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Abstract. In this paper we develop a practical method for estimating
shape, color and reflectance using only three images taken under po-
larised light. We develop a novel and practical framework to optimise
the estimates and eliminate the redundant information, then investigate
three different methods to compare their class discriminating capaci-
ties. We present experiment to demonstrate the validity of the proposed
method for a database of fruit objects from 5 different classes, and we
show that the proposed method is capable of accurately extracting the
features of the input examples. The framework can further be applied
in a variety fields of computer vision and pattern recognition domains
including object recognition and classification.

1 Introduction

Accurately estimating and reproducing surface appearance is a task of pivotal
importance in computer vision and graphics. Applications include object recog-
nition and classification, and image rendering. The appearance of surfaces is
determined by shape, color and reflectance [I]. These intrinsic surface properties
are independent of each other and affect the observed image intensity in a com-
plicated way. Therefore a robust way of simultaneously estimating these surface
properties is required for successful object recognition.

There have been a number of attempts in the literature aimed at accurately
measuring surface characteristics. However existing methods are limited by their
requirement of high cost measurement systems, and a large number of input
images. BRDF was firstly introduced in [2]. The direct measurement of the
reflectance function requires a gonioreflectometer [3], which is both expensive
and cumbersome to use. Other available methods use complicated devices such
as light stages and geometric domes to build reflectance functions from image
intensity variations under different light source directions [4]. Recently Ma et
al.[5] presented a method to estimate surface normal maps of an object using
four spherical gradient illumination patterns from either diffuse or specular re-
flectance components. The technique relies on structured light, and hence adds
scanning time and system complexity to the overloads.
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Polarisation has proven to be an effective method in the analysis of light reflec-
tion in computer vision. Its applications are in reflectance component separation
[6] and surface normal estimation. There have been a number of attempts in the
literature aimed at surface orientation estimation of objects using polarisation,
where the incident light is unpolarised. The specular and diffuse reflections from
the objects become partially polarised, and their values analysed by placing a
linear polariser in front of the camera and rotating its orientation. Such effects
can be exploited for shape recovery using the Fresnel theory, which was used by
Wolff and Boult to describe the direct reflection of electromagnetic waves with
the given polarisation state of the incident light [7]. This leads to a means of sur-
face normal estimation since the zenith angle of the reflected or re-emitted light
is constrained by the degree of polarisation, and the azimuth angle is constrained
by the phase angle.

In this paper we introduce a novel statistical framework for simultaneously
obtaining shape, texture and reflectance properties from a single view using the
theory of polarisation. We commence by acquiring the polarised images under
retro-reflection settings, and separate the reflectance components by applying
the method of blind source separation (BSS) following the work of Zhang et
al.[8]. Then we optimise the estimates and eliminate redundant information.
The estimates are converted into long vectors which is used for statistical feature
extraction.

We also apply three statistical methods to the data for feature extraction.
These are the tradiation method of principal component analysis (PCA), and
the improved approaches which includes weight map, that are weighted PCA
(WPCA) and supervised weighted PCA (SWPCA). The weight map indicates
the importance of different locations in discriminating objects, thus the accuracy
of results produced by feature extraction methods can be improved. The meth-
ods are developed based on the works of Wu et al. [9]. In summary, the novel
contributions of this paper are:

1. We provide a novel framework which estimates shape, color and reflectance
information using polarisation measurements, that only requires three input
images for each object and low-cost devices.

2. We develop optimization methods which eliminate redundant information
from the reflectance estimates, so that the feature extraction approaches can
produce results accurately and efficiently.

3. We use three statistical methods for feature extraction, which are PCA,
WPCA and SWPCA. All the approaches are also optimised to be applied in
multi-class recognition.

2 Modeling Surface Characteristics

In this section we present the methods used for estimating reflectance, shape
and color properties from polarised images. When light arrives at a surface, part
of it undergoes isotropic subsurface scattering before being re-emitted which is
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denoted as diffuse reflection. The remainder is reflected in a specular manner.
According to the dichromatic model [I0], for every pixel in the images its inten-
sity I is decided by two reflectance components which are diffuse I and specular
I; by I =I5+ I,;. The process of detailed reflectance estimation can be simpli-
fied if the specular and diffuse components are separated beforehand. Using the
blind source separation (BSS) method introduced in [8], we obtain the separated
reflectance components from the polarised images.

Reflectance and Shape Estimation: We apply two reflectance models to
reflectance measurements. They are Lambertian model used for diffuse compo-
nent, and Torrance-Sparrow (T-S)[I] for specular component estimation. The
two models are simplified under retro-reflection and isotropy. Let the specular
and diffuse reflectance models be R (05, Es) and R4(04, E4) respectively, and let
E, and E4 be their parameter value sets. The estimated surface normal zenith
angles for the two models are 65 and 6,. Associated with each model is a scaling
coefficient, denoted by scaler ks and k;. We numerically invert the reflectance
function to recover the surface zenith angle using

98 :R;I(Is/ks’ES) :RZI(I:’,,E‘;) ’ (1)
00 = R, (1a/ka, Eq) = R} (I}, Eq) . (2)

We compute ks and kq so that the two components I = I, /ks and I; = I;/kq
are normalized. Since they correspond to the same image location, 0 and 6y
should be identical. As Is and I; are known, the parameter values can be found
when the distributions of 6, and 6, are closest to each other. Because of its rapid
(quadratic) convergence we use Newton’s method to estimate the parameters F,
and E4, using a mutual information criterion (M) for the distributions of 64 and
0s. Details of mutual information computation can be found in [I2]. The Newton
method for updating the parameter sets is WD = W® — 7Q[RV]-1VR®,
where W (™) = [Es(m), Eém)]T, Q[R™] is the Hessian of the error-function and

VR its gradient. Here we use ES(O) = 0.5 and E((jo) = 0.5 as it is valid for the
parameter coefficient values of the chosen reflectance models.

The two zenith angle estimates 65 and 6, are ideally identical as they represent
the same object. However, they differ from each other due to shadows and texture
in the input images and the limited capacities of the chosen reflectance models.
Here for simplification we follow the constraint that the actual surface normal 6
is the mean value of the two estimates, which is 8 = (65 + 04)/2.

Color Estimation: From the dichromatic reflection model [I0], each color vec-
tor (Igr,Ig,I5)T is determined by a linear combination of specular reflection
(Irs, Igs, Iss)T and diffuse reflection (Ira, Igd, Izq)”, which is written as

Ir IRs Irq
Ig | =ks | Igs | +ka | Iga | - (3)
IB IBs IBd

The weights ks and k; depend only on the geometry of the objects in the input
images, and we only focus on the color vector of diffuse reflection as it represent
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the hue properties of objects. We also assume that the estimated color vector is
normalised for simplification. Using the diffuse reflectance component estimate
I; we can obtain the corresponding values of three color channels as If;, Iy
and Iy, thus we can have Irq, Igq and Ipq using the equations Iy, = walgd,

Iy = walga, Ipg = walpa and /T3, + 12, + 1%, = 1.

3 Estimates Analysis

The surface properties of shape, color and reflectance are stored in the form of
matrices which correspond to every pixel of input images. In this section we show
how to eliminate the redundant information in the estimates and convert them
into long vectors.

Reflectance: For simplification we assume the illumination and viewing direc-
tion are identical, and the reflectance properties are independent of the sur-
face azimuth angle. The reflectance functions for each experimental objects
are created by using the method described in [13]. For every pixel in the im-
age, its intensity has the corresponding value of the surface radiance function
g(0(z,y)) = I(z,y). By tabulating these two values against each other, we have
a dense but noisy sampling of the function g. Then we bin the values of g(6(z, y))
into n bins whose width is 7. Let I; = (z,9)|(i — 1)7 < 0(z,y) < iT be the set
of pixels (x,y) for which 0(x,y) falls into the ith bin. For each bin we find the
median value of g : h(i) = Ened)ialp I(z,y). Then the reflectance function is stored
T i

) i

as a long vector (h(1),..., h(n)).

Color: The hue value in HSI color representation ranges from 0 to 360 degrees,
and each degree stands for a specific color which can be converted from RGB
triplet. The aim here is to compute hue values from every pixel in the image,
and create hue distribution vector which is the histogram of all hue values. We
convert RGB values to hue by using the equations described in [I4], which are

Y 1/3 1/3  1/3 7 [Ing
Ci|l=1]1 =-1/2 =1/2| |Igq | . (4)
C> 0 —v3/2v3/2]| | Ipa
2 2 .
Hue — arccos(C’g/\/C'1 + C’S) . Ci1>0; (5)
21 — arccos(Cy/\/C? +C3), C1<0.

Shape: Wu et al. [9] developed a framework which uses methods based on prin-
cipal geodesic analysis (PGA) to extract surface shape features of facial needle-
map recovered by shape from shading (SFS), and implement gender classification
based on the estimates. PGA is a generalisation of PCA which can be applied
to feature extraction for 3D shape analysis. However, there are two drawbacks.
Firstly, as SFS is proved to be an ill-posed problem the method can not be
used for general objects. Secondly, there is a requirement that the input images
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should be fully-aligned and subjects have no boundaries. Here we present a novel
method to solve these problems.

Denote 6 as the data matrix containing zenith angle information obtained in
the previous section. We recover a height map B using shapelets method [15]
without the need of azimuth angle estimates. The values of height are represented
in Cartesian coordinate, which can lead to a loss of information and poor per-
formance in feature extraction. To overcome this problem we embed the points
on a spherical manifold system, which represents the size of object and shape
variations in a convenient way. Suppose the center point of the object locates at
(0, Yo, 20), for any point in the surface whose location is (z,y, z) its spherical
coordinate triplet (1,9, ) is computed by the following equations

r=+/(z —20)2+ (y — y0)? + (2 — 20)? , (6)

0 = cos™![\/(z — 20)2 + (y — ¥0)2/7] , (7)

oo VG R o,z
21 —cos H(y — o)/ v/ (z — 20)2 + (y — )], = <.

where r is the radial distance between the surface point and the center point
of object, the zenith angle ¥ and the azimuth angle ¢ are the directions from
(0, Yo, 20) to (x,y, z). Suppose a 3 x zy matrix B’ = (b}, b, b;) as the height map
presented in spherical coordinate, in which the three rows represent the values of
r, ¥ and ¢ respectively. We create a 2D radius distribution matrix 7" in which the
row is for azimuth angle ranges in [0, 27| while as the column is for zenith angle
lies in the closed interval [0,7/2]. We bin the values of B’ into 30 x 120 sqaure-
shaped windows of size 3 x 3. Let w(x,y) in B’ be the set of rows that follows
w(x,y) = {(z,y)|3(x = 1) < A} < 3z,3(y — 1) < h, < 3y}, for each set we find
the median value of b5(w(z,y)) and stored in T as T'(z,y) = ( m)eéiiz%n_)B’(x, ).
T,y w(z,]
The values in T' which the corresponding set is empty with B’ in their range are
set to be 0. The 2D matrix T is then converted to be long vectors for the feature

extraction.

4 Feature Extraction

From a set of sample data, Principal Component Analysis (PCA) aims to find a
linear subspace which maximises the variance of the projected data. It is widely
applied in the fields of dimensionality reduction and feature extraction. However,
the projections calculated by PCA usually are not those that best separate the
data into distinct classes. Wu et. al [9] proposed several weighting schemes to
improve the discriminating capacity of the leading PCA eigenvectors for gender
classification. Here we extend their idea to multiple class recognition.

Firstly we incorporate a pre-computed weight map into PCA, namely weighted
PCA (WPCA). The weight map is a representation of the discriminating capacity
for each location in the long vectors. The locations that better identify objects
are assigned higher weights than the rest part. Suppose there are m classes from
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the n input data X = [z1,22,...,2y], and the mean vectors for each class are
denoted [Z1, Za, ..., Tm]. The weight at location [ is computed as

w; =1—exp {_[Z(x” — xl)]z/mQ} , (9)

i=1

where T is the mean vector of all the data in X. By making use of the mean
vectors, the constructed weight map is less influenced by the difference in the
data of the same class. Next, the weight map W = [wy, w2, ..., w,] is multiplied
component-wise with each long vector in X, and we have the set of weighted
data X' = [W.xx1, W. x g, ..., W.x x,,], where .x denotes componentwise matrix
multiplication. We apply Singular Vector Decomposition (SVD) to X’ which
gives X' = CSVT, where C is the left eigenvector matrix represented as feature
components, S the diagonal matrix of singular values, and V' the right eigenvector
matrix which consists of d dimensional feature vectors.

We also extend the above approach by learning the weight map in a supervised
way, which is termed supervised weighted PCA (SWPCA). Suppose we apply
PCA to a data set X = [z1,9,...,2,], and obtain the leading k eigenvectors
$ = [ey,...,ex] and the corresponding eigenvalues A = [Aq,..., \g]. The PCA
feature vector for data x € X is v = ®”x, which can be expressed component-
wise as

d
v = Z(Pz;xl , (10)
=1

where d is the dimension of data x, @; denotes the ith eigenvector, and &
is its value at the location [. SWPCA extends the above component-wise fea-
ture extraction by incorporating a weight map as vy = Z?:1 &L w z;, where
wy is the weight at the location [. Because the weight map has a large ab-
solute value in class-discriminating regions, SWPCA increases the influence of
class-discriminating regions over the extracted features and decreases that of
the non-discriminating regions. Suppose there are m classes in the data set
X = [z1,22,...,2y,), which are denoted class;, i = 1,...,m. The weight map
is initialized as the one used in WPCA, and is optimised by minimising an error
function,

- D (Uj ) 'l_)i)Q

= Z } 2 D(vj,9:)* an

=1 j€class;
where v; is the WPCA feature vector (normalized by eigenvalues S) of data
xz; € X, v; is the mean feature vector for class;, and ¥; is mean of the data
not belonging to class;. Function D calculates the Euclidean distance between
the feature vectors. Substituting Equation (I0) into Equation (1), we have & to
update the weight map W using W) = W® — g¢(W®). We use gradient
descent method to optimise each w; in the weight map.
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5 Experiment Results

In this section we present experimental evaluations of our framework for surface
characteristics estimation. During the acquisition we placed a vertical polarisa-
tion filter in front of a collimated light source, so that the object are illuminated
by polarised light in the direction of the camera (frontal illumination). There
is also a polariser in front of the camera, which can be rotated and change
the intensities of input images following the equation of Transmitted Radiance
Sinusoid (TRS)[L6].

There are 35 fruits in 7 different categories for the experiments, and there
are 5 objects in each class. The experimental objects include red and green
apples, oranges, pears, tomatoes, lemons and apricots. The results of reflectance
functions and hue distributions for all inputs are shown in Fig[Il The reflectance
information of fruits in different classes is hard to distinguish, as it is easily
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(a) Hue Distribution

(b) Reflectance Function

Fig. 1. The estimated hue distribution and reflectance functions for 35 fruit objects
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Fig. 2. The three feature extraction methods used for three characters of fruit surface
appearance

influenced by dirts such as dusts and oil. The hue distributions are easier to
recognise as the light source conditions are identical for all inputs, however some
objects in different classes have similar or even identical colors. Therefore using
only color information cannot discriminate fruits accurately, but the properties
of shape and reflectance should also be considered.

In Figl2l we show the feature extraction results using the three methods, i.e.
PCA, WPCA and SWPCA. From the figure, the features extracted using SW-
PCA are better separated by different classes, and are more concentrated within
the same class than those extracted using the other two methods. It is also clear
that using techniques such as nearest neighbour or SVM the fruit classification
results can be much improved when considering the three properties simultane-
ously. This is one of the topics for future research.

6 Conclusion

In this paper we provide a novel framework for obtaining shape, color and re-
flectance information using the polarisation techniques and then uses three fea-
ture extractions methods on the estimates. We demonstrate experimentally that
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the proposed methods are robust and reliable, which can be applied in object
recognition and classification. Future research will explore these applications.
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