
Support Vector Machines Training Data

Selection Using a Genetic Algorithm

Michal Kawulok and Jakub Nalepa�

Institute of Informatics, Silesian University of Technology
Akademicka 16, 44-100 Gliwice, Poland

{michal.kawulok,jakub.nalepa}@polsl.pl

Abstract. This paper presents a new method for selecting valuable
training data for support vector machines (SVM) from large, noisy sets
using a genetic algorithm (GA). SVM training data selection is a known,
however not extensively investigated problem. The existing methods rely
mainly on analyzing the geometric properties of the data or adapt a
randomized selection, and to the best of our knowledge, GA-based ap-
proaches have not been applied for this purpose yet. Our work was
inspired by the problems encountered when using SVM for skin seg-
mentation. Due to a very large set size, the existing methods are too
time-consuming, and random selection is not effective because of the set
noisiness. In the work reported here we demonstrate how a GA can be
used to optimize the training set, and we present extensive experimen-
tal results which confirm that the new method is highly effective for
real-world data.

1 Introduction

Support vector machines (SVM) [1] is a widely adopted classifier which has
been found highly effective for a variety of pattern recognition problems. Based
on a labeled training set, it determines a hyperplane that linearly separates two
classes in a higher-dimensional kernel space. The hyperplane is defined by a small
subset of the vectors from the entire training set, termed support vectors (SV).
Afterwards, the hyperplane is used to classify the data of the same dimensionality
as the training set data.

SVM training is a constrained quadratic programming problem of O(n3) time
and O(n2) memory complexity, where n is the number of samples in the training
set. This is one of the most important shortcomings of SVM, as it makes it
virtually inapplicable in case of huge amounts of training samples. Therefore,
some attempts have been made to refine the training sets and use only those
samples, from which the support vectors are selected. Existing techniques are
focused either on random selection or analysis of the data geometry.

Our contribution lies in using a genetic algorithm (GA) for selecting the rel-
evant data from the entire available set of training samples. From the work

� This work has been supported by the Polish Ministry of Science and Higher Educa-
tion under research grant no. IP2011 023071 from the Science Budget 2012–2013.

G.L. Gimel’ farb et al. (Eds.): SSPR & SPR 2012, LNCS 7626, pp. 557–565, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



558 M. Kawulok and J. Nalepa

reported here we conclude that in certain cases it is better to use only a small
portion of the available data for training SVM. Moreover, we demonstrate that
the data must be selected carefully as it has a crucial impact on the obtained
classification score, and the selection process can be effectively managed using a
GA. Our work was motivated by the problems related to skin detection. SVM
have been already used for this purpose [2], however training set selection was
not investigated there. It is worth noting that due to huge amount of available
training data, proper data selection is very important in this case, which was
confirmed by obtained experimental results.

The paper is organized as follows. Existing training set reduction techniques
are outlined in Section 2. The details of proposed method are presented in
Section 3, while the validation results are shown and discussed in Section 4.
Conclusions and directions for our future work are given in Section 5.

2 Related Literature

Initial approaches towards dealing with large training sets were aimed at de-
composing the optimization problem into a number of sub-problems that can
be easily solved, reducing the overall training time [3]. However, for very large
training sets this is insufficient, and the number of training samples must be
significantly decreased. The simplest method for reducing large training sets is
to select a smaller subset randomly [4]. Such an approach was the basis for re-
duced support vector machines (RSVM) [5]. Not only does random sampling
help reduce the training time, but the classification is accelerated as well. This
is because the classification time is linearly dependent on the number of SV, and
generally for smaller training sets there are less SV determined.

Random sampling may be extended by analyzing the geometry of the training
data in the input space. In particular, k-means clustering has been found effective
here [6]. Another approach is to find crisp clusters with safety regions [7]. This
method rejects the vectors inside single-class clusters, preserving those positioned
at clusters’ boundaries. Recently, the clustering-based approach has also been
applied for one-class SVM [8]. The entire training set must be processed using
these methods, which increases the computation time.

In order to achieve better performance, the clustering can be performed only
in proximity of the decision boundary [9]. As the boundary is unknown before
the SVM is trained, it is estimated using heterogeneity analysis based on entropy
measure. Another approach to estimate the boundary is to classify the training
data based on their mutual Mahalanobis distances and use only the misclassified
vectors for training [10]. Mahalanobis distance-based data clustering was also
studied in [11]. The points that are closest to the decision boundary are selected
from every cluster. This process is well-demonstrated using artificial 2D data.
Another method that operates in the kernel space rather than in the input space,
applied to two-teachers-one-student problem was recently presented in [12].

There is also a group of methods which use alternative techniques to the clus-
tering to analyze the data geometry. In [13] the convex hulls are determined



Support Vector Machines Training Data Selection Using a GA 559

which embed the training data. Later, the vectors are selected using Hausdorff
distance between the convex hulls of opposite classes. It was presented there
that appropriate reduction of the training set makes it possible to achieve al-
most as good results as using the entire set. In [14] the points from the training
set are interpreted as a graph and subject to β-skeleton algorithm. This makes
it possible to reduce both training and testing time while being almost as effec-
tive as using the entire training set. Other geometry-based approaches include
minimum enclosing ball [15] and smallest enclosing ball with a ring region [16].

Huge training sets can also be reduced using active learning techniques [17,
18].They operate based on a large unlabeled set, and labels for the individual
samples are acquired dynamically. According to [17], these algorithms determine
the points near the decision boundary, similarly to the clustering methods.

The aforementioned methods report similar conclusions. Classification accu-
racy for reduced training sets is comparable to that obtained using the entire
training set. In some of the referenced works it is indicated that the results are
slightly better than using random sampling.

3 Genetic Training Set Optimization

It must be noted that the methods which analyze the data geometry or perform
clustering need to process the entire training set, and therefore their execution
time depends on the total number of samples. Contrary to these methods, ran-
dom sampling is applicable regardless of the number of available samples, but
it is not reliable for noisy sets or when the data may be mislabeled. In such
cases, it is difficult to select “good” vectors based on random drawing. In the
work reported here we have successfully solved this problem using a GA to select
appropriate subset of training samples. Our approach is based on the iterative
random sampling, during which different draws (i.e. individuals) are verified,
and optimal training set is selected using a GA process. This approach combines
the advantages of RSVM and geometry-based methods.

A GA, firstly introduced by Holland [19], is a heuristic search approach in-
spired by the biological mechanism of evolution and natural selection. Encoded
solutions belonging to the solution space S are called chromosomes. The ini-
tial population is a subset of N chromosomes, and it is successively improved
during the subsequent generations. The chromosomes pA and pB are selected
and recombined using the crossover operator to generate one or more offspring
solutions. Selected individuals are mutated with a certain probability to avoid
premature convergence of the search. The quality of each chromosome is assessed
by the fitness function corresponding to the objective function of the problem.
These with a high fitness survive and form the next generation.

3.1 Genetic Operators

For the problem reported here, a chromosome defines the content of a single sub-
set from the entire training set T , which consists of labeled samples belonging to



560 M. Kawulok and J. Nalepa

Class C+

C ′
+

Class C−
C ′

−

Individual pi

K vectors

SVM training Validation

Validation set VT

Fitness η(pi)

Fig. 1. Creation and validation of an individual

two classes C+ and C−. The chromosome’s length (2K) is equal to the number
of samples that are used for training after the reduction. The first generation
of N individuals is created based on random sampling, which is illustrated in
Fig. 1. From each class, K vectors are selected randomly to create a new indi-
vidual pi. This initial selection is independent from the cardinality of T , which
means that the genetic operations are independent from the training set size.
Afterwards, SVM is trained using pi and its fitness η(pi) is determined based on
the classification score obtained for the validation set VT .

A set of individuals from every i-th generation are used for reproduction to
create the (i+1)-th generation. This process is similar to generating a new indi-
vidual. First, two individuals pA and pB create an initial training set consisting of
4K samples, from which 2K samples are selected randomly as individual pA+B.
Then, the new individual is subject to mutation with the probability Pm. It is
performed by random changes to the training subsets of the individual. Some
samples are randomly substituted with others from the entire training set T . At
every step it is reassured that the chromosome contains unique samples, and the
same sample cannot be selected twice to the same chromosome.

3.2 Operator Strategies

The performance of a GA depends on the genetic operators including parents
selection, crossover and mutation. The selection strategies address the problem
of choosing two individuals from the population for recombination. The offspring
solutions inherit the features of both parents pA and pB, thus the well-adapted
individuals should be drawn from the population with a larger probability. How-
ever, recombining only the best individuals may cause saturating the population
with the chromosomes of similar configurations, which in turn leads to the di-
versity crisis [20]. Four selection strategies are discussed here, namely: high-low
fit, AB-selection, truncation and enhanced truncation.

1. High-low fit– this selection method was proposed in [21]. The population is
sorted according to the fitness. The parent pA is selected from the ch·N fittest
individuals, where ch is the high-low coefficient. The parent pB is drawn from
the less-fitted part of the population. The offspring solutions are appended



Support Vector Machines Training Data Selection Using a GA 561

to the population forming a new population of size 2N . The N individuals
with the highest fitness survive to maintain the constant population size.

2. AB-selection– this selection strategy was successfully used in the memetic
algorithms to solve the vehicle routing problem with time windows [22, 23].
Each individual is selected for reproduction twice: first as pA, then as pB.
If the offspring solution pi generated for a pair of parents has higher fitness
than the parent pA then it replaces the parent pA.

3. Truncation. At first, the population is sorted according to the fitness. Both
parents pA and pB are selected from the ct ·N fittest individuals, where ct is
the truncation coefficient. The new population is composed of the offspring
solutions generated for N pairs of parents.

4. Enhanced truncation. At first, the population is sorted according to the
fitness. The cr · N pairs of parents pA and pB are selected from the ce · N
fittest individuals, where cr is the reproduction coefficient and ce is the
enhanced truncation coefficient. To maintain the constant population size
N , the N − cr · N individuals are generated randomly. The randomization
simulates additional mutation for the search diversification.

The individuals of the child population are mutated with a certain probability
as described in Section 3.1. In case of the AB-selection the best individuals will
survive the recombination. However, they may be mutated and their fitness can
decrease. Similarly, it is not guaranteed that the best chromosomes will survive
for the other selection and replacement strategies. In order to keep the well-
adapted individuals, the cc · N best chromosomes replace a set of randomly
chosen chromosomes with lower fitness, where cc is the restoring coefficient.

The best fitness η(pib) and the average fitness η̄(pi) in subsequent generations
determine the necessity of regenerating the population. More formally, if η(pib)−
η(pi−1

b ) < ε for sb consecutive steps and η̄(pi) − η̄(pi−1) < ε for sa consecutive
steps, where ε is the minimal improvement threshold, then the population is
regenerated. The regeneration is based on copying cg · N best individuals and
drawing N−cg ·N individuals randomly, where cg is the regeneration coefficient.
The GA finishes after r regenerations.

4 Experimental Validation

The proposed method (termed GASVM) has been validated using two data
sets, namely: 1) real-world data derived from ECU skin image database [24], and
2) artificial set of 2D points. ECU database consists of 4000 images coupled with
binary ground-truth skin masks. The training set T was formed out of 6938255
pixels from 100 images. Every pixel was represented by a three-dimensional
vector, indicating its color in Y CbCr. Two validation sets were created, namely:
VT for evaluating the individual’s fitness during the GA optimization and V ,
which was not fed back to the GA process (all the results are presented for V ).
The validation sets were created by sampling pixels from the remaining images.
As a result, 560732 pixels were selected to every validation set. The sets are
available at http://sun.aei.polsl.pl/~mkawulok/spr.

http://sun.aei.polsl.pl/~mkawulok/spr


562 M. Kawulok and J. Nalepa

a) b)

AB selection High-low fit
Enhanced trunc. Truncation

S (b ) S (d )

0.88

0.89

re

AB selection High-low fit
Enhanced trunc. Truncation
RSVM (best) RSVM (deviation)

0 86

0.87

0.88

0.89

n
 s

co
re

AB selection High-low fit
Enhanced trunc. Truncation
RSVM (best) RSVM (deviation)

0 84

0.85

0.86

0.87

0.88

0.89

ic
a
ti

o
n
 s

co
re

AB selection High-low fit
Enhanced trunc. Truncation
RSVM (best) RSVM (deviation)

0 82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

C
la

ss
if
ic

a
ti

o
n
 s

co
re

AB selection High-low fit
Enhanced trunc. Truncation
RSVM (best) RSVM (deviation)

0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

C
la

ss
if
ic

a
ti

o
n
 s

co
re

AB selection High-low fit
Enhanced trunc. Truncation
RSVM (best) RSVM (deviation)

0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0 40 80 120 160 200 240

C
la

ss
if
ic

a
ti

o
n
 s

co
re

Generation

AB selection High-low fit
Enhanced trunc. Truncation
RSVM (best) RSVM (deviation)

0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0 40 80 120 160 200 240

C
la

ss
if
ic

a
ti

o
n
 s

co
re

Generation

AB selection High-low fit
Enhanced trunc. Truncation
RSVM (best) RSVM (deviation)

AB selection High-low fit
Enhanced trunc. Truncation

S (b ) S (d )

0.88

0.89

re

AB selection High-low fit
Enhanced trunc. Truncation
RSVM (best) RSVM (deviation)

0 86

0.87

0.88

0.89

n
 s

co
re

AB selection High-low fit
Enhanced trunc. Truncation
RSVM (best) RSVM (deviation)

0 84

0.85

0.86

0.87

0.88

0.89

ic
a
ti

o
n
 s

co
re

AB selection High-low fit
Enhanced trunc. Truncation
RSVM (best) RSVM (deviation)

0 82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

C
la

ss
if
ic

a
ti

o
n
 s

co
re

AB selection High-low fit
Enhanced trunc. Truncation
RSVM (best) RSVM (deviation)

0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

C
la

ss
if
ic

a
ti

o
n
 s

co
re

AB selection High-low fit
Enhanced trunc. Truncation
RSVM (best) RSVM (deviation)

0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0 2 4 6 8 10 12 14 16 18 20

C
la

ss
if
ic

a
ti

o
n
 s

co
re

Generation

AB selection High-low fit
Enhanced trunc. Truncation
RSVM (best) RSVM (deviation)

0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0 2 4 6 8 10 12 14 16 18 20

C
la

ss
if
ic

a
ti

o
n
 s

co
re

Generation

AB selection High-low fit
Enhanced trunc. Truncation
RSVM (best) RSVM (deviation)

Fig. 2. Optimization process using different GA strategies compared with random sam-
pling: a) whole process, b) first 20 generations

The GA was implemented in C++ and the experiments were performed using
Intel Core i7 2.3 GHz with 16 GB RAM. We used LIBSVM [25], which is a pop-

ular SVM implementation, with RBF kernel: K (u,v) = exp
(
−‖u− v‖2/σ2

)
,

where σ is the kernel width. SVM parameters (i.e. σ and C) were selected based
on a grid search approach [25] using ranges 0.1 ≤ σ ≤ 10 and 0.1 ≤ C ≤ 1000
with a dynamic step. This simple approach was sufficient in the analyzed case
and more sophisticated methods [26] were not exploited here. For skin detection
we used σ = 1 and C = 10, and for 2D points σ = 0.26 and C = 100. The
GA parameters were tuned experimentally in a similar manner. The following
values were used: N = 50, Pm = 0.3, ch = 0.5, ct = 0.5, cr = 0.9, ce = 0.2,
cc = 0.1, cg = 0.1, ε = 10−5, sa = sb = r = 3. In order to verify performance
of RSVM [5], 20 independent tests were performed for every configuration, and
within each test N = 50 subsets were drawn and validated to make it compa-
rable to a single GA generation. Hence, a total number of 1000 random draws
were executed to validate each setting. The best result out of each test, averaged
over all the tests, is referred to as RSVM (best), while a global average result –
RSVM (average). Minimal and maximal scores for all the draws are presented
as RSVM (deviation) in Fig. 2 and as error bars for RSVM (best) in Fig. 3.

For each GA strategy discussed in Section 3.2, five optimization processes were
run. Average maximal fitness obtained in subsequent generations for K = 50
samples in each class is presented in Fig. 2 for the skin data. GA strategies are
compared here with RSVM. It can be seen from the graphs that after just a few
generations GASVM outperforms RSVM. Enhanced truncation offers the fastest
improvement, however it is the high-low fit strategy which delivers the best final
score, and it has been chosen for further validation. The premature convergence
of the search occurs in case of AB-selection strategy and after a relatively small
number of generations the best individual cannot be further improved.

For high-low fit strategy we ran extensive tests to validate performance for
various number of samples (K) in each class of the training set. In Fig. 3 our
method is compared with RSVM. Error bars present maximal and minimal value.



Support Vector Machines Training Data Selection Using a GA 563

a) b)
RSVM (best) RSVM (average)

81920.85

0.9

e

RSVM (best) RSVM (average)
GASVM Number of SV

512

2048

8192

0.75

0.8

0.85

0.9

S
usc

o
re

RSVM (best) RSVM (average)
GASVM Number of SV

128

512

2048

8192

0.6

0.65

0.7

0.75

0.8

0.85

0.9

S
u
p
p
o
rt ca

ti
o
n
 s

co
re

RSVM (best) RSVM (average)
GASVM Number of SV

8

32

128

512

2048

8192

0 45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

S
u
p
p
o
rt v

ecto
r

C
la

ss
if
ic

a
ti

o
n
 s

co
re

RSVM (best) RSVM (average)
GASVM Number of SV

2

8

32

128

512

2048

8192

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

2 8 32 128 512 2048 8192

S
u
p
p
o
rt v

ecto
rsC

la
ss

if
ic

a
ti

o
n
 s

co
re

RSVM (best) RSVM (average)
GASVM Number of SV

2

8

32

128

512

2048

8192

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

2 8 32 128 512 2048 8192

S
u
p
p
o
rt v

ecto
rsC

la
ss

if
ic

a
ti

o
n
 s

co
re

Training set size (K)

RSVM (best) RSVM (average)
GASVM Number of SV

2

8

32

128

512

2048

8192

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

2 8 32 128 512 2048 8192

S
u
p
p
o
rt v

ecto
rsC

la
ss

if
ic

a
ti

o
n
 s

co
re

Training set size (K)

RSVM (best) RSVM (average)
GASVM Number of SV

RSVM (best) RSVM (average)

256

0.95

1

e

RSVM (best) RSVM (average)
GASVM Number of SV

64

256

0 85

0.9

0.95

1

S
usc

o
re

RSVM (best) RSVM (average)
GASVM Number of SV

64

256

0 75

0.8

0.85

0.9

0.95

1

S
u
p
p
o
rtca

ti
o
n
 s

co
re

RSVM (best) RSVM (average)
GASVM Number of SV

16

64

256

0 65

0.7

0.75

0.8

0.85

0.9

0.95

1

S
u
p
p
o
rt v

ecto

C
la

ss
if
ic

a
ti

o
n
 s

co
re

RSVM (best) RSVM (average)
GASVM Number of SV

4

16

64

256

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

2 8 32 128 512

S
u
p
p
o
rt v

ecto
rsC

la
ss

if
ic

a
ti

o
n
 s

co
re

RSVM (best) RSVM (average)
GASVM Number of SV

4

16

64

256

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

2 8 32 128 512

S
u
p
p
o
rt v

ecto
rsC

la
ss

if
ic

a
ti

o
n
 s

co
re

Training set size (K)

RSVM (best) RSVM (average)
GASVM Number of SV

4

16

64

256

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

2 8 32 128 512

S
u
p
p
o
rt v

ecto
rsC

la
ss

if
ic

a
ti

o
n
 s

co
re

Training set size (K)

RSVM (best) RSVM (average)
GASVM Number of SV

Fig. 3. GA and random sampling results depending on the training set size for skin
segmentation set (a) and for artificial 2D data (b)

a) RSVM, η = 0.882 b) RSVM, η = 0.883 c) GASVM, η = 0.985 d) GASVM, η = 1

Fig. 4. Examples of training set selection using RSVM (a, b) and GASVM (c) for
K = 10 vectors in each class, and GASVM for K = 160 vectors in each class (d)

For RSVM (average) the error bars were skipped as RSVM (best) indicates the
maximal scores, and the minimal scores are irrelevant here. In addition, the de-
pendence between the training set size and the number of SV is presented. For
small value of K, GASVM selects definitely better training sets than those gen-
erated using random sampling, and this influences the final classification score.
It is less dependent on K than RSVM, and the scores achieved in different runs
are very similar. It is worth to note that the number of SV is linearly dependent
on K, which induces linear dependence between K and the classification time.
Theoretically, it is possible that using random sampling the same set is drawn
as in case of GASVM, but for huge training sets this is little probable and has
not been observed during our experiments– the best score achieved using RSVM
was always worse than the worst obtained after the GA optimization.

For the skin data (Fig. 3a), the best RSVM score drops drastically after ex-
ceeding a certain threshold (ca. K = 1500), and the score variance increases.
GASVM is more stable, but the decrease is observed as well. This can be ex-
plained by the fact that for larger sets it is hard to eliminate noisy data, which
seriously affects the effectiveness. However, it is still easier to eliminate them
using GASVM. We have not run GASVM for K greater than 5000 due to the
required computation time. For K = 5000 the GA process required 4800 min to
reach the stop condition, but for smaller sets the times were definitely shorter



564 M. Kawulok and J. Nalepa

(e.g. 80 min for K = 30 and 210 min for K = 200). Due to the SVM training
complexity it would be virtually impossible to use the entire training set.

Contrary to the skin data, the artificial set of 2D points can be classified
without any error using the whole set for training, which is possible due to small
data set size. For smaller K, the classification error appears, however it is smaller
using GASVM. For K = 160 GASVM eliminated the classification error, which
has not been achieved using RSVM for K < 320. The data are visualized in
Fig. 4. Black and white points indicate the vectors from the entire set, and those
marked with white and black crosses show the data selected to the training set
(here the colors are altered for better visualization). Also, the decision boundary
is presented. It can be noticed that the selected points do not follow any specific
geometric pattern as proposed in [11]. In some cases they are located near the
decision boundary, but in others they are positioned in the centers of the point
groups. This can be observed in particular for K = 160 in Fig. 4d.

5 Conclusions and Future Work

In this paper we proposed to use a genetic algorithm for selecting SVM training
sets. Presented experimental results show that while in some cases our method
helps reduce the training set size, which means shorter training and validation
times, it also makes it possible to achieve higher classification scores for noisy
or mislabeled data. Although the GA process may require many generations to
converge, it is independent from the total number of available samples, which
cannot be offered by existing geometry-based approaches. Furthermore, after
just a few generations it manages to select better training sets than those found
using random sampling, so the optimization process can be terminated earlier,
if it is critical to reduce the training time.

Our ongoing research includes comparing GASVM with the geometry-based
methods using benchmark data sets. This should allow us to design a memetic
approach, which would combine a GA with the data structure analysis to further
improve the classification results. Also, our aim is to design a parallel GA to
accelerate the computations. Finally, we want to use the method for selecting
the training data from unlabeled data sets.

References

1. Cortes, C., Vapnik, V.: Support-Vector Networks. Machine Learning 20(3), 273–
297 (1995)

2. Khan, R., Hanbury, A., Stöttinger, J., Bais, A.: Color based skin classification.
Pattern Recogn. Lett. 33(2), 157–163 (2012)

3. Joachims, T.: Making large-scale SVM learning practical. In: Schölkopf, B., Burges,
C.J.C., Smola, A.J. (eds.) Advances in kernel methods, pp. 169–184. MIT Press,
USA (1999)

4. Balc’azar, J., Dai, Y., Watanabe, O.: A Random Sampling Technique for Training
Support Vector Machines. In: Abe, N., Khardon, R., Zeugmann, T. (eds.) ALT
2001. LNCS (LNAI), vol. 2225, pp. 119–134. Springer, Heidelberg (2001)



Support Vector Machines Training Data Selection Using a GA 565

5. Lee, Y.J., Huang, S.Y.: Reduced support vector machines: A statistical theory.
IEEE Trans. on Neural Networks 18(1), 1–13 (2007)

6. Chien, L.J., Chang, C.C., Lee, Y.J.: Variant methods of reduced set selection for
reduced support vector machines. J. Inf. Sci. Eng. 26(1), 183–196 (2010)

7. Koggalage, R., Halgamuge, S.: Reducing the number of training samples for fast
support vector machine classification. Neural Information Process. Lett. and Re-
views 2(3), 57–65 (2004)

8. Li, Y.: Selecting training points for one-class support vector machines. Pattern
Recogn. Lett. 32(11), 1517–1522 (2011)

9. Shin, H., Cho, S.: Neighborhood property–based pattern selection for support vec-
tor machines. Neural Comput. 19(3), 816–855 (2007)

10. Abe, S., Inoue, T.: Fast Training of Support Vector Machines by Extracting Bound-
ary Data. In: Dorffner, G., Bischof, H., Hornik, K. (eds.) ICANN 2001. LNCS,
vol. 2130, pp. 308–313. Springer, Heidelberg (2001)

11. Wang, D., Shi, L.: Selecting valuable training samples for SVMs via data structure
analysis. Neurocomputing 71, 2772–2781 (2008)

12. Chang, C.C., Pao, H.K., Lee, Y.J.: An RSVM based two-teachers-one-student semi-
supervised learning algorithm. Neural Networks 25, 57–69 (2012)

13. Wang, J., Neskovic, P., Cooper, L.N.: Training Data Selection for Support Vector
Machines. In: Wang, L., Chen, K., S. Ong, Y. (eds.) ICNC 2005. LNCS, vol. 3610,
pp. 554–564. Springer, Heidelberg (2005)

14. Zhang, W., King, I.: Locating support vectors via β-skeleton technique. In: Int.
Conf. on Neural Information Process, pp. 1423–1427 (2002)

15. Tsang, I.W., Kwok, J.T., Cheung, P.M.: Core vector machines: Fast SVM training
on very large data sets. J. of Machine Learning Research 6, 363–392 (2005)

16. Zeng, Z.Q., Xu, H.R., Xie, Y.Q., Gao, J.: A geometric approach to train SVM on
very large data sets. Intell. System and Knowledge Eng. 1, 991–996 (2008)

17. Schohn, G., Cohn, D.: Less is more: Active learning with support vector machines.
In: 17th Int. Conf. on Machine Learning, pp. 839–846. Morgan Kaufmann Publish-
ers Inc., USA (2000)

18. Musicant, D.R., Feinberg, A.: Active set support vector regression. IEEE Trans.
on Neural Networks 15(2), 268–275 (2004)

19. Holland, J.H.: Adaptation in Natural and Artificial Systems. The University of
Michigan Press (1975)

20. Corne, D., Dorigo, M., Glover, F., Dasgupta, D., Moscato, P., Poli, R., Price, K.V.
(eds.): New ideas in optimization. McGraw-Hill Ltd., UK (1999)

21. Elamin, E.E.A.: A proposed genetic algorithm selection method. In: 1st National
Symposium, NITS (2006)

22. Nagata, Y., Bräysy, O., Dullaert, W.: A penalty-based edge assembly memetic algo-
rithm for the vehicle routing problem with time windows. Computers & OR 37(4),
724–737 (2010)

23. Nalepa, J., Czech, Z.J.: A parallel heuristic algorithm to solve the vehicle routing
problem with time windows. Studia Informatica 33(1), 91–106 (2012)

24. Phung, S.L., Chai, D., Bouzerdoum, A.: Adaptive skin segmentation in color im-
ages. In: Proc. IEEE Int. Conf. on Acoustics, Speech and Signal, pp. 353–356
(2003)

25. Chang, C.C., Lin, C.J.: LIBSVM: A library for support vector machines. ACM
Trans. on Intell. Systems and Technology 2, 27:1–27:27 (2011)

26. Staelin, C.: Parameter selection for support vector machines. Technical Report
HPL-2002-354. HP Laboratories, Israel (2002)


	Support Vector Machines Training Data Selection Using a Genetic Algorithm 
	Introduction
	Related Literature
	Genetic Training Set Optimization
	Genetic Operators
	Operator Strategies

	Experimental Validation
	Conclusions and Future Work
	References




