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Abstract. In this paper we aim to characterize graphs in terms of struc-
tural complexities. Our idea is to decompose a graph into substructures
of increasing layers, and then to measure the dissimilarity of these sub-
structures using Jensen-Shannon divergence. We commence by identify-
ing a centroid vertex by computing the minimum variance of its shortest
path lengths. From the centroid vertex, a family of centroid expansion
subgraphs of the graph with increasing layers are constructed. We then
compute the depth-based complexity trace of a graph by measuring how
the Jensen-Shannon divergence varies with increasing layers of the sub-
graphs. The required Shannon or von Neumann entropies are computed
on the condensed subgraph family of the graph. We perform graph clus-
tering in the principal components space of the complexity trace vector.
Experiments on graph datasets abstracted from bioinformatics and image
data demonstrate effectiveness and efficiency of the graphs complexity
traces.

1 Introduction

Graph based relational representations have proven to be both powerful and
flexible in pattern recognition. Compared to vector based pattern recognition,
a major drawback with graph representations is the lack of a natural corre-
spondence order. This limits the direct application of standard machine learning
algorithms for problems such as graph clustering. One way to overcome this
problem is to embed the graph data into a vector space, where standard ma-
chine learning techniques can be deployed. There have been several successful
solutions which include a) embedding graph into vector space using the dissimi-
larity embedding [5], b) representing graph structure using permutation invariant
polynomials computed from the eigenvectors of the Laplacian matrix using alge-
braic graph theory [10], and c) computing permutation-invariant graph features
via the Ihara zeta function [7]. The limitations of the existing methods is that
they usually depend on the graph topology or size, and as a result they tend to be
computationally burdensome or can not be efficiently computed in an algebraic
manner.
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To overcome the limitations of existing methods, we propose a novel frame-
work for characterizating graphs based on computing complexity traces. Depth-
based representations of undirected graph structures have proved powerful for
characterizing their topological structure in terms of intrinsic complexity [1,2].
One approach is to gauge information content flow through K layer subgraphs
of a graph (e.g.subgraphs around a vertex having a maximum topology distance
or minimal path length K) of increasing size and to use the flow as a struc-
tural signature. This approach allows a complexity trace to be defined which
gauges how the complexity of the graph varies as a function of depth [2]. Unfor-
tunately, to construct such a trace requires a measure of the intrinsic structural
complexity, and this requires burdensome computations. In this paper we fo-
cus on developing an efficient depth-based signature, that can both capture fine
structure and can be evaluated relatively efficiently. To compute a complexity
trace of a graph G, we identify the centroid vertex vC in G by selecting the
vertex with minimum variance of shortest path lengths. Based on vC , we derive
a family of expansion subgraphs from vC with in increasing layer size K. Then
we construct a complexity trace of G by measuring how the dissimilarity be-
tween the K layer subgraph and G varies on the expansion subgraphs with the
increasing layer K. To compute the proposed depth-based complexity trace effi-
ciently, we turn to the Jensen-Shannon divergence as the dissimilarity measure.
This is a nonextensive information theoretic measure derived from the mutual
information between probability distributions over different structures. Here the
required entropies of the Jensen-Shannon divergence are computed using the
Shannon entropy or von Neumann entropy on the (sub)graphs. We empirically
demonstrate that our Jensen-Shannon complexity trace can easily scale to large
graphs. The performance of our framework is competitive to the state of the art
methods in the literature.

2 Centroid Expansion Subgraphs

In this section, we introduce a set of subgraphs which we refer to as centroid
expansion subgraphs of a given graph. We first describe how to identify the
centroid vertex for a graph and explain how to extract the centroid expansion
subgraphs from the graph with regard to the centroid vertex. Then we describe
how to compute entropies on these centroid expansion subgraphs.

2.1 Centroid Vertex

The shortest path for a pair of vertices vi and vj in an undirected graph G(V,E)
can be obtained by using Dijkstra algorithm. We refer to the matrix SG whose
elements SG(i, j) represents the shortest path length between vertices vi and vj
as shortest path matrix for G(V,E). The average-shortest-path vector SV for
G(V,E) is a vector with the same vertex sequence as SG, with each element

SV (i) =
∑|V |

j=1 SG(i, j)/|V | representing the average shortest path length from
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vertex vi to the remaining vertices. We then locate the centroid vertex vi for
G(V,E) as follows

î = argmin
i

|V |∑

j=1

[SG(i, j)− SV (i)]
2. (1)

The centroid vertex vi of G(V,E) is located through selecting a vertex with
a minimum variance of shortest path lengths out of all vertices in G(V,E).
Therefore, the shortest paths starting from the centroid vertex vi form a steady
path set that exhibits less length variability than those path sets starting from
other vertices. For a graph G(V,E) with the centroid vertex vC , the K-layer
centroid expansion subgraph GK(VK ; EK) is

{VK := {u ∈ V |S(vC , u) ≤ K,K ≥ 1};
EK := {{v, u} ⊆ VK |{v, u} ∈ E}. (2)

The number of centroid expansion subgraphs is equal to the greatest length of
the shortest path from the centroid vertex to the other vertices of the graph.

2.2 Entropies on K-Layer Centroid Expansion Subgraphs

The definition of steady state random walks and entropy on a subgraph is similar
to that for a graph. Given the K-layer centroid expansion subgraph GK(VK ; EK)
of a graph G(V,E), the adjacency matrix AK for GK(VK ; EK) has elements

AK(i, j) =

{
1 if(vi, vj) ∈ EK ;
0 otherwise.

(3)

The vertex degree matrix of GK(VK ; EK) is a diagonal matrix DK whose ele-
ments are given by DK(vi, vi) = dK(i) =

∑
vi,vj∈VK

AK(i, j). From the matrixes
DK and AK we can construct the Laplacian matrix LK = DK − AK . The

normalized Laplacian matrix is given by L̂K = D
−1/2
K LKD

−1/2
K . The spectral

decomposition of the normalized Laplacian matrix is L̂K = Φ̂KΛ̂KΦ̂T
K where

Λ̂K = diag(λ̂K1 , λ̂K2 , ..., λ̂K|VK |) is a diagonal matrix with the ordered eigenval-

ues as elements (0 = λ̂K1 < λ̂K2 < ... < λ̂K|VK |) and Φ̂K = (φ̂K1 |φ̂K2 |...|φ̂K|VK |)
is a matrix with the corresponding ordered orthonormal eigenvectors as columns.
The normalized Laplacian matrix is positive semi-definite and so has all eigen-
values non-negative. The number of zero eigenvalues is the number of connected
components in GK(VK ; EK). In [12], the von Neumann entropy of GK(VK ; EK)
associated with the normalized Laplacian eigenspectrum is defined as HV N =

−∑|VK |
i=1

λ̂Ki

2 log
λ̂Ki

2 . Since the computation of the von Neumann entropy re-
quires cubic number of vertices operations, Han et al. [3] have shown how the
computation can be rendered quadratic in the number of the vertices. By ap-
proximating the von Neumann entropy by its quadratic counterpart, the approx-
imated von Neumann entropy for GK(VK ; EK) is given by

HV N (GK) =
|VK |
4

−
∑

(vi,vj)∈EK

1

4 dK(i)dK(j)
(4)
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Furthermore, the probability of a steady state random walk on GK(VK ; EK)
visiting vertex vi is PK(i) = dK(i)/

∑
vj∈VK

dK(j). The Shannon entropy of

GK(VK ; EK) with the probability distribution P{GK} = PK is then given by

HS(P{GK}) = HS(PK) = −
|VK|∑

i=1

PK(i) logPK(i). (5)

3 Jensen-Shannon Complexity Traces of Graphs

In this section, we investigate how to use the Jensen-Shannon divergence as a
means of constructing a depth-based complexity trace of graph-structure.

3.1 Jensen-Shannon Divergence Measure

The Jensen-Shannon divergence is a nonextensive mutual information measure.
It is defined on probability distributions over structured data [4]. The Jensen-
Shannon divergence JSD(Pm, Pn) between probability distributions Pm and Pn

is given by:

JSD(Pm, Pn) = HS(
Pm + Pn

2
)− HS(Pm) +HS(Pn)

2
(6)

where HS(Pm) is the Shannon entropy for the probability distribution Pm.

3.2 Composite Structure of Subgraphs

Before we use the Jensen-Shannon divergence as a means of constructing a com-
plexity trace of a graph, we required a composite structure graph of a pair of
(sub)graphs. For a pair of subgraphs GK(VK , EK) and GK′ (VK′ , EK′ ), their com-
posite structure graph GK⊕GK′ has vertex and edge sets VK⊕VK′ and EK⊕EK′

respectively. The most common algorithms to create a composite structure graph
of two initial (sub)graphs are formed by taking graph product and graph union.
For reason of the efficient computation here we take the (sub)graph union. To
construct an union graph GU (VU , EU ) of GK(VK , EK) and GK′ (VK′ , EK′ ), we per-
form pairwise correspondence matching. Details of the construction are outside
the scope of this paper. Our approach follows that of Han et.al’s work in [11].

3.3 Complexity Characterisation of Graph Structure

Wedefine a depth-based Jensen-Shannon complexity trace for a graph.For a graph
G(V,E) the full set of its centroid expansion subgraphs isGvC

C ={G1, ...,GK , ...,GL}
where vC is the centroid vertex ofG, L is the greatest length of shortest paths from
the centroid vertex vC to the remaining vertices inG(V,E), and GK is theK-layer
centroid expansion subgraph ofG(V,E). The essentiality of theL layer subgraph is
the graphG(V,E) itself. Suppose we have probability distributions resulting from
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steady state randomwalks on each of theK layer centroid expansion subgraph GK

denoted by P{G1}, ..., P{GK}, ..., P{GL}. The complexity trace is computed as

CT =[JSD(P{G1},P{GL}), ..., JSD(P{GK}, P{GL}), ...,JSD(P{GL}, P{GL})]T
(7)

where JSD(P{GK}, P{GL}) is the Jensen-Shannon divergence between the K
layer centroid expansion subgraph and the L layer centroid expansion subgraph
(i.e. graph G(V,E)). This complexity trace encapsulates an mutual information
based interior dissimilarity transformation between the graph G(V,E) and its
K, which is from 1 to L, layer centroid expansion subgraphs with their steady
state random walk probability distributions. The Jensen-Shannon divergence
JSD(P{GK}, P{GL}) is defined as:

JSD(P{GK}, P{GL}) = HS(
P{GK} ⊕ P{GL}

2
)− HS(P{GK}) +HS(P{GL})

2
(8)

where P{GK}⊕P{GL}
2 represents the probability distribution of the steady state

random walk over the union graph GU (VU , EU ) of GK(VK , EK) and GL(VL, EL).
As the L layer expansion subgraph GL(VL, EL) contains the full structure of the
K layer expansion subgraph GK(VK , EK), using the graph union mentioned in
Section 3.3, GU (VU , EU ) can be represented by GL(VL, EL). As a result (8) can
be rewritten as:

JSD(P{GK}, P{GL}) = HS(P{GL})−HS(P{GK})
2

(9)

Since we also use the von Neumann entropy in (4) to construct the complexity
trace CT , then CT in (7) can also be written as

CT = [JSD(G1,GL), ..., JSD(GK ,GL), ..., JSD(GL,GL)]
T (10)

where JSD(GK ,GL) is given by

JSD(GK ,GL) =
HV N (GL)−HV N (GK)

2
(11)

3.4 Graphs of Different Size

The L layer expansion subgraph is the undirected graph itself, and the dimension
of a Jensen-Shannon complexity trace vector is thus equal to greatest layer L.
However, the complexity trace vectors for graphs of different sizes may exhibit
various lengths. To compare these graphs by using complexity trace vectors, we
need to make vector lengths uniform. This is achieved by padding out the dimen-
sions of the complexity trace vectors. Hence, for complexity trace vectors CTm

and CTn of two graphs Gm and Gn with dimensions Lm and Ln respectively,
where Lm > Ln, we use the Ln-th element value of CTn as the added padding
value for the extended Ln + 1-th to Lm-th elements of CTn. Since the Ln-th
element Jensen-Shannon divergence value is 0, the padding values are 0.
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3.5 Computational Complexity Evaluation

The computational complexity of proposed complexity trace is governed by four
computational step. Consider a sample graph G(V,E) with size s and high-
est shortest path length L for the centroid vertex. The Dijkstra shortest path
calculation requires O(s2) operations. The processing of centroid expansion sub-
graphs requires O(Ls2) operations. Since the L layer centroid expansion sub-
graph possesses the full structures of any K layer centroid expansion subgraphs,
the union graph is the L layer centroid expansion subgraph. As a result the
union graph construction approximately requires O(s) operations. The Jensen-

Shannon divergence calculation approximately requires O(
3
√
s2) operations. The

L is approximated equal to 3
√
s.

4 Experimental Evaluation

4.1 Interior Complexity Evaluation

We commence by illustrating how the representational power of the proposed com-
plexity traces of graphs, and demonstrate that these can be used to distinguish
different objects. The evaluation utilizes graphs extracted from images of a box
and a house, taken respectively from the ALOI and CMU databases. For each
object we use 18 images captured from different viewpoints. The graphs are the
Delaunay triangulations of feature points extracted from the different images. For
each graph, we identify the centroid vertex and construct centroid expansion sub-
graphs.The interior complexity values are computed using (9) or (11). Figs.1(a)(b)
and (c)(d) show the sets of complexity histograms of complexity traces using Shan-
non or von Neumann entropy (18 per object) for each object in turn respectively.
The main features to note are that the distributions from the same object are sim-
ilar to each other, whereas those from different objects are dissimilar.
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Fig. 1. Complexity histograms of complexity traces of different graphs

4.2 Stability Evaluation on Centroid Vertex

To evaluate the stability of our proposed complexity trace from the centroid ver-
tex, we explore the relationship between graph edit distance and the pattern vec-
tors resulting from our complexity trace vectors of graphs. The evaluation utilizes
two randomly generated seed graphs. The two seed graphs have 500 vertices and
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300 vertices respectively. For each seed graph, we first identify its centroid ver-
tex as the original centroid vertex, then we apply random edit operations of edges
fraction addition to simulate the effects of noise. The feature distance of the orig-
inal seed graphGO and its noise corrupted counterpartGE is defined as their Eu-

clidean distance dGO,GE =

√

(CTO − CTE)
T
(CTO − CTE) where CTO and CTE

are complexity traces of GO and GE from the same centroid vertex, i.e.the origi-
nal centroid vertex. The experimental results are shown in Fig.2. Fig.2(a)(b) and
(c)(d) show the feature distance between pattern vectors using Shannon or von
Neumann entropy for the two seed graphs and their edited graphs respectively.
In each subfigure, the x-axis shows the 1% to 35% of edges randomly added, and
the y-axis shows the value of the Euclidean distance dGO,GE betweenGO andGE .
FromFig.2 it is clear that when less than 5% are added the fluctuation is small, and
when around 20% are added the fluctuation becomes moderate. This implies that
the proposed complexity trace from the centroid vertex is robust even when the
seed graph structures undergo relatively large perturbations. As a whole, there’s
an approximately linear relationship between the graph edit distance and the Eu-
clidean distance. This implies that the proposed method possesses the ability to
distinguish graphs under controlled structural error.
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Fig. 2. Distance distribution between feature vectors versus graph edit operation

4.3 Real-World Datasets

We compare our proposed complexity trace method with several state of the art
methods. The methods for comparison include 1) Jensen-Shannon graph kernel
(JSGK) [6], 2) von-Neumann thermodynamic depth complexity (VNTD) [2,3],
3) information functionals fV (FV) (e=1) and fP (FP) (e=1) [8], and 4) Ihara
coefficients for graphs (CIZF) [7]. We use three standard graph based datasets
abstracted from bioinformatics datasets [9,2] for experimental evaluation. For
the FV and FP, we set the parameters α as 2, and ck and bk as ρ− k + 1 [8].

MUTAG: The MUTAG benchmark is based on graphs representing 188 chem-
ical compounds, and aims to predict whether each compound possesses muta-
genicity. The maximum and average number of vertices are 28 and 17.93 re-
spectively. As the vertices and edges of each compound are labeled with a real
number, we transform these graphs into unweighted graphs.

PPIs: The PPIs dataset consists of protein-protein interaction networks (PPIs).
The graphs describe the interaction relationships between histidine kinase in dif-
ferent species of bacteria. Histidine kinase is a key protein in the development of
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signal transduction. If two proteins have direct (physical) or indirect (functional)
association, they are connected by an edge. There are 219 PPIs in this dataset
and they are collected from 5 different kinds of bacteria. We select Proteobac-
teria40 PPIs and Acidobacteria46 PPIs as the second group test graphs. The
maximum, minimum and average number of vertices of selected graphs are 238,
6 and 109.60 respectively.

D&D: The D&D dataset contains 1178 protein structures. Each protein is rep-
resented by a graph, in which the nodes are amino acids and two nodes are
connected by an edge if they are less than 6 Angstroms apart. The prediction
task is to classify the protein structures into enzymes and non-enzymes. The
maximum and average number of virtices are 5748 and 284.32 respectively.

ENZYMES: The ENZYMES dataset is a dataset based on graphs representing
protein tertiary structures consisting of 600 enzymes from the BRENDA enzyme
database. In this case the task is to correctly assign each enzyme to one of the 6
EC top-level classes. The maximum and average number of vertices are 126 and
32.63 respectively.

4.4 Performance Comparison

We evaluate the performance of our proposed Jensen-Shannon complexity trace
using Shannon (JSCTS) or von Neumann (JSCTV) entropy on the mentioned
standard datasets and compare them with several alternative state of the art
graph based methods. We perform 10-fold cross-validation associated with SMO-
Support Vector Machine Classification to evaluate the performance of our method
and the alternatives, using nine samples for training and one for testing. All pa-
rameters of the SVMs were optimized. The codes of our previous work in [6]
and the other methods were also re-optimized. We report the average predic-
tion accuracies and runtime of each method in Table 1(-:infeasible runtime; =:
over computing), the runtime were measured under Matlab R2011a running on
a ThinkPad T61p with an Intel 2.2GHz 2-Core processor and 2GB RAM.

Table 1. Experimental Comparison on Bioinformatics Datasets

Datasets JSCTS JSCTV JSGK VNTD FV FP CIZF

MUTAG 85.63 82.44 87.76 83.51 84.57 85.63 80.85
PPIs 76.74 77.90 69.85 67.44 70.93 70.93 70.93

Enzymes 29.00 32.16 27.05 30.50 24.17 23.33 32.00
D&D 75.32 76.15 78.00 − = = − =

Datasets JSCTS JSCTV JSGK VNTD FV FP CIZF

MUTAG 1” 1” 2” 19′21” 1” 1” 1”
PPIs 1” 1” 2” 52′27” 1” 1” 55”

Enzymes 1” 1” 19” 4h37′ 1” 1” 11”
D&D 42” 44” 14′59” − = = − =
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In terms of the runtime and graph size, our method can efficiently compute
graph complexity traces even for graphs with thousands of vertices, while VNTD
and CIZF prove computationally burdensome or can not be finished in one day
on D&D dataset. Our method outperforms all the alternatives on classification
accuracy, only the JSGK is competitive to ours on D&D and MUTAG datasets.
Our method outperforms all the alternatives on runtime for datasets of large
graphs. Compare to depth-base complexity measures VNTD, FV and FP, our
depth-based Jensen-Shannon complexity trace using Shannon or von Neumann
entropy outperforms all of them on classification and runtime.

5 Conclusion

In this paper, we have shownhow to construct a depth-based Jensen-Shannon com-
plexity trace for a graph. Our method is based on the graph decomposition and
Jensen-Shannon divergence. For a graph, we have identified a centroid vertex by
computing the minimum variance of its shortest path lengths, and thus obtained
a family of expansion subgraphs with increasing layers. The proposed complexity
trace of a graphhas been constructedbymeasuring how the Jensen-Shannondiver-
gence varies with increasing layers of the subgraphs. We use the Shannon entropy
or vonNeumann entropy to calculate the required entropies in the Jensen-Shannon
divergence.Experiments on graphdatasets abstracted frombioinformatics demon-
strate effectiveness and efficiency of the proposed complexity trace.
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