph transformation, and also transfers the access
restriction to its children nodes. The scope of this transfer depends on the value
of the transformation scope element, which can be either a set of resources,
defined through a path query, or ’all’ for all reachable nodes.

The example of a fictional EHR system in Figure 1 shows a patient access
policy: the patient has no access to any EHRs other than their own, neither
to any information associated to a diagnosis that was generated by using an
automatic diagnosis recommendation process (ocld:DiagRecommProcess) and to
the subgraph connecting it with the clinical evidences.

Our query evaluation strategy aims to transform the response graphs so that
they conform to the query requestor’s authorisation level. In rule conflicts, the
strategy takes a wider-allowed-access-takes-precedence approach [2], i.e. the al-
gorithm guarantees access to all resources that are not a target of a specific deny
rule. The evaluation pseudo-code is shown in Algorithm 1.

To construct the transformed graph, we distinguish between
causality-preserving and non-causality-preserving transformations. The former
maintain some causal links between remaining nodes (through previous inferred
relations), while the latter change the semantics by removing all connections
between some remaining nodes. The algorithm removes all excluded nodes while
the overall transformation remains causality-preserving, and when this is not the
case, it replaces deleted nodes with the minimal set of fictitious artifacts and
processes) that act as place-holders for one or more deleted nodes, and maintain
the causal dependencies of remaining nodes. This is shown in Algorithm 2.

In this paper, we introduced a novel query evaluation algorithm on provenance
data that returns graphs transformed based on user’s authorisation levels, and
the corresponding extension to XACL to support this in policy definition. The
system is currently being implemented.
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Algorithm 1. Access policy evaluation

Require: g: OPM graph to access.
targets: Applicable targets filtered by user and validity.

Ensure: accessibleGraph: subgraph of g to which the access is granted, or null if the access to the
graph is denied.

{Step One: evaluate ‘absolute permit’}
for target ∈ targets do

if target.effect = ‘abs.permit′ and eval(target.cond) then
return g

{Step Two: evaluate ‘deny’ or ‘necessary permit’}
accessibleGraph = g
excludedNodes = {}
for target ∈ targets do

if (target.effect = ‘deny′ and eval(target.cond) ) or
(target.effect = ‘nec.permit′ and not eval(target.cond)) then
if target.transform = ‘no′ then

return null
else

excludedNodes = excludedNodes ∪ getConflictNodes(target, g)
accessibleGraph = transformGraph(g, excludedNodes)
{Step Three: evaluate ‘permit’}
for target ∈ targets do

if target.effect = ‘permit′ and eval(target) then
return accesibleGraph

return null

Algorithm 2. Provenance graph transformation

Require: g: OPM graph to access.
removedNodes: set of nodes to be removed

Ensure: g′: graph equivalent to g in which all minimal subgraphs associated to the nodes in
removedNodes have been transformed.

{Step One: Selection of ‘retain’ graph nodes}
g′ = g
for n ∈ removedNodes do

if (∃nc, ne, cause(n, nc), effect(n, ne)∧
∃n′, n′ /∈ removedNodes, (cause(n, n′) ∨ effect(n, n′)) then
mark(n, ‘retain′)

{Step Two: Transform}
Delete from g′ all n ∈ removedNodes, causalityPreserving(n) without ‘retain’
Replace all consecutive graph nodes without ‘retain’ in g′ with a fictitious artifact if they are all
artifacts, or with a fictitious process otherwise
Replace all consecutive artifacts with ‘retain’ in g′ with a fictitious artifact
Replace all consecutive processes with ‘retain’ in g′ with a fictitious process

return g′.
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