
G.L. Gimel’ farb et al. (Eds.): SSPR & SPR 2012, LNCS 7626, pp. 701–709, 2012. 
© Springer-Verlag Berlin Heidelberg 2012 

Low Training Strength High Capacity Classifiers for 
Accurate Ensembles Using Walsh Coefficients 

Terry Windeatt and Cemre Zor 

Univ Surrey, Guildford, Surrey, Gu2 7XH 
t.windeatt’surrey.ac.uk 

Abstract. If a binary decision is taken for each classifier in an ensemble, train-
ing patterns may be represented as binary vectors. For a two-class supervised 
learning problem this leads to a partially specified Boolean function that may be 
analysed in terms of spectral coefficients. In this paper it is shown that a vote 
which is weighted by the coefficients enables a fast ensemble classifier that 
achieves performance close to Bayes rate. Experimental evidence shows that ef-
fective classifier performance may be achieved with one epoch of training of an 
MLP using Levenberg-Marquardt with 64 hidden nodes.  

Keywords: Ensembles, Multilayer Perceptrons, Boolean Function, Walsh Co-
efficients. 

1 Introduction 

For an ensemble of classifiers it is often useful to think of each base classifier as be-
ing controlled by two main parameters, the capacity and the training strength of the 
learning algorithm [1]. The term capacity refers to the flexibility of the classifier 
boundary. By training strength we mean the effort that is put into training the classifi-
er. For an MLP, the capacity is the number of hidden nodes, and training strength is 
the number of epochs. In this paper we consider the trade-off between these two pa-
rameters, and what combination is suitable for a weighted majority vote. 

The weighted vote is computed using Walsh coefficients. If each base classifier in 
an ensemble is given a binary decision, and if the problem is two-class, a Boolean 
mapping is defined. This mapping may be analysed using Walsh spectral coefficients. 
First order Walsh coefficients were shown to provide a measure of class separability 
for selecting optimal base classifiers in [2], in which it is also shown that this does not 
imply optimality of the ensemble. In contrast, in [3] it was shown that second order 
Walsh coefficients may be used to determine optimal ensemble performance. The 
motivation for using Walsh coefficients in ensemble design is fully explored in [4] 
and [2]. For further understanding of the meaning and applications of Walsh coeffi-
cients see [5] and [6]. 

To understand the computation of the weighted vote, the Tumer-Ghosh model [7] 
for ensemble classifiers will be described. This model defines Added Classification 
Error as the difference between classifier error and Bayes error, and provides a 
framework for understanding the reduction in error due to combining. 
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Section 2 explains the computation of the Walsh coefficients, and Section 3 dis-
cusses the relationship with the model of Added Classification Error. In Section 4, the 
weighted vote using Walsh coefficients is compared as the number of nodes and train-
ing epochs of MLP base classifiers are systematically varied. 

2 Walsh Coefficients 

Consider an ensemble framework, in which there are N parallel base classifiers, and 
Xm is the N-dimension vector representing the mth training pattern, formed from the 
decisions of the N classifiers. For a two-class supervised learning problem of μ train-

ing patterns,  the target label given to each pattern Xm is denoted by )( mm XΦ=Ω  

where m = 1 … μ , }1,1{ −∈Ωm   and  Φ  is the unknown Boolean function that 

maps Xm to mΩ . Thus the binary vector Xm represents the mth original training  

pattern 

                                                
),,,( 21 mNmmm XXXX =

            (1) 

where }1,1{ −∈miX  is a vertex in the N-dimensional binary hypercube. The Walsh 

transform of Φ  is derived from the mapping Tn and defined recursively as follows   
 

                                          








−

=
−−

−−

11

11

nn

nn
n TT

TT
T 








−

=
11

11
1T

 

(2)

 

The first and second order spectral coefficients is  and ijs  derived from (2) are  

defined in [5] as 
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In (3) is  represents the correlation between  )( mXΦ  and miX
 

and 

),1,( jiNjisij ≠=   in (4) represents correlation between )( mXΦ  and 

mjmi XX ⊕ , where  ⊕ is logic exclusive-OR.  

Realistic learning problems are ill-posed [8], and therefore Φ  may be partially 
specified, noisy and possibly contradictory. Relationships for computing spectral 
coefficients for partially specified Boolean functions, are proved in [9], for which the 
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context is logic circuit design. The relevant ideas are presented here using different 
terminology, specifically minterms interpreted as patterns. 

In [9], the concept of a standard trivial function Ψ  is introduced. Each spectral 

coefficient gives a correlation value between the Boolean function Φ  and Ψ . For 

first order coefficients, iΨ  is the Boolean variable miX  in (3) while for second order 

coefficients ijΨ  is mjmi XX ⊕  in (4). Note in (4) 1=⊕ mjmi XX  implies pair of 

classifiers i and j disagree for pattern Xm and 0=⊕ mjmi XX  implies classifiers 

agree. For third order coefficients, ijkΨ  is  mkmjmi XXX ⊕⊕  and higher order 

follows, but in this paper we restrict ourselves to first and second order spectral coef-
ficients. 

The equations (3) and (4) require binary variables  }1,1{ −  but for computing coef-

ficients it is notationally more convenient to use }1,0{ . For }1,0{, ∈qp  define pqn  

to be the number of class p patterns of Boolean function Φ  for which both  Φ  and  

Ψ  have the logical value q. Then 11n  is the number of class 1 patterns (true 

minterms in [9]) for which both  Φ  and  Ψ   that have the logical value 1. Similarly  

00n   is the number of class 0 patterns (false minterms in [9]) for which both  Φ  and 

Ψ  have the logical value 0. Corresponding definitions follow for 01n  and 10n . Now 

define 1d  and 0d to be the number of unspecified patterns (don’t care minterms) for 

which   Ψ    has the logical value 1 and 0 respectively. It is clear that the sum of all 
patterns of an N-dimensional Boolean function  is given by 

                                        
Nddnnnn 20110010011 =+++++

 (5) 

According to [9], all spectral coefficients ls   may be computed as  

                                                 
)()( 10010011 nnnnsl +−+=

 
(6)

 

where l  may be i or ij. Substitution of (5) into (6) gives various equivalent formulae, 
but the advantage of (6) is that it is not necessary to include unspecified patterns  

01, dd  explicitly in the computation. 

3 Added Classification Error Model 

Figure 1 shows the two class ( 01 ,ωω ) model of Added Classification Error ( Ε   

darkly shaded region) according to [7], which for simplicity is restricted to one  
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dimension (x). The optimum (Bayes) boundary in Figure 1 is the loci of all points 

)~|()~|(:~
01 xPxPx ωω = . The output of the classifier representing class 1ω  is 

given by  )()|()|(ˆ
111 xxPxP εωω +=  where PP ˆ,  are the actual and estimated 

a posteriori probability distributions as shown in Figure 1, and )(1 xε  is the differ-

ence between them. A similar equation is obtained for class 0ω with 

)|(ˆ),|( 00 xPxP ωω  and error )(0 xε . In Figure 1 b is the amount that the kth 

classifier boundary (xb) differs from the ideal Bayes boundary ( x~ ), and assuming that 
b  is a Gaussian random variable with mean β and variance σb, in [7] it is shown that 

Added Classification Error for kth classifier is given by )( 22 βσ +∇= bk PE where

)~())~|()~|((5.0 01 xpxPxPP ωω ′−′=∇ and P ′  indicates differentiation. 

Figure 2 shows decision boundaries of (i,j)th classifiers for which it is assumed that 
the complexity is not sufficient to approximate the Bayes boundary, so that both clas-

sifiers under-fit. Note in Figure 2 that estimated probabilities )|(ˆ
0 xP ω and 

)|(ˆ
1 xP ω are omitted for clarity. Mutually exclusive areas under the probability 

distribution are labelled 1 – 8 in Figure 2, and denoting the number of patterns in area 
y by ay, the contribution from classifiers i,j  according to area is given in Table 1.  

The model assumptions are discussed in [3], in which the expression for the differ-

ence in Added Classification Error of ith and jth classifiers jiij EEE −=  is derived 

                                                   
)(5.0 γ+=−= ijjiij sEEE

 
(7)

 

where 021 p−=γ  and 0p is the prior probability of class 0ω . 

Averaging over all pairs of classifiers in (7) the mean difference in added error is 
given by  
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Therefore from (7) and (8) we can approximate mean Added Error by subtracting γ  

and averaging over all pair-wise second order coefficients, call it S2M. In [3] it is 
shown that S2M is a good predictor of ensemble performance as number of epochs is 
increased. For the datasets in Section 4, optimal performance for majority vote occurs 
on average around 2-3 epochs.  

The usual idea in weighted voting is to reward individual classifiers that perform 
accurately [10]. In this paper, a different approach is taken. For classifiers with lower 
training strength, it is expected that classifiers maybe unevenly spread around the 
optimal boundary. The idea is to give larger weight to pairs of classifiers with low 
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Added Error. The classifiers are chosen based on the product of first order  
coefficients as follows. The first order coefficients in (3) are decomposed into the 

contributions from the two classes )( 0111 nn − and )( 0100 nn −  and the weight is 

proportional to their product. The weight of the ith classifier is given by 

                                                
))(( 01001011 nnnnwl −−=

 (9) 

with negative weights in (9) set to zero. Considering Figure 1, classifiers close to the 
Bayes boundary will receive larger weight, but as they move further away, weight is 
decreased and becomes zero as n11 approaches n10 or as n00 approaches n01. When 
classes are unbalanced, (9) tends to favour classifiers on either side of the Bayes 
boundary, in contrast to a weighting scheme based on training error. The weighting 
scheme using (9) is referred to as W1P in Section 4, and shown to reduce the mean 
Added Error given by (8). 

4 Experimental Evidence 

Natural two-class benchmark problems selected from [11] and [12] are shown in  
Table 2.The original features are normalised to mean 0 std 1, and for datasets with 
missing values the scheme suggested in [11] is used. Random perturbation of the 
MLP base classifiers is caused by different starting weights on each run. The number 
of hidden nodes and training epochs of homogenous (same number of nodes and 
epochs) MLP base classifiers are systematically varied over 1-5 epochs and 2-64 
nodes. The experiments are performed with two hundred single hidden-layer MLP 
base classifiers, using the Levenberg-Marquardt training algorithm with default pa-
rameters. Combining uses majority (MAJ) or weighted vote. The random train/test 
split is 20/80 and experiments are repeated twenty times and averaged. Note that, for 

each dataset the class with most patterns is assigned 0ω  to give the same sign to  γ in 

(7). 
Bias/Variance will refer to 0/1 loss function using Breiman’s decomposition [13], 

for which Bias plus Variance plus Bayes equals the base classifier error rate. Bias is 
intended to capture the systematic difference with Bayes, and requires Bayes proba-
bility. Patterns are divided into two sets, the Bias set containing patterns for which the 
Bayes classification disagrees with the ensemble classifier and the Unbias set contain-
ing the remainder. Bias is computed using the Bias Set and Variance is computed 
using the Unbias Set, but both Bias and Variance are defined as the difference be-
tween the probabilities that the Bayes and base classifier predict the correct class la-
bel. The Bayes estimation is performed for 90/10 split using original features, and a 
Support Vector Classifier (SVC) with polynomial kernel run 100 times. The polyno-
mial degree and regularisation constant are varied, and lowest test error is given in 
Table 2. 
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Figure 3 gives mean results over seven datasets, which clearly indicates the overall 
trend. Figure 3 (a) (b) shows base and ensemble (MAJ) test error rates.  
 
Figure 3 (c)-(f) shows difference between MAJ and various weighted vote schemes. 
Figure 3 (c) uses the first order Walsh coefficient (W1D) in (3), Figure 3 (d) is the 
proposed scheme (W1P) using (9), Figure 3 (e) uses the logarithmic weighting 
scheme used in Adaboost (ADA) [14]. Figure 3 (f) uses a trained linear perceptron 
(LIN) to learn the mapping.  All the weighting schemes give a large  improvement 
over MAJ at 1 epoch, the best being W1P, with a 13 percent improvement at 64 
nodes. The best MAJ error occurs at 3-4 epochs, and here there is a small improve-
ment W1P over MAJ of between 0.3 percent at 64 nodes and 1 percent at 4  
nodes. 

Fig. 4 shows various measures to help explain the results. Fig 4 (a) shows the mean 
second order coefficients (S2M), normalised by the total number of training patterns, 
and which is an estimate of the mean added error in (8). Figure 4 (b) is similar to (a) 
but shows coefficients weighted by (9) (for classifier i and j, weight is given by 

2)( ji ww + ). Figure 4 (c) – (f) show bias and variance for MAJ (Bias, Var) and 

W1P (BiasW, VarW). By comparing Figure 4 (a) and (b) the weighted coefficients 
(S2W) shows that weighted classifiers have reduced the Added Error. The Weighted 
bias (BiasW) in (d) is reduced in comparison with Bias in (c).  For 64 nodes, the best 
weighted error rate is at 1 epoch, shown in (d), which is within 1 percent of Bayes 
rate. On the other hand, at 1 epoch Figure 4 (e) (f) show that weighted variance has 
increased, indicating that more diverse classifiers are weighted. 

 

Fig. 1. Model of error region associated with a posteriori probabilities showing optimum 
(Bayes) boundary, kth classifier boundary with  Added Classification Error (Ek) 
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Fig. 2. Model showing pair of classifier boundaries and the difference in Added Classification 

Error between ith and jth classifiers ijE  (area 2) 

 

Fig. 3. Mean test errors over 2-class datasets for [4,8,16,32,64] nodes 1-5 epochs (a)  Base 
Classifier (b) Majority Vote (c) –(f) Weighted votes with MAJ subtracted 
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Fig. 4. (a) Mean measures over 2-class datasets for [4,8,16,32,64] nodes 1-5 epochs (a) Second 
order coefficients (b) Weighted Second order coefficients (c)  Bias (d) Bias W1P (e) Variance 
(f) Variance W1P 

Table 1. Areas under Distribution defined in Fig. 2, showing corresponding number of class ω1, 

ω0 patterns (1st subscript) for which the pair of classifiers agree or disagree (2nd subscript) 

 a1 a2 a3 a4 a5 a6 a7 a8 

ω1 n10 n11 n10 n10 n11 n10 n10  

ω0    n00 n01 n00 n00 n00 

Table 2. Datasets showing # patterns, prior probability ω0, #continuous and discrete features 
and estimated Bayes error 

DATASET #pat  p0 #con #dis %Bay 
cancer 699 .655 0 9 3.1 
card 690 .555 6 9 12.8 
credita 690 .555 3 11 14.1 
diabetes 768 .651 8 0 22.0 
heart 920 .553 5 30 16.1 
ion 351 .641 31 3 6.8 
vote 435 .614 0 16 2.8 
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5 Conclusion 

For two-class supervised learning problems, the spectral representation of the map-
ping between binary base classifier decisions and target class has been analysed with 
the help of the Tumer-Ghosh model of Added Classification Error. If the majority 
vote is weighted by the product of the class-dependent first-order coefficients, the 
ensemble has error rate that is close to optimal, even with fast inaccurate base classi-
fiers. 
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