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Abstract. M-trees are well-know structures used to speed-up queries in 
databases. In this paper, we evaluate the applicability of m-trees to graph 
databases. In classical schemes based on metric-trees, the routing information 
kept in a metric-tree node is a selected element from the sub-cluster that 
represents. Nevertheless, defining a graph that represents a set of graphs is not a 
trivial task. We evaluate different graphs-class prototype as routing nodes in the 
metric tree. The considered prototypes are: Median Graphs, Closure Graphs, 
First-Order Random Graphs, Function-Described Graphs and Second-Order 
Random Graphs. 

Keywords: Metric-tree, Graph Indexing, Median Graph, First-Order Random 
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1 Introduction 

Indexing structures are fundamental tools in database technology; they are used to 
obtain efficient access to large collections of elements. Traditional image database 
systems manage global properties of images, such as histograms [1]. Many techniques 
for indexing one-dimensional data sets have been defined. Since a total order function 
over a particular attribute domain always exists, this ordering can be used to partition 
the data and moreover it can be exploited to efficiently support queries. Several multi-
dimensional indexes have appeared, such as, colour, texture, shape, with the aim of 
increasing the efficiency in executing queries on sets of objects characterized by 
multi-dimensional features. 

Effective access to image databases requires queries addressing the expected 
appearance of searched images [2]. To this end, it is needed to represent the image as 
a set of entities and relations between them. The effectiveness of retrieval may be 
improved by registering images as structural elements rather than global features [3, 
4]. In the most practiced approach to content-based image retrieval, the visual 
appearance of each spatial entity is represented independently by a vector of features. 
Mutual relationships between entities can be taken into account in this retrieval 
process. Thus, local entities and mutual relationships may be considered to have the 
same relevance and to be defined as parts of a global structure that captures mutual 
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dependencies [5]. In this case, the model of content takes the structure of an 
Attributed Graph. 

While the distance between two sets of independent features can be computed in 
polynomial time [6,7], the exact distance between two graphs is computed in 
exponential time with respect to the number of nodes of the graphs. Although some 
sub-optimal solutions have been presented to compare a pair of graphs, in which, the 
computational complexity is reduced to polynomial cost, few contributions of 
practical interest have been proposed supporting the application of graphs to content-
based retrieval from image databases [8, 9]. 

Out of the specific context of content-based image retrieval, the problem of 
comparing an input graph against a large number of model graphs has been addressed 
in several approaches. In some applications, the classes of objects are represented 
explicitly by a set of graphs, which means that a huge amount of model graphs must 
be matched with the input graph and so the conventional error-tolerant graph 
matching algorithms must be applied to each model-input pair sequentially. As a 
consequence, the total computational cost is linearly dependent on the number of 
model graphs and exponential (or polynomial if suboptimal methods are used) with 
the size of the graphs. For applications dealing with large databases, this may be 
prohibitive. To alleviate these problems, some attempts have been designed with the 
aim of reducing the computational time of matching the unknown input patterns to the 
whole set of models from the database. Those approaches assume that the graphs that 
represent a cluster or class are not completely dissimilar in the database and, in this 
way, only one structural model is defined from the graphs that represent the cluster. 
These structures are called Graph-Class Prototypes. In the classification process, only 
one comparison is needed for each cluster. 

In this paper, we evaluate an indexing scheme, modelled by an m-tree, in which the 
cluster knowledge embedded in each node of the m-tree is represented by one of the 
six Graph-Class Prototypes presented in the literature. The different representations of 
Graph-Class Prototypes are: 1) Set Median Graph [8]; 2) Generalise Median Graph 
[10, 11, 12, 13] synthesised through a hierarchical method [14], synthesised through a 
genetic algorithm [15] or synthesised through an extension of the Graduated 
Assignment algorithm [16]; 3) First-Order Random Graphs [17]; 4) Function-
Described Graphs [18, 19]; 5) Second-Order Random Graphs [20]; 6) Closure Graphs 
[21]. Moreover, we evaluate two types of graph queries; the ones that the user 
imposes the number of graphs to be queried and the ones that the user imposes the 
maximum distance between the query graph and the returned graphs. It is not the aim 
of this paper to explain the structural representation of each graph prototype but to 
evaluate its representational power in metric trees. Some of the methods presented in 
this paper have been presented in [14, 23] but only applied to Median Graphs. The 
aim of this paper is to evaluate the representational power of the Graph-Class 
Prototypes presented in the literature. 

In this paper, we have performed more experiments with more databases and we 
have put together both types of queries and we have used more Graph-Class 
Prototypes with the aim of obtaining a more general results and conclusions. 
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The rest of the paper is organised as follows. In section 2, we comment the few 
approaches that have been presented for indexing Attributed Graphs. In chapter 3, we 
introduce metric-trees. In section 4, we explain the methods used to synthesise the 
graph prototypes. In section 5, we experimentally evaluate the graph prototypes as 
routing elements of m-trees. We finish the paper drawing some conclusions. 

2   Indexing Databases of Graphs 

Some indexing techniques have been developed for graph queries. We divide these 
techniques into two categories. In the first ones, the index is based on several tables 
and filters [25, 26]. In the second ones, the index structure is based on m-trees 
[8,21,27]. 

In the first group of techniques, the ones that are not based on trees, we emphasize 
the method developed by Shasha et. al. [26] called GraphGrep. GraphGrep is based 
on a table in which each row stands for a path inside the graph (up to a threshold 
length) and each column stands for a graph. Each entry in the table compounds to the 
number of occurrences of a particuar path in the graph. Queries are processed in two 
phases. The filtering phase generates a set of candidate graphs for which the count of 
each path is at least that of the query. Since indexing schemes based on paths do not 
ensure graph isomorphism, in a verification phase, each candidate is strictly compared 
to the query graph and only isomorphic graphs are returned. More recently, Yan et. al. 
[25] proposed GIndex that uses frequent patterns as indexing features. These frequent 
patterns reduce the index space as well as improve the filtering rate. The main 
drawback of these models is that the construction of the indices requires an exhaustive 
enumeration of the paths or fragments that increases the memory and time 
requirements of the model. Moreover, since paths or fragments carry little information 
about a graph, the lost of information at the filtering step seems to be unavoidable. 

Considering the second group, the first time that metric trees were applied to graph 
databases was done by Berretti et. al. [8]. Attributed graphs were clustered 
hierarchically according to their mutual distances and indexed by m-trees [22]. 
Queries are processed in a top-down manner by routing the query along the index 
tree. Each node of the index tree represents a cluster and it has one of the graphs of 
the cluster as a representative. The graph matching problem, in the tree construction 
and at query time, was solved by an extension of the A* algorithm that uses a look-
ahead strategy plus a stopping threshold. A drawback of this method is that the 
computational cost is exponential respect the number of nodes in the graphs. Lee et. 
al. [27] used this technique to model graphical representations of foreground and 
background scenes in videos. The resulting graphs were clustered using the edit-
distance metric, and similarity queries were answered using a multi-level index 
structure. 

More recently, He and Singh [21] proposed what they called a Closure-tree. It uses 
a similar structure than the one presented by Berretti [8] but, the representative of the 
cluster was not one of the graphs but a graph prototype (called closure graph) that 
could be seen as the union of the Attributed Graphs that compose the cluster. The 
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structurally similar nodes that have different attributes in the graphs are represented in 
the Closure graph with only one node but with more than one attribute. Closure trees 
have two main drawbacks. First, they can only represent discrete attributes at nodes of 
the attributed graphs. Second, they tend to generalize too much the set of graphs they 
represent, allowing graphs that have not been used to synthesize the closure graph.  

Finally, Median Graphs have been used as a new prototype to represent Attributed 
Graphs in [14, 15]. More specifically, in [14], they defined queries in which a 
maximum distance between the query and the graphs was considered. And in [23], 
they performed k-nearest neighbour queries. 

3   Database Indexing Based on Metric-Trees 

A metric-tree (m-tree) [22] is a scheme to partition a database in a hierarchical set of 
clusters, collecting similar objects. Each cluster has a routing object and a radius 
providing an upper bound for the maximum distance between the reference object and 
any other object in the cluster. Triangle inequality can be used during the access to the 
database to prune clusters that are bound out of an assigned range from the query. 

Formally, a metric-tree is a tree of nodes. Each node contains a fixed maximum 
number of m entries, < node > := {< entry >}m. In turn, each entry is constituted by a 
routing element M; a reference to the father rH of a sub-index containing the element 
in the so-called covering region of M; and a radius dM providing an upper bound for 
the distance between M and any element in its covering region, < entry > := {M, rM, 
dM}. During retrieval of an element Q, triangular inequality is used to support efficient 
processing of queries. To this end, the distance between Q and any element in the 
covering region of a routing element M can be max-bounded using the radius dM plus 
the distance between Q and M. 

Two different types of queries can be performed to databases organised by m-trees: 
k-Nearest-Neighbour queries [23] and Similarity queries [14]. The aim of the k-
Nearest Neighbour Queries is to retrieve the k elements in a database that have 
minimum distance between them and the query element. On the contrary, the aim of 
the Similarity queries is to retrieve all the elements in the database which its distance 
to the queried element is lower than a threshold dmax.  

The m-tree can be constructed using different schemes for the insertion of a new 
element and the selection of the routing element [22]. In this paper, we use a general 
construction methodology from which we are able to construct an m-tree 
independently of the type of the routing element. We use a non-balanced tree 
constructed through a hierarchical clustering algorithm and complete linkage 
clustering [24]. In this way, given a set of graphs, the distance matrix over the whole 
set is computed and then a dendogram is constructed. Using the dendogram and some 
horizontal cuts, a set of partitions that clusters the graphs in the database is obtained. 
With these partitions the m-tree is generated. Finally, the information on the routing 
elements in the m-tree is inserted, M and dM. 

In our case, M is a Graph-Class Prototype and dM is the maximum distance 
between the Graph Prototype and any of the graphs in the covering region. Figure 1 
shows an example of a dendogram. Elements Gi are placed on the leaves of the 
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Fig. 1. Example of a dendogram       Fig. 2. The obtained m-tree 

dendogram and the routing elements Mj are placed on the junctions between the cuts 
and the horizontal lines of the dendograms. Dendogram of figure 1 defines 4 different 
partitions. Figure 2 shows the obtained m-tree. Note that in some tree nodes, there are 
Class-Graph Prototypes (Mj) together with original graphs (Gi).  

4   Synthesis of Graph Prototypes Related to Metric-Trees 

Two types of methods exist to generate Graph Prototypes from a given set of graphs 
[18, 20]. We assume the structure of the metric-tree has been computed (section 3) 
and we have to compute the Graph Prototype and the radius of the cluster dM. The 
first method is based on a hierarchical synthesis. The second one is based on a Global 
Synthesis based on a Common Labelling [28, 29, 30]. 

In the Hierarchical method, each Graph Prototype is computed only using two 
Graph Prototypes or Attributed Graphs at a time. Therefore, a Common Labelling is 
not needed and Graph Prototypes are computed as pairwise consecutive computations 
of other Graph Prototypes obtained in lower levels of the tree.  

In the Global Synthesis, each Graph Prototype is computed using the whole set of 
Attributed Graphs in the cluster that the m-tree node represents, independently of 
whether the m-tree node has other nodes as descendants in the tree. The first step of 
this method computes a Common Labelling from the Attributed Graphs of the sub-
cluster and the second step obtains the Graph Prototype. In this paper, we have used 
two different Common Labelling algorithms, which have the main feature that are 
independent of the prototype graph to be synthesised. The first one is based on the 
Graduated Assignment [16] and the second one is based on a genetic algorithm [15]. 

Note that the Set Median is a special prototype since it does not need to be 
synthesised. The Set Median is the graphs of the cluster that has the minimum 
distance between it and the other graphs. 

5   Practical Evaluation 

Test Parameters: In each test, only one m-tree is constructed with 50 graphs of the 
reference set. The parameters used to construct each m-tree are: 
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- Evaluated Datasets: COIL, Letter (low), Letter (high) and GREC. 
- Type of routing element: Set Median [8], Hierarchical Median [14], Genetic 

Median [15], Graduated Assignment Median [16], Closure Graph [21], 
Function Described Graph [18], First Order Random Graph [17] and Second 
Order Random Graphs [20]. 

- Number of dendogram partitions: 7. The partitions are the number of cuts 
used to generate the m-tree (section 3). This number also corresponds to the 
levels of the m-tree. Distances to set the cuts are (see figure 1); distance of 
cut 0 = Dmax, distance of cut 1 = Dmax·6/7, distance cut 2 = Dmax·5/7, ... 
distance of cut 6 = Dmax/7. Where Dmax is the maximum distance of any two 
graphs of the m-tree. 

Parameters for each query are: 
- Graph query. The graph has been extracted from the test set. 
- Number of queries: 50. Results values are the mean of these 50 queries. 
- Metric-tree. 

o If k-NN query:  Number of elements to be retrieved: k = 3. 
o If similarity query: Range of the query: dmax = 0.6·Dmax.  

Evaluation Indices: Three indices have been used: Access ratio, Precision and 
Recall. Access ratio evaluates the capacity of the m-tree to properly route the queries 
[14, 23]. It is obtained as the normalised number of accessed nodes and leaves of the 
m-tree given a query. Precision is the fraction of retrieved documents that are relevant 
to the search and Recall is the fraction of the documents that are relevant to the query 
that are successfully retrieved. Ground truth of precision and recall are computed by 
exhaustive search of the elements in the dataset. Note that Precision and Recall values 
depend on the construction of the m-tree due to we use sub-optimal algorithms to 
synthesise the prototypes and to compute dM. In addition, at query time, since 
distances are also sub-optimally computed, the algorithm may violate triangle 
inequality restrictions and so return not accurate results.  

Datasets: COIL, Letter (low), Letter (high) and GREC (presented in [31]). The 72 
images of each element of COIL dataset have been clustered in 4 classes instead of 
one class. Each class is composed by 18 consecutive images. 

Results: Tables 1 and 2 show the access ratio in nearest neighbour and similarity 
queries. Lower is the access ratio faster is the query. Besides, if the access ratio is 
greater than 1, the number of comparisons done using the m-tree is higher than if 
there was no m-tree and the graphs of the whole database where all compared. This 
situation does not appear in the K-nn queries, which means that it is worth to structure 
the database in an m-tree. On the contrary, some values of table 2 (similarity query) 
are greater than 1. To reduce this problem, dmax whole have to be reduced but we 
preferred to use the same value for all the experiments for the compactness of the 
result values. Besides, some cells of table 2 have value 0.02. This is because, given a 
query, only the root node of the m-tree is explored. Considering that the m-tree has 
been built using 50 graphs, the value comes from 0.02 = 1/50. Again, this problem 
could be solved by adapting dmax value to each Graph-Class Prototype. 

In general, Median Graphs are the prototypes with better access ratio. So, they 
obtain faster queries (except for the commented extreme values, 0.02). 
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Table 1. Access ratio on nearest neighbour queries 

Access Ratio (k=3) Synthesis COIL Letter L Letter H GREC 

Set Median ---- 0.54 0.34 0.35 0.45 

Generalise Median Hierarchical 0.38 0.31 0.33 0.37 

Generalise Median Genetic 0.40 0.38 0.36 0.57 

Generalise Median  0.44 0.34 0.37 0.40 

Closure Graph  0.65 0.33 0.57 0.80 

FORG Graduated 0.42 0.35 0.42 0.47 

SORG Assignment 0.35 0.33 0.36 0.38 

FDG  0.45 0.36 0.45 0.56 

Table 2. Access Ratio on similarity queries 

Access Ratio (similarity) Synthesis COIL Letter L Letter H GREC 

Set Median ---- 0.02 1.03 1.46 0.06 

Generalise Median Hierarchical 0.47 0.99 1.34 1.07 

Generalise Median Genetic 0.92 1.65 1.66 0.78 

Generalise Median  0.89 0.98 1.30 0.94 

Closure Graph  0.02 0.02 0.02 0.02 

FORG Graduated 0.02 0.02 0.02 0.02 

SORG Assignment 0.02 2.27 2.78 0.02 

FDG  0.02 0.47 0.04 0.02 

 
Tables 3 and 4 show the mean precision. SORGs and Closures are the prototypes 

that obtain the best results although there are other prototypes with similar values. In 
general, prototypes computed using the Graduated Assignment obtains better results 
than the Hierarchical and Genetic synthesis. Considering values on tables 1 and 3  
(k-NN), we can conclude that the probabilistic prototypes are slower but obtain 
greater precision. And considering values on tables 2 and 4 (similarity), we realise 
that the fact that some queries only explore the root node penalises the obtained 
precision. 

Table 3. Precision on nearest neighbour queries 

Precision (k=3) Synthesis COIL Letter L Letter H GREC 

Set Median ---- 0.46 0.76 0.42 0.48 

Generalise Median Hierarchical 0.37 0.62 0.34 0.22 

Generalise Median Genetic 0.11 0.16 0.22 0.34 

Generalise Median  0.32 0.94 0.46 0.32 

Closure Graph  0.62 0.98 0.38 0.59 

FORG Graduated 0.58 0.86 0.42 0.57 

SORG Assignment 0.65 0.81 0.50 0.37 

FDG  0.48 0.84 0.44 0.53 
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Table 4. Precision on similarity queries 

Precision (similarity) Synthesis COIL Letter L Letter H GREC 

Set Median ---- 0.75 0.99 0.99 0.78 

Generalise Median Hierarchical 0.81 0.99 0.99 0.98 

Generalise Median Genetic 0.89 1 0.99 0.92 

Generalise Median  0.99 0.99 0.99 0.97 

Closure Graph  0.75 0.62 0.74 0.77 

FORG Graduated 0.75 0.62 0.74 0.77 

SORG Assignment 0.75 1 1 0.77 

FDG  0.75 0.82 0.78 0.77 

 
Finally, tables 5 and 6 show the recall results. In general, probabilistic prototypes 

obtain greater recall than non-probabilistic ones, except in some cases. Note that in 
cases that the access ratio is 0.02, the recall is always 1. This is because, if all graphs 
of the database are accepted, then the recall has to be 1 by definition. 

Table 5. Recall on nearest neighbour queries 

Recall (k=3) Synthesis COIL Letter L Letter H GREC 

Set Median ---- 0.26 0.58 0.32 0.50 

Generalise Median Hierarchical 0.24 0.48 0.26 0.22 

Generalise Median Genetic 0.06 0.12 0.18 0.34 

Generalise Median  0.18 0.72 0.36 0.34 

Closure Graph  0.38 0.76 0.30 0.60 

FORG Graduated 0.38 0.66 0.32 0.58 

SORG Assignment 0.40 0.62 0.38 0.38 

FDG  0.30 0.64 0.32 0.54 

Table 6. Recall on similarity queries 

Recall (similarity) Synthesis COIL Letter L Letter H GREC 

Set Median ---- 1 0.99 1 0.99 

Generalise Median Hierarchical 1 1 0.98 0.90 

Generalise Median Genetic 0.92 1 1 0.96 

Generalise Median  1 0.98 0.98 0.90 

Closure Graph  1 1 1 1 

FORG Graduated 1 1 1 1 

SORG Assignment 1 1 1 1 

FDG  1 0.60 0.90 1 
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Table 7 summarises the results presented in the last 6 tables. Each value is the 
average of the eight corresponding values. Statistically best values are bolded. FORGs 
obtain the fastest queries (lower access ratio). Generalise Median (with Graduated 
Assignment) and SORGs obtain the greatest Precision. Closure Graphs, FORGs and 
SORGs obtain the greatest Recall. Finally, SORGs obtain the best F-measure. 

Table 7. Average results of Access Ratio, Precision, Recall and F-measure 

 Synthesis Access Precision Recall F-measure 

Set Median ---- 0.53 0.70 0.70 0.70 

Generalise Median Hierarchical 0.65 0.66 0.63 0.64 

Generalise Median Genetic 0.84 0.57 0.57 0.57 

Generalise Median  0.70 0.74 0.68 0.71 

Closure Graph  0.30 0.68 0.75 0.71 

FORG Graduated 0.21 0.66 0.74 0.70 

SORG Assignment 0.81 0.73 0.72 0.72 

FDG  0.29 0.64 0.32 0.67 

6   Conclusions 

We have evaluated a graph indexing technique based on metric-trees and several 
Graph-Class Prototypes. Specifically, we have studied the behaviour of Graph-Class 
Prototypes as routing elements of m-trees. Several papers have been published that 
compare the accuracy of the evaluated prototypes. In this paper, we evaluated the 
goodness of those prototypes on speeding-up queries on graph databases. The 
evaluation has been performed using four different datasets with different 
characteristics. We see from the practical validation that probabilistic prototypes seem 
to achieve better results on k-nn queries. On the contrary, the Generalise Median 
together with the Set Median seem to give better results on similarity queries at the 
cost of giving a larger access ratio. Up to now, Set Median Graphs and Closure 
Graphs where the only prototypes used as routing elements of metric trees. The 
general conclusion of this work is that other existing Graph-Class Prototypes can also 
be successfully used as routing elements of metric trees in graph databases.  
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